电

TIA-HUANACU, BOLIVIA,
SOUTH AMERICA.

COSMIC THEORY OF PRIMES.

TIA-HUANACU, BOLIVIA,
SOUTH AMERICA.
COSMIC THEORY OF PRIMES.

fE61
 B45
 pt. 2

Mo vor
M,

THE REPUBLIC. Plato, (Jowett.)

BOOK VII.

"After this, I said, imagine the enlightenment or ignorance of our nature in a figure. Behold! human beings living in a sort of underground den, which has a mouth open towards the light, and reaching all across the den; they have been here since their childhood, and have their legs and necks chained so that they cannot move and can only see before them; for the chains are arranged in such a manner as to prevent them from turning round their heads. At a distance above and behind them the light of a fire is blazing, and *between the fire and prisoners there is a raised way; and you will see, if you look, a low wall built along the way, like the screen which marionnette players have before them, over which they see the puppets.
"Like ourselves, I replied; and they see their own shadows, or the shadows of one another, which the fire throws on the *opposite wall of the cave! True, he said;"
"And after this he will reason that the sun is he who gives the seasons and the years, and is the guardian of all that is in the visible world, and in a certain way the cause of all things which he and his fellows have been accustomed to behold! Clearly. . .
"And if there were a contest, and he had to compete in measuring the shadows with the brisoners who have never moved out of the den."
*For the "marionnettes," as stated, for the "shadows" the wall is beyond them. (W.S.B.)

Mans.
*.

great monolithic enclosure.
'VOIGGICV HLOOS 'riAI'IOS ' \cap DVNVAH-VIL


```
&
```


GREAT MONOLITHIC ENCLOSURE.
TIA-HUANACU, BOLIVIA, SOUTH AMERICA.

```
<
\because:% . :
\because\because
\because
\because\because
#:. 
\because:: :
:..
```

SERIES EXHIBITING THE INFLUENCE OF THE TIA-HUANACU DIAL IN BOTH THE AMERICAS.

FOUNDATION SLAB OF DIAL.
"COLLCA PATA," Pleiades TERRACE AND BASIN.
TIA•HUANACU, BOLIVIA, SOUTH AMERICA.

[^0]SERIES EXHIBITING THE INFLUENCE OF THE TIA-HUANACU DIAL IN BOTH THE AMERICAS.

TIA-HUANACU, BOLIVIA, SOUTH AMERICA

[^1]TNIVERSITT
CAIFOR
SERIES EXHIBITING THE INFLUENCE OF THE TIA-HUANACU DIAL IN BOTH THE AMERICAS
Fhom Negatives taken hi thomas a. painter for major whiliam s. beebe.

FOUNDATION SLAB OF DIAL.
"COLLCA PATA," PLEIADES TERRACE AND BASIN.
"VDIEHIV HLOOS'VIAITOE 'OOVNV

[^2]

TIA-HUANACU, BOLIVIA, SOUTH AMERICA.
$\because \because$
こ．．．\therefore こ

ぞに
$\because \because$.
…
そ．．．\because に，
！．．．＂．
$0, \frac{B}{01}$ TME （TMIVRRSITY）

AEIFORTB

(Continued.)

SERIES EXHIBITING THE INFLUENCE OF THE TIA-HUANACU DIAL IN BOTH THE AMERICAS. FOUNDATION SLAB OF DIAL RESTORED. "COLLCA PATA," "PleIADES TERRACE AND BASIN."

(ALl dimensions mulitiples of an incif.)

WESTERN SHADOW. ($86 \times 6=516=\mathrm{cw}$.

$$
\frac{\text { hlluminating beam } 45^{\circ} \text { above western horizon. }}{\text { (Continued.) }}
$$

AYMARA-QUICHUA COSMOGONY.

"COLLCA PATA, PLEIADES TERRACE."
(HORIZONTAL SLAB RESTORED AS FAR AS PRESENT CONDITION PERMITS.)
ALL DIMENSIONS MULTIPLES OF AN INCH.

Illuminating Beam at an angle of 45° above the Horizon.

NUMERICAL ABSTRACT.

(4avinf

REMARKS.

Up to November 7th, 1893, the only measurements of the Dial Foundation Slab in my possession were those taken for me by Mr. Thomas A. Painter and the ones given by Stübel and Uhle.

These were incomplete and failed to give the contents of Basin A, and the Eastern Shadow in B.

With these deficiencies the results were:

NUMERICAL ABSTRACT. THEORY OF PRIMES.

$$
\begin{aligned}
& (\mathbf{C})+(\mathbf{B})-\quad \mathrm{r}^{*} \quad=\quad \mathrm{pIII}+\quad \mathrm{pI}-\quad \mathrm{b} \\
& (\mathbf{C})+\mathbf{s}+\quad \mathbf{r}^{*}= \\
& {[(\mathrm{H} \times \mathrm{H})+\mathrm{H}-(\mathrm{h} \times \mathrm{h})]-\mathbf{r}^{*} \quad=\quad \text { pIII.-pII. }} \\
& {[(H \times H)+\mathbf{H}-(h \times h)] \quad=\quad \frac{1}{2} D} \\
& S+(p)=(\text { CUBE OF 52 })-\frac{1}{2} D
\end{aligned}
$$

In this series of equations pIV. is wanting altogether, and no single term, (pI., pII. or pIII.) is given in Dial Dimensions alone. Moreover $r^{*}=888$, occurs as the areas of each of the exterior rectangles, but they, constructively, are not in direct relation with the Basins that supply the other data.

In November, 1893, after Messrs. Grant and Jay's measurements were available, the contents of A, and Shadows in B were known. With these the new equations are:

$$
\begin{aligned}
& 2(C+B+A)-1 \quad=\text { pIF.+ *444. } \\
& 2(C+B+A)-1-\quad \text { ce+ } \\
& 3[(H \times H)+H-(h \times h)]-c e+b e= \\
& -1 \mathrm{D}=+77777+{ }^{*} 7777 . \\
& \text { pI. } \\
& \text { pIV: }=\text { Sum of Primes (1-1009). Seventeen Columns of Ten Terms. Typical Sum, *4444. } \\
& \text { pIV. }=\quad 77137 . \\
& \text { tCompare 77777. Ten Columns of Seventeen Terms. Typical Sum, *7777. } \\
& \text { And the total Shadow, } 2(c e+b e)+c w=2(117+69)+516=888=* \text { r. }
\end{aligned}
$$

That is; the ncw terms give pIV.; the Symmetric Number with which to compare it; the Typical Sums of the same Prime when arranged in Seventcen Columns of Ten Terms and Ten Columns of Seventeen Terms; the first Prime Aggregate, [pI.], in Dial dimensions and nothing else; and substitutes for the area of the exterior rectangle, (888), the total shadow cast in the Basins that supply the other terms of these equations.

NOTE. The New Terms are printed in heary-faced type.

$$
\begin{aligned}
& 8,5
\end{aligned}
$$

```
COMPARATIVE EXHIBIT OF MEASUREMENTS OF DIAL FOUNDATION SLAB.
(Taken by Messrs. *Stubel, Grant and Jay, and Painter.)
OBSERVER. METERS. INCHES. REMARKS. tABSTRACT.
```

SQUARE FOUNDATION SLAB.

NOTE. Messrs. Grant and Jay's are the only complete observations and made without knowledge of the others.
*"Die Ruinenstaette von Tiahuanaco." Stübel und Uhle.
+Approximate lineal unit, one incb.

$$
\begin{aligned}
& \therefore 3+5 \pi^{2}+2
\end{aligned}
$$

COMPARATIVE EXHIBIT OF DISCREPANCIES IN MEASUREMENTS OF DIAL FOUNDATION SLAB, TAKEN BY MESSRS. GRANT AND JAY IN METERS, AND PAINTER IN INCHES.

NOTE. Where I have deducted the sum of two discrepancies from a third, the three belong to complementary dimensions, one within, two without. Where the discrepancy is halved, it may have arisen by measuring from opposite directions, in which case it would be repeated.

Maximum discrepancy . 378 of an inch $\mathbf{x} \ldots \ldots \times \mathbf{x}$
$-x$ 全
(175
Covencorvy

SERIES ENHIBITING THE INFLUENCE OF THE TIA-HUANACU DIAL IN BOTH THE AMERICAS. DIMENSIONS OF DIAL FOUNDATION SLAB.

APPROXIMATE LINEAL UNIT ONE INCH

AREAS.

| Area of foundation slab from square corner to square corner, | 25600. | $160=\mathrm{H}$. |
| ---: | :--- | ---: | :--- |
| Chord centre to centre, | 21904. | $148=\mathrm{h}$. |
| Each of three exterior rectangles, North, West and South, | 888. | $=\mathrm{r}$. |

CUBIC CONTENTS.

NOTE. A, Eight Ideal Years, $\quad 8(360), 2880$.

[^3]SERIES EXHIbITING THE INFLUENCE OF THE TIA-HUANACU DIAL IN BOTH THE AMERICAS.

AYMARA-QUICHUA COSMOGONY.

THEORY OF PRIMES.

NOTE. ""COLLCA PATA, PLEIADES TERRACE AND BASIN." $25863=$ pIII = IDEAL PLEIADES YEAR.

```
piv = Sum of Primes (1-1009). Seventeen Columas of Ten Terms, Typical Sum, *4444.
pIV = 77137.
+ Compare 77777. Ten Columns of Seventeen Terms, Typical Sum, *7777.
```

TIIE THREE SHADOW FISH IN THE PLEIADES BASIN ARE "THUNAPA AND HIS SISTERS," "THE THREE PERCH."

*AEyNontis
distribution of cosmic theory or primes.
SOUTH AND NORTH AMERICAN ABSTRACT. NUMERICAL SCHEME.
pERU. *"PLEIADES TERRACE AND BASIN."

ABSTRACT OF THEORY OF PRIMES.

WIIIIAM S. BE円B円.

ABSTRACT

OF
SIGNIFICANT AGGREGATES.

pI,	11382		11383
pII,	22895	or	22896*
pIII,	25864	or	25863
pIV,	78137		77137
\mathbf{P},	13\%278		
$[3330+137278]=$ Cube of 52			
[17352 .+	5544] $=$		22S96*
[17352 -	5544] $=$		11808

Note.

$$
\begin{array}{rll}
\mathrm{pIII},-\mathrm{pII}, & - & 3856-88 s \\
1 / 2 \mathrm{D}, & - & 3856 \\
\mathrm{~A}, & = & 555 \\
\mathrm{a}, & - & \mathbf{3 3 3} \\
\mathrm{b}, & - & \mathbf{2 2 2}
\end{array}
$$

CONSECUTIVE CUBIC DIFFERENCES.
(Primes.)

					(Primes.)								
							[III		233			- 25863.	pIII.
		2			7*								
		3			19^{*}								
		4			37*		$[999$			$+$			
			RIO	C L	W.		[888	X	28	$+$	999],		
	I.	II.	III.	IV.	V.	TOTALS.	[777	x	33	$+$	222],		
							[666	x	38		555],		
	(1,					7)	[55.5	X	46	+			
I.	7.	11,	13.	17.	19*	19*	[-				
	$(2$				II),	22	[444	X	58	+	${ }^{111]}$],		
II.	19.	23,	29.	31,	37^{*}	37^{*}	[333	X	77				
	$(3$				13).		[222	X	116	$+$	111],		
III.	37,	41,	43.	47.	53*	53^{*}	[111	X			555],		
	(5				17),	85							
IV.	53,	59.	61.	67.	71*	71*	[556].	25864.	p1II.
	$(7$				19),		[55\%],	25865.	
v.	71.	73.	79.	83.		$\left.89^{*}\right\} 222 \mathrm{~b}$.							
Notes.						$555 \mathbf{A}=\mathbf{a}+\boldsymbol{b}$	Note						
UNIT	NCLU				5\%\%		*556	Un	nity	nclud	ded,	A.	555,
UNIT	TERA	F BO	I SER		557		*55\%	Te	rm	f bot	th series	s, \quad.	

A.

SYMMETRIC COMBINATION.

2

1	3	5	7
19	17	13	11
$*_{20}$	$*_{20}$	18	18

2.3	29	31	37	29	23	31	37	31	23	29	37
47	53	43	41	47	53	41	43	47	59	43	41
71	67	59	61	71	67	61	59	53	61	67	71
79	73	89	83	73	79	89	83	89	79	83	73
$220 * 222 * 222 * 222$				$220 * 222 * 222 * 222$				$220 * 222$		*222	$*_{222}$
97	IoI	103	107	97	103	IOI	107	97	101	103	107
131	113	127	109	109	131	113	137	137	127	113	109
137	149	139	151	127	139	157	149	139	149	131	157
173	163	167	157	191	163	167	151	151	167	179	163
179	191	181	193	193	181	179	173	193	173	191	181
*717*717*		*717	*717	$*_{717}^{*}{ }_{717} *_{717} *_{71}$				*717 *717 *717			*717
				197		199	21	II	223		227
				233		251	24	1	239		229
				269		277	27	1	263		257
				3 II		281	30		283		293
				10Io*		100S	103	\%*	1008		1006

*ioos
$28(36) *$

	313	349	389	317	331	347			
	337	353	397	373	379	467			
	359	367	401	419	383	491			
	443	433	409	431	439	503			
	487	457	421	46 I	449	509			
	541	52 I	463	479	499	523			(36)*
	*2480	${ }_{2}{ }_{4} 80$	*2480	*2480	*2480	2840		*2480	$\begin{array}{r} 222 \\ 2222 \end{array}$
547	571	577	569	587	593	557	563		
599	607	613	617	601	619	653	677		
659	6.43	647	641	631	661	673	691		
719	743	739	733	727	709	683	701		
809	769	757	773	787	751	797	761		
*3333	*3333	*3333	*3333	*3333	*3333	3363	3393	*3333	3333
811	853	821	839	829	823	827			
857	SS7	859	883	881	S63	877			
991	907	937	911	919	947	929			
941	953	983	967	971	977	997			
*3600	*3600	*3600	*3600	*3600	3610	3630		*3600	$100(36)^{*}$

	313	349	389	317	331	347			
	337	353	397	373	379	467			
	359	367	401	419	383	491			
	443	433	409	431	439	503			
	487	457	421	46 I	449	509			
	541	52 I	463	479	499	523			(36)*
	*2480	${ }_{2}{ }_{4} 80$	*2480	*2480	*2480	2840		*2480	$\begin{array}{r} 222 \\ 2222 \end{array}$
547	571	577	569	587	593	557	563		
599	607	613	617	601	619	653	677		
659	6.43	647	641	631	661	673	6 gr		
719	743	739	733	727	709	683	701		
809	769	757	773	787	751	797	761		
*3333	*3333	*3333	*3333	*3333	*3333	3363	3393	*3333	3333
811	853	821	839	829	823	827			
857	SS7	859	883	881	S63	877			
991	907	937	911	919	947	929			
941	953	983	967	971	977	997			
*3600	*3600	*3600	*3600	*3600	3610	3630		*3600	$100(36)^{*}$

	313	349	389	317	331	347			
	337	353	397	373	379	467			
	359	367	401	419	383	491			
	443	433	409	431	439	503			
	487	457	421	46 I	449	509			
	541	52 I	463	479	499	523			(36)*
	*2480	${ }_{2}{ }_{4} 80$	*2480	*2480	*2480	2840		*2480	$\begin{array}{r} 222 \\ 2222 \end{array}$
547	571	577	569	587	593	557	563		
599	607	613	617	601	619	653	677		
659	6.43	647	641	631	661	673	6 gr		
719	743	739	733	727	709	683	701		
809	769	757	773	787	751	797	761		
*3333	*3333	*3333	*3333	*3333	*3333	3363	3393	*3333	3333
811	853	821	839	829	823	827			
857	SS7	859	883	881	S63	877			
991	907	937	911	919	947	929			
941	953	983	967	971	977	997			
*3600	*3600	*3600	*3600	*3600	3610	3630		*3600	$100(36)^{*}$

Typical Sums.
$*_{2}$
*20
22
Compare With.
2

222
7%
${ }^{*} 717$

AGGREGATE, $[.31 \times 360]+222-11382 \mathrm{pI}$.

ABSTRACT OF THEORY OF PRIMES.---Continued.

SYMMETRIC COMBINATION.

INITIAL TERMS,
GROUPS. ORIENTATED GROUPS. GROUPS.

2981, C.

FIRST COMBINATION.

$$
\begin{aligned}
* 8 & =[1+7] \\
8 & =[3+5]
\end{aligned}
$$

PRIME LIMITS.
$\left[\begin{array}{ll}1 & 89\end{array}\right]$ *
$\begin{array}{rl}* 8 \times I & = \\ 2 & 8 \\ 3 & \\ & 16 \\ 24\end{array}$

FIRST AGGREGATE.

$$
\begin{aligned}
{ }^{*} 10 & =[2+1+7] \\
10 & =[2+3+5]
\end{aligned}
$$

PRIME LIMITS.

```
                                    [[1889}\\mp@code{*
```

$*_{\text {Io }} \times$ 1 $=10$
20
30
$\begin{array}{ll}5 & 40 \\ 7 & 56\end{array}$
$\begin{array}{ll}71 & 56 \\ 11 & 88\end{array}$

2	2
3	3
5	5
7	7

13	104	13	130
17	136	17	170

19	152	19	190
23	184	23	230

$\mathbf{2 9}$	$\mathbf{2 5 2}$	29	290
$3 \mathbf{5 1}$	248	31	310
37	296	37	370

41	328	41	410
43	344	43	430

47	376	47	470
53	424	53	530

59	472	59	590
61	488	61	610

67	536	67	670
71	568	71	710
73	581	73	730

73	584	73	730
79	632	79	790
$\mathrm{~S}_{3}$	664	83	830

D, $\quad \boldsymbol{\gamma} 12$ Aggregate.

Note.
Note.
[r 89]*, LIMITS OF INITIAL COMBINATION.
$\left[\begin{array}{ll}1 & 89\end{array}\right] *$, LIMITS OF INITIAL
COMBINATION.

SYMMETRIC COMBINATION.

PRIMES, [1 -1009].
SEVENTEEN COLUMNS, TEN TERMS.

CHIBCHA-MUISCA COSMOGONY.

NOTE.

$$
\begin{array}{lr}
* 444 \times 360=\mathbf{P}- & (\mathbf{p I I}-\mathbf{3 3 3}) \\
* 444 \times * 600= & \mathbf{2 6 6 4 0 0} \\
* \text { CYCLE, } & \text { (Uricœchea.) } \\
\text { *"FOUR AGES," } & \text { (Piedracita.) }
\end{array}
$$

TYPICAL YUCATEC CITY.

FESTIVAL OF HOBNIL KAN.

Abstract

"IT WAS CUSTOMARY IN ALL THE TOWNS OF YUCATAN TO ERECT AT THE LIMITS OF EACH OF THE FOUR QUARTERS, EAST, WEST, NORTH, AND SOUTH, TWO HEAPS OF $S T O N E S$, facing each other, and intended to be used during the celebration of two solemn festivals, which were as follows. In the year of which the dominical letter was KAN, the sign was HOBNIL, and, according to the Yucatecs, these both ruled in the south. They made this year, of baked earth, an idol which they called KANU UAYEYAB, and having made it they carried it out to the heaps of stones which lay towards the south. They then selected a principal man of the place, and in his house they celebrated the feast. For this purpose they made another image, of the god BOLON ZACAB, and placed it in the chosen house, in a prominent place, so that all who arrived might see it. This done, the nobles, priests, and people came together, and set out by a road swept clean, ornamented with arches, and strewed with foliage, to the southern heaps of stones, where they gathered about the idol KANU UAYEYAB. The priest then incensed the god with FORTY-NINE grains of maize, ground up and mixed with copal; the nobles next placed incense in the brazier, and burned it before the idol. The incense burned by the priest was called ZACAH, that used by the nobles, CHAHALTE. When these rites were completed the head of a fowl was cut off and offered to the idol, which was now placed on a litter called KANTE, and upon its shoulders were placed other little images, as signs of abundance of water and a good year, and these images were frightful to behold. Amid dances and general rejoicing the idol was carried towards the house where the statue of BOLON ZACAB had been placed, and while the procession was on the road, the, nobles and priests partook of a beverage made from FOUR $H U N D R E D$ AND FIFTEEN GRAINS of roasted maize, which they called PICULA KAKLA. Arrived at their destination, they placed the image that they carried opposite the idol which they found there, and made many offerings of food and drink, which were afterwards divided among the strangers who were present, the officiating priest receiving only the leg of a deer. Some of the devotees drew blood from their bodies, sacrificed their ears, and anointed with the blood a stone idol named KANAL ACANTUN. They modeled a heart of dough of maize and of calabash-seeds, and offered it to the idol KANU UAYEYAB. And in this manner they honored both the idols during the entire time of the feast, burning before them incense of copal and ground maize, for they held it certain that misfortune would overwhelm them if they neglected these rites. Finally, the statue of BOLON ZACAB was carried to the temple, and the other image to the western entrance of the town, where it remained until the next celebration of the feast."

Note. "The Native Races of the Pacific States." Bancroft, Vol. II., pgs. 702-703.
\dagger Ceh TeeL, (Maya), Deer Leg.
C i T Li, (Nahuatl), Archer.*
C u Si LLu, (Quichua), Sacrificer, ("Officiating priest").
C S L, (Shenitic), Orion (presides over *Sagittarius).
(Continued.)
FESTIVAL OF HOBNIL KAN.

HOB NIL KAN,	Name of Deity.
HOB NIL,	Entrails.*
HOB,	To break up a Series.
NAL \quad	
	Ear of Corn, A Series.
	CAN,
	To Count._-_-_--.

HOB NAL CAN, Involver of the Maize Count.

BOLON ZACAB, Name of Deity.
BOLON, Nine.*
ZAC , White.
Gum.

BOLON ZACAB, *Nine [grains of] White Incense. KANAL ACANTUN, Deity of Stone.
CAN,
NAL,
_----_ACANTUN, Set Stone.
CANAL ACANTUN, Stone set at the completion of Cycle.
(4×3, Diameter of Ideal Year.)
(One of the poles of the Litter.) CHAHAL TE, Name of Incense.
CHAHAL, Gum exuder.
KANTE, Name of the Litter,
CAN, Four,
TE, Tree,
CANTE, Four-Tree, Cruciform Litter.

	TE, Tree.
CHAHAL TE,	Incense Tree [Copal Tree.]
?* Nigah,	The "Center, the " prominent sta-
tion "of BOLON ZACAB, Nine	
Series.?	

\dagger PICULA KAKLA Name of Incense used en route.
PIC , Stones placed one on the other to mark the intervals of Cycles.
CUL , The counting of heaps of stones.
AH , Master of, Adept at.
CACa , By twos or pairs.
LAH, Affix showing the verb applies to all the objects mentioned.
\dagger PIC CUL AH CAC[a] LAH, Adept at counting Cycles marked by the [contents] of stone-heaps in Pairs.

ABSTRACT OF SIGNIFICANT NAMES.

*HOB NIL, Entrails. "Nel, Liver [foetal]. *[Aba], Chibcha Maize.
\dagger KHaMuR abi [Accadian] Pyramid Builder Diviner by its Shadows.

[^4](TIIVERSITT) c\&mitronti

(Continued.)

TYPICAL YUCATEC CITY.

FESTIVAL OF HOBNIL CAN.

"The Native Races of the Pacific Coast." Vol. II., pgs. 702, 703.

CARDINAL POINTS.
From South to East.
. . East to North.
. . North to West.
. . West to South.

DIMINISHING SERIES.
$58-9=49 \quad 49 \times 575=28175 \quad 2$ 49-9 $=40 \quad 40 \times 575=23000 \quad 2+2$ $40-9=31 \quad 31 \times 575=17825$ $31-9=22 \quad 22 \times 575=12650$ 120
increasing series.

$=44 \times 823=3292$
$2+2+2=6 \quad 6 \times 823=4938$
$2+2+2+2=8 \quad 8 \times 823=6584$
(Continued.)
(Continued.)

TYPICAL YUCATEC CITY.

FESTIVAL OF HOBNIL CAN.
"The Native Races of the Pacific Coast." Vol. II., pgs. 702, 703.

Cardinal points.	diminishing series.		increasing series.		Sum or difference.	
From South to East	28175	-	$* 1646$	-	26529,	S.
From East to North	23000	-	3292	-	19708,	E.
From North to West	17825	+	4938	-	22763,	N.
From West to South	12650	-	6584	$=$	6066,	W.
$\quad+$ (South		$c * 1646$		$6066)$		

NUMERICAL SCHEME. COSMIC THEORY OF PRIMES.
(SUM OR DIFFERENCE.)

$$
\begin{gathered}
\mathrm{P}=\mathrm{pIV}+\mathrm{pIII}+\mathrm{pII}+\mathrm{pI} \\
\mathrm{pII}=\mathrm{E}+\mathrm{D}+\mathrm{C}+\mathrm{B}+\mathrm{A}
\end{gathered}
$$

$\mathrm{A}=\mathrm{b}+\mathrm{a}$

```
Cycle \(-\mathrm{C}=415(360)-149400\)
    \((\mathrm{C}+\mathrm{S}+\mathrm{E}+\mathrm{N}+\mathrm{W})=224465=2(\mathrm{P})-\quad \mathrm{pIII}+\mathrm{pII}+\)
pIII +
    pII - \(\quad 1 / 2 \mathrm{D}-\)
        \(2(\mathrm{pI}) \dagger\).
West \(W=6066\)
(South Component) * c \(\quad 1646\)
    \((\mathrm{W}+\mathrm{c})=7712=\)
        D
```

 * 415 grains constituted the incense called PICULA KAKLA. \(415(360)=149400=\) C.
 \(\dagger_{22763}+1=2(\mathrm{pI})\).
 (2, of TAR JHIVERSITV

MAYA CYCLES,

(Neither Dr. Förstemann nor Dr. Brinton is responsthle for anything in this column.)

Cosmic Theory of Primes

BY
Sum or Difference.

FROM THE ABSTRACT OF DR. FORISTEMANN'S RESEARCHES IN
"A Primer of Mayan Hieroglyphics, BY DANIEL G. BRINTON."
Page 29.
The scribes seem to have begun by estáblishing a period of

Neither Dr. Förstemann nor Dr. Brinton is responsible for anything in this column.)

Cosmic Theory of Primes

BY
Sum or Difference.

NOTES. 7488. *Is the superfilal excess in Assyrian Units of the I over the II Platform of the "Temple of the Seven Lights," Babylon.
11381. *See Typicai Yueatec City ; Festival of Hobnil Can, p. I.
333. Difference of Typical Sums in Symmetrio Combination of Primes from 1-i000, when combined In Seventeen Columns of Ten Terms, or Ten Columns of Seventeen Terms. See p. IV.
(20). WOmlt. dealing with months of 30 days.

On page 20, "Primer," the aggregate is wrongiy given us 1377310 , instead of 1371340.
$\binom{$ OIVETSITY }{ Cs ox }

THE LINEAL MEASURES

of the

SEMI=CIVILIZED NATIONS OF MEXICO AND CENTRAL AMERICA.

```
        MAYA [YUCATAN] LAND MEASURES [Page 4].
    "On this as a unit, the customary land measure was based. It was the *KAAN,
one shorter, a kaan of *THREE ZAP, and one longer, a kaan of *FOUR MAP. The
former is stated to be *THIRTY=SIX fathoms square, the latter *FORTY=EIGHT fathoms
square."
"The kaan is said by Spanish writers to be *184 square feet equal to the *MEX= ICAN MECATE."
```


(CONTINUED.)
NOTE. "It is known that the Aztecs had a standard measure of length which they employed in laying
out grounds and constructing buildings. It was called the *OCTACATL." (Brinton, p. 7.)
*OCeTetl, Otros tres.
ACATL, Caña.
*OC-TACATL, Three Canes, equal to (Maya), Ox Zap, Three Sticks.
*VOCABULARIO DE LA LENGUA MEXICANA, Molina.

NAHUATL (MEXICO) STRUCTURAL AREAS. (Page 10.)

"These houses were in length from east to west *FOUR HUNDRED AND ELEVEN AND A HALF (NATIVE) MEASURES, and in breadth from north to south *THREE HUNDRED AND TWENTY=SIX MEASURES."
(Page ir.) "The proportions given above, it will be noted, are strikingly irregular (*4iI $1 / 2,{ }^{*} 326$). Was this accident or design? Very likely the latter, BASED ON SOME SUPERSTITIOUS OR ASTROLOGICAL MOTIVE. It is far from a solitary example."

STRUCTURAL AREAS

$$
\begin{aligned}
(411 / 2) \times\left({ }^{*} 6\right) & =14814, & & \text { AI. } \\
(326) \times\left({ }^{*}{ }^{6} 6\right) & =11736, & & \text { AII. }
\end{aligned}
$$

NUMERICAL SCHEME.

$$
\begin{array}{lll}
\text { pI. }=11383 & \text { pI. }=11382 & \mathbf{D}=3856 \\
\text { pII. 22896 } & & \mathbf{a}=333 \\
\text { pIII. } 25863 & & \mathbf{b}=222
\end{array}
$$

MITHRAIC TABLET. Davenport, Iowa, united states of america.
(Continued.)

ABSTRACT OF MITHRAIC TABLET AGGREGATES.

NUMERICAL SCHEME. COSMIC THEORY OF PRIMES.
(SUM OR DIFFERENCE.) $\quad \mathrm{P}=\mathrm{pIV} .+\mathrm{pIII} .+\mathrm{pII}+\mathrm{pI}$.
pII. $=\mathrm{E}+\mathrm{D}+\mathrm{C}+\mathrm{B}+\mathrm{A}$

NOTE. The details of The Theory of Primes are given in exact sequence with the Panel Legends. Compare this Abstract with those of the DISTRIBUTION OF COSMIC THEORY OF PRIMES.
(2)
(Continued.)
DISTRIBUTION OF COSMIC THEORY OF PRIMES.
SOUTH AND NORTH AMERICAN ABSTRACT.
NUMERICAL SCHEME.
COSMIC THEORY OF PRIMES.
(SUM OR DIFFERENCE.) $\mathrm{P}=\mathrm{pIV} .+\mathrm{pIII} .+\mathrm{pII} .+\mathrm{pI}$.

$$
\begin{array}{ccc}
\text { pII. } & =\mathrm{E}+\mathrm{D}+\mathrm{C}+\mathrm{B}+\mathrm{A} \\
. & . & . \\
. & . \quad \mathrm{A}=\mathrm{a}+\mathrm{b}
\end{array}
$$

COLOMBIA. CHIBCHA CYCLE
Cycle $=\quad 266400=2(\mathrm{P})-$. $\mathrm{D}+$. . . $2(\mathrm{~b})$.

YUCATAN. TYPICAL CITY.
Cycle $=\mathrm{C}=415$ (360) $=149400$

$$
(\mathrm{C}+\mathrm{S}+\mathrm{E}+\mathrm{N}+\mathrm{W})=224465=2(\mathrm{P})-. \quad \mathrm{pIII} .+\mathrm{pII} .+. \quad . \quad . \quad . \quad . \quad .4(\mathrm{a})
$$

South S $=26529=$. \quad pIII.+ $2(\mathrm{a})$

West W = 6066

South Component $c={ }_{1646}$

$$
(\mathrm{W}+\mathrm{c})=77 \mathrm{I} 2=. \quad . \quad . \quad . \quad . \quad . \quad \mathrm{D})
$$

MEXICO. COSMIC STRUCTURE.

IOWA. DAVENPORT.
MITHRAIC TABLET.
Mithraic Aggregates.

12Tromit
LEGEND OF CREATION FROM THE CUTHA TABLET. COSMIC HOSTS.
CHALDEAN ACCOUNT OF GENESIS, p. 94.
"19. The first year in the course of it
20. ONE HUNDRED AND TUENTY THOUSAND soldiers I 120000 I.
sent out, and among them
21. not one returned.
22. The second year in the course of it, NINETY THOUSAND 90000 II.I sent out, and not one returned.
23. The third year in the course of it, SIXTY THOUSAND
SEVEN HUNDRED I sent out, and not one returned." 60700 III.
AGGREGATE, 270700
THEORY OF PRIMES.

pI.	$\mathbf{1 1 3 8 2}$	
pII.	$\mathbf{2 2 8 9 6}=\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}^{*}+\mathrm{E}$	$1 / 2 \mathrm{D}^{*}=\mathbf{3 8 5 6}$
pIII.	$\mathbf{2 5 8 6 3}$	
pIV.	$\mathbf{7 7 1 3 7}$	
P.	$\mathbf{1 3 7 2 7 8}$	
	$2(137278)=$	$\mathbf{2 7 4 5 5 6}$

"Foundation Stone of Khorsabad. Tablet of Silver." Records of the Past, Vol. XI, p. 3^{6}.
(Oppert.)
KHORSABAD SKETCH PLAN.

KHORSABAD AREAS.

"Records of the Past," Vol. XI. Oppert.

(Page 22.) "Neither at Persepolis, nor at Nineveh, is there to be found an exact square; EVERYWHERE AND VERY LIKELY BY AN UNKNOWN SUPERSTITION, WE MEET ALWAYS WITH OBLONGS differing slightly from an exactly quadrate form."
(Page 38.) "The construction of Khorsabad offered another problem to be resolved. The circumference ought to be 200 poles, and the surface ${ }^{*}{ }_{10}$ ARURAS. The Assyrian engineers took formerly the large back side of ${ }^{*} 48$ poles, and then they fixed the monumental front at ${ }^{*} 36$ poles. To gain a circumference of 200 poles, they ought to give to the entire edifice the depth of ${ }^{*} 5_{2}$ (roo-48) poles. The question was how to divide ${ }^{*} 5_{2}$ INTO TWO UNEQUAL PARTS, as to obtain for the whole surface *2220 square poles. To that purpose they calculated first the central diagram, $36 \times 52=1872$, and divided the remainder, 348 into $12(48-36)$ parts; they added therefore on both sides a rectangle, each 6 wide and *29 long. This is the geometrical resolution of the equation which we to-day would form algebraically :

$$
\begin{aligned}
& (x+y)={ }^{*} 52 . \quad(48 x+36 y)={ }^{2} 2220 \\
& \text { Consequently: } \quad(36 x+36 y)=1872 \\
& \left(12 x=34^{8}\right. \\
& \mathrm{x} \quad={ }^{* 29} \\
& \mathrm{y}=\underbrace{23}
\end{aligned}
$$

KHORSABAD AREAS.

Square Cubits.

(Continued.)
'Kd, 81215 ; a difference of unity makes the Difference a multiple of $\mathbf{3 7}$ as the Sum is. It also becomes a function of primes ;

$$
81215
$$

$\left.\begin{array}{l}\boldsymbol{p} \bar{I} V-713 \% \\ D-3856 \\ b-222\end{array}\right\}$

KHORSABAD AREAS.

"Records of the Past," Vol. XI. p. 22.

"Neither at Persepolis, nor at Nineveh, is there to be found an exact square; EVERYWHERE AND VERY LIKELY BY AN UNKNOWN SUPERSTITION, WE MEET ALWAYS WITH OBLONGS differing slightly from an exactly quadrate form."

KI.	20044^{2}	$6912 \times \mathbf{2 9}$
KII.	${ }^{119232}$	$5184 \times \mathbf{2 3}$
Ks.	319680	$8640 \times \mathbf{3 7}$
'Kd.	81216	
"Kd.	81215	2195×37
	(Assyrian Cubits.)	

THEORY OF PRIMES.

2 (Cube of 52)		$=281216$	
'Kd.			
1/2 Ks. $+\mathbf{a}-\mathbf{p I I}$.		$=$	$P=137278$
CUBE OF $5^{2}=(\mathrm{roa}+$			P)
"Kd. -	$(\mathrm{b}+1 / 2 \mathrm{D})$	$=$	pIV.

LEGEND OF CREATION FROM THE CUTHA TABLET.
"19. The first year in the course of it
20. *ONE HUNDRED AND TWENTY THOUSAND soldiers I
sent out, and among them
2 I . not one returned.
22. The second year in the course of it, *NINETY THOUSAND I sent out, and not one returned.
23. The third year in the course of it, *SIXTY THOUSAND

SEVEN HUNDRED I sent out, and not one returned."

KHORSABAD AREAS.	COSMIC HOSTS.	ASSYRIAN CYCLES	
(Assyrian Cubits.)	(Nineveh.)	(Oppert.)	
KI. 200448	NI. ${ }^{1}{ }^{20000}$	c	39180
*KII. 8i216	NII. ${ }^{\text {9 }}$ 90000		
KIII. 119232	NIII. *60700	C, $\quad 7(\mathrm{c})$	274260
*KIV. 319680	NIV. ${ }^{270700}$		

NUMERICAL SCHEME.
(Consecutive Combinations of Consecutive Numbers.)

I.	(KI. + NI.) - c			$=\left(2\left(\mathrm{CUBE} \mathrm{OF} 5^{2}\right)+5^{2}\right)$
III.	(*KIII. + NIII.) - c			$\left.=\left(\mathrm{CUBEOF} 5^{2}\right)+144^{*}\right)$
II.	(KII. +NII. $+\mathrm{c}+$	+pII. + pIII. $+1 / 2 \mathrm{D}$	b) $=2(\mathbf{P}$	
IV.	(KIV.-NIV.) =	(pII. + pIII. +	b)	
IV.	NIV. $=(\mathrm{C}$	$-1 / 2 \mathrm{D}$	$-S[37]$	
IV.	(NIV.	+1/2D	$={ }_{2}(\mathbf{P})$	

THEORY OF PRIMES.

a,	333	o55 A.	11383 pI.
b,	222	2007 B.	22895 pII.
		2981 C.	25863 pIII.
A,	555	$7712 \mathrm{D}$.	77137 pIV.
		9640 E.	
			137278 P.
		22895 pII.	

$$
\begin{aligned}
\text { NOTE. } & * \text { KIII. }=828 x^{*} \text { I44. } \\
& * \text { KIV. }=\text { KI. }+ \text { KIII. } \\
& * \text { KII. }=\text { KI. }- \text { KIII. } .
\end{aligned}
$$

" TEMPLE OF THE SEVEN LIGHTS," BABYLON.

(Continued.)
"TEMPLE OF THE SEVEN LIGHTS," BABYLON.Areas.Assyrian Cubits.
I. 30384II. 228967488 DI .III. 162726624 DII.IV. $10944 \quad 5328$ DIII.V. $6624 \quad 4320$ DIV.VI. $33^{12} \quad 33^{12}$ DV.NUMERICAL SCHEME.
pI. $(\mathrm{II} .+1 / 2 \mathrm{D})-(\mathrm{DI} .+\mathrm{DII}+17 \times \mathrm{I} / 3 \mathrm{~b}$.
pII. =II
pIII. (II. $+1 / 2 \mathrm{D})-\quad 4 \mathrm{~b})$
pIV. $(\mathbf{p I} .+$ pII. + pIII. + III. $+3 / 4(1 / 6 \mathrm{D})$
THEORY OF PRIMES.
a, $333 \quad 333 \quad{ }^{*} 556$ A. 11382 pI.
b, 222 222 2007 B. 22896 pII.
1* 2981 C. 2 อ 864 pIII.
A, 555 556* 7712 D. 77137 pIV.
22896 pII.
NOTE. 556*, UNITY INCLUDED.

MELANGES D'ARCHÉOLOGIE ÉGYPTIENNE ET ASSYRIENNE.

TOME DEUXIÉME.

3e. Fascicule . . . (7e. de la Collection.)
J. DE ROUGÉ.

CONCEPTION AND BIRTH OF HORUS SON OF ISIS.

VERSION I.

I. THOTH

30
18
Athor 30
Choeak 30
Tobi 30
Mechir 30
Phamenoth 30
BIRTH. Pharmuthi 4
Pachons
Paoni
Epep (The Ninth)Mesore$(30-9)=21$30
I. THOTH 3030
Paopi 18 30
Athor 30
Choeak 30
Tobi 30
Mechir 30
Phamenoth 30
Pharmuthi 28289

प\%IVERSITT

MELANGES D'ARCHÉOLOGIE ÉGYPTIEN゙NE ET ASSYRIENNE.

TOME DEUXIÉME.

```
3e. Fascicule . . . . (ie. de la Collection.)
```

J. DE ROUGÉ.

CONCEPTION AND BIRTH OF HORUS SON OF ISIS.

ABSTRACT OF DAYS.

VERSION I.
$48=1$.
$214=h^{\prime}$.
$10272=214 \times 48$

VERSION II.
$99=\mathrm{H}$.
$289=H^{\prime}$
$289 \times 99=28611$

THEORY OF PRIMES.

$\left(\mathrm{h} \times \mathrm{h}^{\prime}\right)$
$+1110^{*}=\mathrm{pl}$.
$\left(\mathrm{H} \times \mathrm{H}^{\prime}\right)+\mathbf{1 1 1 0 ^ { * }}+\mathbf{8 8 S}+=\mathrm{pII}+$
D*
$\left(\mathrm{H} \times \mathrm{H}^{\prime}\right)+1110^{*} \quad \mathrm{pILI}+\quad \mathrm{I} / 2 \mathrm{D}^{*}$
$2\left(\mathrm{~h} \times \mathrm{h}^{\prime}\right)+2\left(\mathrm{H} \times \mathrm{H}^{\prime}\right)-\quad 629^{*}=\quad \mathrm{pIV}$.
$1138:=$
$22897=$
2o5 65 =
$77137=$
$22896=\mathbf{A}+\mathbf{B}+\mathbf{C}+\mathbf{D}^{*}+\mathbf{E}$ pII.
plII.
pIV.

1/2*- $\quad 888 \dagger=\quad$ pIII -pII.
pl.

Note. $\mathbf{1 1 1 0}^{*}=30(37)$
$888 \dagger=24(37)$
$629^{*}=17(37)$

14 DAY USE RETURN TO DESK FROM WHICH BORROWED LOAN DEPT.

This book is due on the last date stamped below, or on the date to which renewed. Renewals only:

Tel. No. 642-3405
Renewals may be mada 4 days priod to date due
JUN 2219729 1'
BECD LD JUL $13^{\prime 7} 72-9$ ANI 99

[^0]: \because
 $\begin{array}{cc}\cdots & \cdots \\ \cdots & \cdots \\ \because . . .\end{array}$
 品:
 $\because \because$.
 …
 … …
 $\because \because \quad \because$.
 !..

[^1]:

[^2]: 学
 … ...
 糹
 …
 $\because .$.
 … \cdot.
 …
 :.....

[^3]: + 7.5 Height of Corner Bevels.
 * 6 Depth of Continuons Basin.

[^4]: *(NiGah) 58. See II. Great Cycle, Mithraic Tablet.

