F1040 00020HX

PART II.

GREAT DIAL,

TIA-HUANACU, BOLIVIA,
SOUTH AMERICA.

COSMIC THEORY OF PRIMES.

Copyright, 1894,
BY WILLIAM S. BEEBE.
ALL RIGHTS RESERVED.

PART II.

GREAT DIAL,

TIA-HUANACU, BOLIVIA,

SOUTH AMERICA.

COSMIC THEORY OF PRIMES.

Copyright, 1894,
BY WILLIAM S. BEEBE.

ALL RIGHTS RESERVED.

FE61 B45 pt.2

THE REPUBLIC. Plato, (Jowett.)

BOOK VII.

"After this, I said, imagine the enlightenment or ignorance of our nature in a figure. Behold! human beings living in a sort of underground den, which has a mouth open towards the light, and reaching all across the den; they have been here since their childhood, and have their legs and necks chained so that they cannot move and can only see before them; for the chains are arranged in such a manner as to prevent them from turning round their heads. At a distance above and behind them the light of a fire is blazing, and *between the fire and prisoners there is a raised way; and you will see, if you look, a low wall built along the way, like the screen which marionnette players have before them, over which they see the puppets.

"Like ourselves, I replied; and they see their own shadows, or the shadows of one another, which the fire throws on the *opposite wall of the cave!

True, he said;"

.

"And after this he will reason that the sun is he who gives the seasons and the years, and is the guardian of all that is in the visible world, and in a certain way the cause of all things which he and his fellows have been accustomed to behold!

Clearly. . .

. . . .

"And if there were a contest, and he had to compete in measuring the shadows with the brisoners who have never moved out of the den."

. . . .

*For the "marionnettes," as stated, for the "shadows" the wall is beyond them. (W.S.B.)

*

A property for the second of t

FROM NEGATIVES TAKEN BY THOMAS A PAINTER FOR MAJOR WILLIAM S, BEEBE,

GREAT MONOLITHIC ENCLOSURE.

54 ·

and the grant of the extendition of the contract of the contra

FROM NEGATIVES TAKEN BY THOMAS A PAINTER FOR MAJOR WILLIAM S. BEEBE.

GREAT MONOLITHIC ENCLOSURE.

FROM NEGATIVES TAKEN BY THOMAS A. PAINTER FOR MAJOR WILLIAM S, BEEBE,

FOUNDATION SLAB OF DIAL.

*SS 85

"COLLCA PATA," PLEIADES TERRACE AND BASIN.

FROM NEGATIVES TAKEN BY THOMAS A, PAINTER FOR MAJOR WILLIAM S, BEEBE,

FOUNDATION SLAB OF DIAL.

"COLLCA PATA," PLEIADES TERRACE AND BASIN.

FROM NEGATIVES TAKEN BY THOMAS A, PAINTER FOR MAJOR WILLIAM S. BEEBE.

"COLLCA PATA," PLEIADES TERRACE AND BASIN.

FROM NEGATIVES TAKEN BY THOMAS A, PAINTER FOR MAJOR WILLIAM S, BEEBE.

"COLLCA PATA," PLEIADES TERRACE AND BASIN.

(Continued.)

SERIES EXHIBITING THE INFLUENCE OF THE TIA-HUANACU DIAL IN BOTH THE AMERICAS.

FOUNDATION SLAB OF DIAL RESTORED.

"COLLCA PATA," "PLEIADES TERRACE AND BASIN."

(ALL DIMENSIONS MULTIPLES OF AN INCIL.)

WESTERN SHADOW. (86 x 6-516-cw.)

ILLUMINATING BEAM 45° ABOVE WESTERN HORIZON.

(Continued.)

AYMARA—QUICHUA COSMOGONY.

"COLLCA PATA, PLEIADES TERRACE."

(HORIZONTAL SLAB RESTORED AS FAR AS PRESENT CONDITION PERMITS.)

ALL DIMENSIONS MULTIPLES OF AN INCH.

Horizontal Slab to Square Corner,	160	×	160	==	$25600 ext{ H} = 160$				
Horizontal Slab to Center of Corner Chords,	148	×	148	=	21904 h = 148				
Each of Two Exterior Rectangles, North and Sou	ıth,		148 × 6	=	888 = r.				
Each of Two Exterior Prisms, North and South,	148	×	6×6		5328 = (p)				
Interior Square Slab,	148	×	148 × 6	=	131424 = S.				
Each of Four Corner Squares,			6×6	_	36				
Each of Four Corner Cubes,	6	×	6×6	_	216				
(C)	65	×	86×6	_	33540 = (C)				
Basins, (B)	$15\frac{1}{2}$	×	47×6		4371 = (B)				
(A Unknown)									
(C), Western Shadow in			86×6		516 = s				
Illuminating Doom at an angle of 450 above the Illuminating									

Illuminating Beam at an angle of 45° above the Horizon.

NUMERICAL ABSTRACT.

REMARKS.

Up to November 7th, 1893, the only measurements of the Dial Foundation Slab in my possession were those taken for me by Mr. Thomas A. Painter and the ones given by Stübel and Uhle.

These were incomplete and failed to give the contents of Basin A, and the Eastern Shadow in B.

With these deficiencies the results were:

NUMERICAL ABSTRACT. THEORY OF PRIMES.

In this series of equations pIV is wanting altogether, and no single term, (pI., pII. or pIII.) is given in Dial Dimensions alone. Moreover r*=888, occurs as the areas of each of the exterior rectangles, but they, constructively, are not in direct relation with the Basins that supply the other data.

In November, 1893, after Messrs. Grant and Jay's measurements were available, the contents of A, and Shadows in B were known. With these the new equations are:

That is; the new terms give pIV.; the Symmetric Number with which to compare it; the Typical Sums of the same Prime when arranged in Seventeen Columns of Ten Terms and Ten Columns of Seventeen Terms; the first Prime Aggregate, [pI.], in Dial dimensions and nothing else; and substitutes for the area of the exterior rectangle, (888), the total shadow cast in the Basins

that supply the other terms of these equations.

NOTE. The New Terms are printed in heavy-faced type.

COMPARATIVE EXHIBIT OF MEASUREMENTS OF DIAL FOUNDATION SLAB.

(Taken by Messrs. *Stübel, Grant and Jay, and Painter.)

		OBSERVER.	METERS.	INCHES.	REMARKS.	†ABSTRACT.
SQUARE FOUNDA	TION SLAB.					
Edge,		(S.)	4.05	159.449	Over all.	
		(G. J.)	4.05	159.449		
		(G. J.)	4.055	159.646	Sum of details.	
		(P.)		160		160
Angle vertex to	Arc centre,	(S.)	.08			
	Are radius,			11.7		
Chord of	Arc,	(G. J.)	.42			
	Are radius,			11.8		12
From North side	e to edge of Basin,	(G. J.)	.945	37.204		
		(P.)		37		37
South		(G. J.)	.945	37.204		
		(P.)		37		37
CONTINUOUS BAS	SIN.					
	(Wide), Basin C,	(S.)	2.16	85.039		
	,	(G. J.)	2.16	85.039		
		(G. J.)	2.165	85.236	Sum of details.	
		(P.)		86		86
East to West	(Long),	(S.)	1.61	63.38		
		(G. J.)	1.633	64.291		
		(P.)		65		65
((Deep),	(S.)	.015	5.905		
		(G. J.) Varies	s from .015	5.905		
		(G. J.) to	.0155	6.102		
		(P.)		6		6
North to South	(Wide), Basin B,	(S.)	1.22	48.031		
		(G. J.)	1.195	47.047		
		(P.)		47		47
East to West	(Long),	(G. J.)	.38	14.960		
		(P.)		15.5		15.5
	(Deep),					6
North to South	(Wide), Basin A,	(G. J.)	.60	23.622		24
East to West		(G. J.)	.415	16.338	To broken edge.	
		(G. J.)		19.372	Sum of details.	20
	(Deep),					6
Corner Bevels	(High),	(G. J.)	.191	7.519		7.5

NOTE. Messrs. Grant and Jay's are the only complete observations and made without knowledge of the others.

^{*&}quot;Die Ruinenstaette von Tiahuanaco." Stübel und Uhle.

[†]Approximate lineal unit, one inch.

COMPARATIVE EXHIBIT OF DISCREPANCIES IN MEASUREMENTS OF DIAL FOUNDATION SLAB, TAKEN BY MESSRS. GRANT AND JAY IN METERS, AND PAINTER IN INCHES.

	G	and J.	P.			
SQUARE FOUNDATION	SLAB. (INCHES	.)	DIFFE	RENCE.	†REMARKS.
				(+) (—)	
Edge,	1	59.646	160	.354	.354†	
Corner Radius,		11.08	12	.2		Almost a constant error.
From North Side to ed	ge of Basin C,	37.204	37		204	Probably due to varying
South,		37.204	37		204	tension and elasticity of
						the hand-made cord used
CONTINUOUS BASIN.						by the mason in laying out
North to South (Wide), C,	85.236	86	.764		the longer dimensions of
		NOTE,		(.764 — .4	408) = .356†	the slab. In the nature of
East to West (Long),	64.291	65	.709		things, a rigid scale having
		NOTE,		$\frac{1}{2}(.709)$	== .354†	been used in marking the
(1	Deep),	5.905	6	.095		height of the bevel, and
Variant (Deep),	6.102	6	•	102	the depth of the basin, the
North to South (Wide), B,	47.047	47	.(047	error does not exceed a
East to West (Long), B,	14.960	15.5	.540		tenth of an inch.
		NOTE,		$\frac{1}{2}$ (.540	= .270†	
North to South (Wide), A,	23.622	24	.378	.378†	
East to West ((Long),	19.372	20	.628		
		NOTE,		$\frac{1}{2}$ (.628)	= .314†	
Corner Bevels	(High),	7.519	7.5	.019		

NOTE. Where I have deducted the sum of two discrepancies from a third, the three belong to complementary dimensions, one within, two without. Where the discrepancy is halved, it may have arisen by measuring from opposite directions, in which case it would be repeated.

Maximum discrepancy .378 of an inch x x

SERIES EXHIBITING THE INFLUENCE OF THE TIA-HUANACU DIAL IN BOTH THE AMERICAS. DIMENSIONS OF DIAL FOUNDATION SLAB.

APPROXIMATE LINEAL UNIT ONE INCH.

AREAS.

Area of foundation slab from square corner to square corner, 25600.160 = H.Chord centre to centre, 21904. 148 = h.Each of three exterior rectangles, North, West and South, 888. = \mathbf{r} .

160 148 160 160 148 148 37 37 CONTINUOUS WESTERN BISECTED EASTERN SHADOW cw INC C AND B. 45° Above Horizon. LEFT. RIGHT. ee 6 (19.5) 6 (19.5) 117 = ce117 = cebe 6(11.5)6 (11.5) B 69 = be69 = beA EAST.

SHADOW

IN

 45° Above Horizon.

 $86 \times 6 = 516 = ew.$

CUBIC CONTENTS.

Cubic contents of square prism from chord centre to chord centre, $164280 = S' = 148 \times 148 \times 7.5 +$ 66 " " 66 66 66 66 $131424 = S = 148 \times 148 \times 6*$ Each of three exterior prisms, North, West and South, $6660 = p' = 148 \times 6 \times 7.5 +$ $5328 = p = 148 \times 6 \times 6$ Continuous Basin, C, 33540 = C.В, 4371 = B.Α, 2880 = A.

> NOTE. A, Eight Ideal Years, 8 (360), 2880.

^{† 7.5} Height of Corner Bevels.

^{* 6} Depth of Continuous Basin.

AYMARA-QUICHUA COSMOGONY.

* "COLLCA PATA, PLEIADES TERRACE AND BASIN."

NUMERICAL ABSTRACT.

	TENTS.	(1.)	AREAS.	SHADO	ws.	PRIMI	es.		CO	NTENTS.	SIDE.	SHADOWS.	PRIMES.
S'									= :	164280			
S									= :	131424			
\mathbf{p}'									=	6660			
	\mathbf{p}								=	5328			
	C								=	33540			
	В								=	4371			
		\mathbf{A}								2880			
		1											
			H								160		
				h					=		148		
				ce					=			117	
				be								69	
					cw				-			516	
					pI				=			1	1382
						D			=				7712
							a		=				333
								Ъ	=				222
					THEORY	OF	PRIM	IES.					
S'—							a+	2b	=			pII+	CUBE OF 52
s+	p+					$\frac{1}{2}$ D			=				CUBE OF 52
	'-p+					$\frac{1}{2}$ D							
s+	p+					½D	10a		=	P = pIV + pII	I+pII+pI		
	2 (C+B-								=	pIV+			*4444
	2 (C+B-		-	ce+		şD			=				+77777+*7777
	C+B-	_			pI+		2a		=	pIII			
	C+				cw-pI-	-		b	=		pII		
		3[$(H \times H) + H - (h$	$(\times h)$]—ce + be					=		pI		

4b

₫D

pIII--- pII

NOTE. *"COLLCA PATA, PLEIADES TERRACE AND BASIN." 25863 = pIII = IDEAL PLEIADES YEAR.

pIV = Sum of Primes (1-1009). Seventeen Columns of Ten Terms, Typical Sum, *4444.

pIV = 77137.

 $[(H \times H) + H - (h \times h)] -$

 $[(H \times H) + H - (h \times h)] =$

† Compare 77777. Ten Columns of Seventeen Terms, Typical Sum, *7777.

DISTRIBUTION OF COSMIC THEORY OF PRIMES,

SOUTH AND NORTH AMERICAN ABSTRACT

NUMERICAL SCHEME.

(SUM OR DIFFERENCE.

*" PLEIADES TERRACE AND BASIN." PERU.

= 164280

A =

COSMIC THEORY OF PRIMES.

P = pIV + pIII + pII + pI

131424

0999 5328

33540 437 I

2880

À

Ř

`a

S

è

160 148

516 **111** CW

be

ce

_

I

69

CUBE OF 52+

÷s+

ŝ

*4444+.

= +7777+*7777

ce

 $^{2}(C+B'+A')-^{1}$ 2(C'+B'+A')-1

C+B'

CW

 $3[(H \times H) + H - (h \times h)] - ce + bc$

 $[(H \times H) + H - (h \times h)]$

NOTE.

 $[(H \times H) + H - (h \times h)]$

+III--IIId

4b†

*" COLLCA PATA, PLEIADES TERRACE AND BASIN." 25863=p111=1DEAL PLEIADES YEAR.

Seventeen Columns of Ten Terms, Typical Sum, *4444pIV=Sum of Primes (1-1009).

77137.

77777.

†Compare

Ten Columns of Seventeen Terms, Typical Sum, *7777.

Total Shadow, East and West, 2(ce+be)+cw=2(117+69)+516=888=4b†

(Continued.)

ABSTRACT OF THEORY

OF---

PRIMES.

WILLIAM S. BEEBE.

ABSTRACT

OF

SIGNIFICANT AGGREGATES.

11383

11382

рИ,	2289	05	or	22896*
pIII,	2580	34	or	25863
pIV,	7713	7		77137
Ρ,	13727	78		
[3330	+ 13727	78] — (Cabe of	52
[17352]	+ 554	4] =		22896*
[17352	- 554	[4] ==		11808
Note.				
pIII, —	pII,	Plant		3856 - 888
	½D,	(Final or other party)		3856
	Α,	2000		555
	a,	Bunt		333
	b,	-		222

CONSECUTIVE CUBIC DIFFERENCES.

pΙ,

					(Primes.)	
		1		I			
		2		8	7*		
		3	2	7	19*		
		4	6	4	37*		
]	PERIO:	DIC LA	AW.		
	I.	II.	III.	IV.	V.	TOTAL	s.
	(I,				7)	7	
I.	7,	II,	13,	17.	19*	19*	
	(2				11),	22	
II.	19,	23,	29,	31,	37**	37*	900
	(3				13),	39	333 a.
III.	37,	41,	43,	47.	53*	53*	
	(5				17),	85	
IV.	53,	59,	6r.	67,	71*	71*	

19),

555 A = a + b

89*

83,

NOTES. UNITY INCLUDED, 556 UNITY, TERM OF BOTH SERIES, 557

V.

71.

IDEAL PRECESSIONAL PERIOD.

	[111	X	233],		= 25863.	pIII.
	[999	Х	25	+	888],		
	[888]	Χ	28	+	999],		
	[777	Χ	33	+	222],		
	[666	Χ	38	+	555],		
	[555	Χ	46	+	333],		
	[444	Χ	58	+	111],		
	[333	Χ	77	+	222]		
	[222	Χ	116	+	111],		
	[111	X	228	+ 4	55 5],		
	[* (55 6],	25864.	pHI.
*	[*.	557],	25865.	

A.

A.

555.

Note.

*556 Unity included,

*557 Term of both series,

ABSTRACT OF THEORY OF PRIMES, --- Continued.

		SYMM	ETRIC (COMBIN	NATION.		Туг	PICAL SUMS.	COMPARE WITH.
			*2					*2	2
		I	3	5	7				
		19	17	13	11				
		*20	*20	18	18			*20	22
23 29 3	. 27 20	22 27		00 00					
47 53 43			37 3 ¹ 43 47	23 29 59 43			29 31 41 59		
71 67 50	61 71		59 53	61 67			73 6r		
79 73 89		79 89	83 89	79 83		-	79 71		
220 *222 *222	2 *222 220	*222 *222	*222 220	*222 *222	*222 220	*222	*222 *222	222 в.	222
97 101 103	107 97	103 101	107 97	101 103	107 97	100	101 103		
131 113 127	109 109	131 113	137 137	127 113	109 113		107 131		
137 149 139			149 139	149 131		151	137 139		
173 163 167 179 191 181		163 167 181 179		167 179			179 163		
*717 *717 *717		*717 *717 *	1/3 193 *717 *717 *	173 191 *717 *717	181 ·191	173	193 181	*	Paul New Year
			,-, ,-,	7-7 7-7	1-1 - 1-1	717	717 -717	*717	777
	197	199	211	223	227				
	233	251	241	239	229				
	269 311	277 281	271 307	263 283	257				
	1010*		1030*	1008	293 1006			*100S	
			_					*1005	28 (36)*
		349 38	317	331	347				
		353 39		379	467				
		367 40 433 40		383	491				
	_	457 42		439 449	503 509				
		521 46		499	523				(36)*
	*2480 *2	480 *248	80 *2480	*2480	2840			*2480	222 2222
547	571 5	77							
599		77 569 13 617		593 619	557 653	563			
659		47 641		661	673	677 691		•	
719		39 733	727	709	683	701			
809		57 773		751	797	761			
*3333	*3333 *33	33 *3333	*3333	*3333	3363	3393		*3333	3333
811	853	821	839 8	829 8	23 827				
857	887	859			63 877				
991	907	937		919	47 929				
941	953	983	967 9	971 9	77 997				
*3600	*3600	*3600 *	3600 *36	500 36	10 3630			*3600	100 (36)*
		A	GGREGA	TE,	[31 imes 366])) + ;	222 = 1	1382 рІ.	

ABSTRACT OF THEORY OF PRIMES .--- Continued.

	SYMMETRIC COMBINATION.		FIRST COMB	FIRST COMBINATION.		FIRST AGGREGATE.				
INITIAL TERMS, FI		FINAL TERMS,	NAL TERMS, *8 = [1 + 7]		*10 = [2 + 1	+ 7]				
G	ROUPS.	ORIE	NTATEI	GRO GRO	UPS.	GROUPS.	8 = [3 +		10 = [2 + 3]	
	(2) (1)	(1)	(2)	(5)	(7)	(2) (7)	PRIME LI	IMITS	PRIME LI	MITC
	(5)	(11)	(13)	17	(19)	(13)	TRIBID Di	THE LO.	TRIMES DI	WII 1 5.
	(11)	(23)	29	31	37	(19)	[1 89]] *	[1 89]	*
	(23)	41	43	47	53	(-3)	[- ~ 7 .	J	[• 09]	
		59	61	67	71		40		de	
		73	79	83	(89)	(89)	*8 × 1	= 8	*10 X I =	= 10
	(97)	(97)	101	103	107		2	16	2	20
		109	113	127	131		3	24	3	30
		137 157	139 163	149 167	151		5	40	5	50
		179	181	101	173	(193)				
	(197)	(197)	199	211	223	(193)	7	56	7	70
	(),,	227	229	233	239		11	88	II	110
		241	251	257	263		13	104	13	130
		269	271	277	281		17	136	_	_
		283	293	307	(311)	(311)			17	170
	(313)	(313)	317	331	337		19	152	19	190
		347	349	353	359		. 23	184	23	230
		367 389	373	379	383		29	232	29	290
		419	397 421	401 431	409 433					
		439	443	449	457		31	248	31	310
		461	463	467	479		37	296	37	370
		487	491	499	503		41	328	41	410
		509	521	523	(541)	(541)	43	344	43	430
	(547)	(547)	557	563	569					
		571	577	587	593		47	376	47	470
		599 617	601	607	613		53	424	53	530
		643	619 647	631 653	641 659		59	472	59	590
		661	673	677	683		61	488	61	610
		691	701	709	719		67		67	
		727	733	739	743			536	·	670
		75 I	757	761	769		71	568	71	710
	(0)	773	787	797	(809)	(809)	73	584	73	730
	(811)	(811)	821	823	827		79	632	79	790
		829	839	853	857		\$3		83	
		859 88 3	863 887	877 907	881			664		830
		919	929	937	911' 941		89	712	89	890
		947	953	967	971		D,	7712 Aggregate.	:	9640 E, Aggregate.
		977	983	991	(997)	(997)	Note.		Note.	
В,	2007	A	AGGREG			2981, C.	[1 89]*, LI	MITS OF INITIAL COMBINATION.	[1 89]*, LIM	IITS OF INITIAL OMBINATION.
						,				

ABSTRACT OF THEORY OF PRIMES .--- Continued.

	PRIMES, [1—1009].											SY	MME	rric	COME	BINAT	rion.		
100	200	300	400	500	600	700	800	900	1000				PI	RIMES	5, [1-1	009].			
IOI	211	307	401	503	601	701	809	907	1009		WΕ	N CC	T TTM	NTC C	123712N	teres in	NT (TVES	DMG	
103	223	311	409	509	607	709	811	911			1 12	N CC	LUM	NS, S	EVEN	ILEE.	NTE	RMS.	
107	227	313	419	521	613	719	821	919		7	13	11	3	I	23	29	5	17	2
109	229	317	421	523	617	727	823	929		43	47	41	53	59	37	31	61	67	19
113	233	331	431	541	619	733	827	937		83	79	89	107					-	
127	239	337	433	547	631	739	829	941						97	73	113	101	103	71
131	2.11	347	439	557	641	743	839	947		137	131	149	151	157	163	281	167	173	109
137	251	349	443	563	643	751	853	953		193	197	199	211	191	223	227	233	229	127
139	257	353	449	569	647	757	857	967		257	263	269	251	271	277	241	181	283	139
149	263	359	457	571	653	761	859	971		311	313	317	331	337	347	349	353	347	179
151	269	367	461	577	659	769	863	977		383	379	389	397	373	359	367	421	409	239
157	271	373	463	587	661	773	877 881	983		439	443			457	461	463			
163	277	379	467	593	673	787	883	991				449	433				431	419	293
167	281	383	479	599	677 683	797	887	997		499	503	- 491	509	521	523	487	479	467	401
173	283	389	487				00/			597	571	587	593	569	563	557	547	541	647
179 181	293	397	491		691					641	643	631	619	617	613	607	60 r	599	727
101			499						-	691	701	683	677	673	66 1	709	659	653	733
193							TE	RA	B.G.	761	757	769	751	743	773	719	-739	787	797
197							0	F TEE	1 A	839	853	829	827	823	821	811	809	859	857
199							MIA	ER	SITY)	907	887	883	881	911	929	916	937	877	863
						1	CATT	TO ST	187 Bill	1009	997	991	983	977	971	967	953	947	941
							100	FUR	Management	7777	7777	7777	7777	7777	7777	7777	7777	7777	7777

Number of Primes, [1-1009], Aggregate, Compare with 170. 77137. pIV 77777. Deficit, *633, See table of seventeen columns, ten terms.

SYMMETRIC COMBINATION.

PRIMES, [1-1009].

SEVENTEEN COLUMNS, TEN TERMS.

167	3	131	59	83	89	5	41	31	43	37	7	73	Į.	17	13	-2
193	47	151	149	173	107	23	IOI	79	61	67	113	307	11	19	397	401
257	197	241	223	181	199	29	109	191	179	97	137	349	103	71	419	421
311	443	251	227	233	271	53	157	239	263	163	139	353	337	347	457	467
383	503	269	229	293	283	127	211	277	281	313	317	367	389	433	487	521
439	509	449	373	359	379	691	331	461	541	523	617	409	547	479	613	601
499	571	491	569	563.	557	761	757	593	599	631	659	431	619	709	647	607
577	643	587	751	677	673	839	853	683	653	743	811	463	769	739	719	661
641	701	883	881	911	919	907	887	937	877	929	821	829	809	773	727	733
977	827	991	983	971	967	1009	997	953	947	941	823	863	859	857	797	787
4444	4444	4444	4444	4444	4444	4444	4444	4444	4444	4444	4444	4444	4444	4444	5276	5201

4444 4444

SUM OF DISCREPANCIES.

832* 757*

7144

*633

832*

757*

*633, See Ten Columns, Seventeen Terms.

2222

CHIBCHA-MUISCA COSMOGONY.

CHIBCHA-MUISCA CYCLES.

I	MONTH	10	WEEKS.
ĭ	WEEK	3	DAYS.
I	MONTH	30	"

		MONTHS.	DAYS.
I	RELIGIOUS YEAR	37	1110
ĭ	CIVIL "	20	600*
I	RURAL "	I 2	360

THE "FOUR AGES" OF "NEMETEREGATABA."

	DAYS.
*CYCLE	22200
FIRST COINCIDENCE	66600
*"FOUR AGES," FOURTH COINCIDENCE	266400

THEORY OF PRIMES.

11382 pI.	266400
*22895 pII.	7712 D.
25864 pIII.	4 4 4*
77137 pIV.	
137278 P.	
² (137278)=	274556 SUM.

NOTE.

TYPICAL YUCATEC CITY.

FESTIVAL OF HOBNIL KAN.

"IT WAS CUSTOMARY IN ALL THE TOWNS OF YUCATAN TO ERECT AT THE LIMITS OF EACH OF THE FOUR QUARTERS, EAST, WEST, NORTH, AND SOUTH, TWO HEAPS OF STONES, facing each other, and intended to be used during the celebration of two solemn festivals, which were as follows. In the year of which the dominical letter was KAN, the sign was HOBNIL. and, according to the Yucatecs, these both ruled in the south. They made this year, of baked earth, an idol which they called KANU UAYEYAB, and having made it they carried it out to the heaps of stones which lay towards the south. They then selected a principal man of the place, and in his house they celebrated the feast. For this purpose they made another image, of the god BOLON ZACAB, and placed it in the chosen house, in a prominent place, so that all who arrived might see it. This done, the nobles, priests, and people came together, and set out by a road swept clean, ornamented with arches, and strewed with foliage, to the southern heaps of stones, where they gathered about the idol KANU UAYEYAB. The priest then incensed the god with FORTY-NINE grains of maize, ground up and mixed with copal; the nobles next placed incense in the brazier, and burned it before the idol. The incense burned by the priest was called ZACAH, that used by the nobles, CHAHALTE. When these rites were completed the head of a fowl was cut off and offered to the idol, which was now placed on a litter called KANTE, and upon its shoulders were placed other little images, as signs of abundance of water and a good year, and these images were frightful to behold. Amid dances and general rejoicing the idol was carried towards the house where the statue of BOLON ZACAB had been placed, and while the procession was on the road, the nobles and priests partook of a beverage made from FOUR HUNDRED AND FIFTEEN GRAINS of roasted maize, which they called PICULA KAKLA. Arrived at their destination, they placed the image that they carried opposite the idol which they found there, and made many offerings of food and drink, which were afterwards divided among the strangers who were present, the officiating priest receiving only the leg of a deer. Some of the devotees drew blood from their bodies, sacrificed their ears, and anointed with the blood a stone idol named KANAL ACANTUN. They modeled a heart of dough of maize and of calabash-seeds, and offered it to the idol KANU UAYEYAB. And in this manner they honored both the idols during the entire time of the feast, burning before them incense of copal and ground maize, for they held it certain that misfortune would overwhelm them if they neglected these rites. Finally, the statue of BOLON ZACAB was carried to the temple, and the other image to the western entrance of the town, where it remained until the next celebration of the feast."

Note. "The Native Races of the Pacific States." Bancroft, Vol. II., pgs. 702-703.

†Ceh TeeL, (Maya), Deer Leg.

C i T Li, (Nahuatl), Archer.*

C u Si LLu, (Quichua), Sacrificer, ("Officiating priest").

C S L, (Shemitic), Orion (presides over *Sagittarius).

FESTIVAL OF HOBNIL KAN.

HOB NIL KAN,	Name of Deity.	BOLON ZACAB,	Name of Deity.
HOB NIL,	Entrails.*	BOLON,	Nine.*
HOB.	To break up a Series.	ZAC ,	White.
· ·	Ear of Corn, A Series.	KAB,	Gum.
·	To Count.	,	
CAN,	10 Count.	201011 61012	43.7
HOB NAL CAN.	Involver of the Maize Count.	BOLON ZACAB,	*Nine [grains of] White Incense.
		KANAL ACANTUN,	Deity of Stone.
KANU UAYEAB,	Name of Deity.	CAN,	To Count.
CAN,	Four.	NAL,	Series.
U.	Thirty Day Month.	ACANTUN	Set Stone.
UAYEAB.	Year Litter.		
· ·	*4 × 30, Year Litter.	CANAL ACANTUN,	Stone set at the completion of Cycle.
,	(4 × 30, Diameter of Ideal Year.)		
	(One of the poles of the Litter.)		Name of Incense
		_	Gum exuder.
KANTE,	Name of the Litter,	· ·	
· ·		TE,	Tree.
CAN,	Four,	CHAHAL TE,	Incomes Tree [Conel Tree]
TE,	Tree,	CHARAL IE,	Incense Tree [Copal Tree.]
CANTE,	Four-Tree, Cruciform Litter.	> * NT: 1.	
		?* Nigah,	The "Center, the "prominent station" of BOLON ZACAB, Nine
			Series. ?

† PICULA KAKLA Name of Incense used en route.

PIC , Stones placed one on the other to mark the intervals of Cycles. CUL , The counting of heaps of stones.

AH , Master of, Adept at. CACa , By twos or pairs.

LAH, Affix showing the verb applies to all the objects mentioned.

† PIC CUL AH CAC[a] LAH, Adept at counting Cycles marked by the [contents] of stone-heaps in Pairs.

ABSTRACT OF SIGNIFICANT NAMES.

VALUES.
~ ·
*248
Pleiades.
¥ 575
*823 Sum.
uilder Diviner by its

*(NiGah) 58. See II. Great Cycle, Mithraic Tablet. Note. For 58-9=49, 120, 248, 575 and 823, See next sheet.

(Continued.)

TYPICAL YUCATEC CITY.

FESTIVAL OF HOBNIL CAN.

"The Native Races of the Pacific Coast." Vol. II., pgs. 702, 703.

CARDINAL POINTS.

DIMINISHING SERIES.

INCREASING SERIES.

From South to East.

120

$$58-9=49$$
 $49 \times 575=28175$ 2 $2 \times 823=1646$
 $49-9=40$ $40 \times 575=23000$ $2+2=4$ $4 \times 823=3292$
 $40-9=31$ $31 \times 575=17825$ $2+2+2=6$ $6 \times 823=4938$
 $31-9=22$ $22 \times 575=12650$ $2+2+2+2=8$ $8 \times 823=6584$

(Continued.)

TYPICAL YUCATEC CITY.

FESTIVAL OF HOBNIL CAN.

"The Native Races of the Pacific Coast." Vol. II., pgs. 702, 703.

CARDINAL POINTS.	DIMINISHING SERIES.		INCREASING SERIES.		SUM OR DIFFERE	NCE.
From South to East	28175	-	* 1646	-	26529,	S.
From East to North	23000	_	3292	_	19708,	E.
From North to West	17825	+	4938	_	22763,	N.
From West to South	12650	-	6584	-	6066,	W.
† (South			c * 1646		6066)	

NUMERICAL SCHEME.

COSMIC THEORY OF PRIMES.

(SUM OR DIFFER	RENCE.)	Р	— pIV +	- pIII -	- pII +	pΙ				
			•	•		pII	_ E +	D + C + B +	· A		
						•			A = 1	, +	a
					•	•	•	•			
Cycle	-C - 415 (360)	- 149400			•	•	•				
	(C+S+E+N+W)	- 224465 -	2(P)	_	pIII -	- pII +				4	(a)
South	S	- 26529 -			pIII -	-				2	(a)
East	E	— 19707 —				pII -	1/2	6 D -		2	(a)
North	N	= 22763 =				2	(pI) †				
West	W	- 6066									
(South	Component) * c	1646									
	(W+c)	7712 -						D			

^{*} $_{415}$ grains constituted the incense called PICULA KAKLA. $_{415}$ (360) = $_{149400}$ = C. $_{122763}$ + $_{1}$ = $_{2}$ (pI).

A PRIMER OF MAYAN HIEROGLYPHICS, BY DANIEL G. BRINTON.

RECEIVED JANUARY 17, 1895. COMPARATIVE SHEET JANUARY 18, 1895.

MAYA CYCLES,

FROM THE ABSTRACT OF DR. FÖRSTE-(Neither Dr. Förstemann nor Dr. Brinton is (Neither Dr. Förstemann nor Dr. Brinton is MANN'S RESEARCHES IN responsible for anything in this column.) responsible for anything in this column.) Cosmic Theory of Primes A Primer of Mayan Hieroglyphics, Cosmic Theory of Primes BY DANIEL G. BRINTON." Sum or Difference. Sum or Difference. "The scribes seem to have begun by establishing a period of 14040 14040 . . then 18980 18980 18980 . . then * 3744 (365)." 7488* 33020 11492 3744 1366560 + (Actual Cycle.) 111=1-3 a or 1-2 b. 29276 *2(3744) = 7488*11381 p. I.* 25864 p. III. 3412 444 2 b. 3856 1-2 D. 25864 p. III. 22896 p. II. 1-2 D. 3856 = 888 + 2968 1366560 + 1234220 (Unit, 400.) 132340 160000 1280000 8 X 7712 D. 88000 11 × 8000 556 A. 168421 3200 8 × 400 × 20 140 7 0 1 140608 = 52137278 = P. 1371340 (Hypothetical Cycle.) 3330 = 10 a.319982 77137 p. IV. Page 20. (Unit, 360.) 3333 * 11382 p. I. 1152000 144000 8 × 79200 11 × 7200 411834 = 3 P.151561 2880 8 X 360 140 (20)*× 0 1234220+ (Actual Cycle.)

NOTES. 7488. *Is the superficial excess in Assyrian Units of the I over the II Platform of the "Temple of the Seven Lights," Babylon.

11381. *See Typical Yucatee City; Festival of Hobnil Can, p. I.

333. *Difference of Typical Sums in Symmetric Combination of Primes from 1-1009, when combined in Seventeen Columns of Ten Terms, or Ten Columns of Seventeen Terms. See p. IV.

(20). *Omlt. dealing with months of 30 days.

On page 20, "Primer," the aggregate is wrongly given as 1377340, instead of 1371340.

THE LINEAL MEASURES

OF THE

SEMI=CIVILIZED NATIONS OF MEXICO AND CENTRAL AMERICA.

MAYA [YUCATAN] LAND MEASURES [Page 4].

"On this as a unit, the customary land measure was based. It was the *KAAN, one shorter, a kaan of *THREE ZAP, and one longer, a kaan of *FOUR ZAP. The former is stated to be *THIRTY=SIX fathoms square, the latter *FORTY=EIGHT fathoms square."

"The kaan is said by Spanish writers to be *5184 square feet equal to the *MEX=ICAN MECATE."

NUMERICAL SCHEME.

*THREE ZAP, *THIRTY-SIX fathoms square, 36 [144], *5184 feet.

*FOUR ZAP, *FORTY=EIGHT '' ', 48 [144], *6912 ''

KHORSABAD AREAS.

*5184 [*23] 200448, KII., *6912 [*29] NOTE. *52 YEARS ONE MAYA "KATUN." *52

(CONTINUED.)

NOTE. "It is known that the Aztecs had a standard measure of length which they employed in laying out grounds and constructing buildings. It was called the *OCTACATL." (Brinton, p. 7.)
*OCeTetl. Otros tres.

ACATL, Caña.

*OC-TACATL, Three Canes, equal to (Maya), Ox Zap, Three Sticks.

*VOCABULARIO DE LA LENGUA MEXICANA, Molina.

NAHUATL (MEXICO) STRUCTURAL AREAS. (Page 10.)

"These houses were in length from east to west *FOUR HUNDRED AND ELEVEN
AND A HALF (NATIVE) MEASURES, and in breadth from north to south *THREE
HUNDRED AND TWENTY-SIX MEASURES."

(Page 11.) "The proportions given above, it will be noted, are strikingly irregular (*411½, *326). Was this accident or design? Very likely the latter, BASED ON SOME SUPERSTITIOUS OR ASTROLOGICAL MOTIVE. It is far from a solitary example."

STRUCTURAL AREAS.

$$(411\frac{1}{2}) \times (*36) = 14814,$$
 AI.

$$(326) \times (*36) = 11736,$$
 AII.

NUMERICAL SCHEME.

pIII.—pI. =(AI.-*333)pII. - pI. =(AII.-*222)pIII.—pII. =D - 888pI. =
$$3D - 185$$
= 5 (37)

MITHRAIC TABLET. Davenport, Iowa, united states of america.

(Continued.)

ABSTRACT OF MITHRAIC TABLET AGGREGATES.

NUMERICA	COS	MIC T	HEOR	Y O	FF	PRI	ME	S.			
(SUM OR DIFF	Р	epIV	-pIII	+pII+p	I.						
					pII.	=E+	D-	+C-	+B-	+A	
			•	٠	•	•	•			A=	a+b
Mithraic Aggre	egates.		•	•	•	•	•	٠	•	•	
Мі	397371			•	•			•			•
M ₂	397112	٠		٠			•		٠		•
М3	396171	•		•			٠	٠	•		
M_4	396512	• 1	•						•		•
M_5	266400	•									•
Ks	319680			•		•					•
С	43200			•			•		•	٠	•
(MI —Ks)	+ 1) =		pIV.+							A	
(M_1+M_2)	$+ _{1} = 6 (P)$)—	2	(pIII.	- p	I.)+					b
M_3	= 3 (P))—				E+3	$(\frac{1}{2}D)$	-C	+B	+A	
$M_4 = 9 (c)$	+						D				
${ m M}_5$	= 2 (P)	+		,			D-	+			2 (b)

NOTE. The details of The Theory of Primes are given in exact sequence with the Panel Legends. Compare this Abstract with those of the DISTRIBUTION OF COSMIC THEORY OF PRIMES.

DISTRIBUTION OF COSMIC THEORY OF PRIMES. SOUTH AND NORTH AMERICAN ABSTRACT.

NUMERICAL			COS	SMIC	ТН	EOR	Y O	F I	PR.	IM	ES.		
(SUM OR DIFFE	P=	pIV.	+pIII	+pII.	+pI.								
				pII.		=E+	D+	-C+	-B-	ŀΑ			
		•	•	•				•	•	٠	A:	=a+	-b
COLOMBIA. CHIBCHA C		(D)						TD 1					
Cycle =	266400 =	2(P)-	•	•	٠	٠	•	D+	•	٠	. 1	2(b)) .
YUCATAN. TYPICA													
Cycle = $C = 415 (360) = $													
(C+S+E+N+W) =													
South S = East E =	= 20529 = $= *19707 =$												
	= 19707 = $= *22763 =$							_					
	6066												
	1646												
*	7712 =												
MEXICO. COSMIC S	TRUCTUI	RE.											
	11736 =				pII.	-pI.	- .					b	
	14814 =												
IOWA. DAVENPOR	т.												
MITHRAIC TABLET	`.												
Mithraic Aggregat	es.												
M_{I}	397371	•	•	٠	٠	•	•	٠					
М 2	397112	•	٠	•				•	•	٠			•
M_3		•	٠	•	•	•		•	•	٠	٠	•	•
M ₄	396512		•	•	٠	•	•	٠	•	•	•	•	•
M_5	266400		•	•	•	•	•	•	•	٠	•	•	•
Ks c	319680		•	•	•	•	•	•	•	•	•	•	•
(MI –Ks)	43200 + 1) =	. 1	nIV.	+	•	•		•	•		A	•	•
(M_1+M_2)	+1)=6	•	•		-	pI.)							
M_3		(P)-		\1		* /		$(\frac{1}{2}D)$					
$M_4 = 9(c)$	+							D		*			
M_5	= 2	(P)+						D+	-		2	(b)	
NOTE.	*19707 -				*pII.			$\frac{1}{3}D$	-			2	2a
	*22763 +	1 =			2	(pI.))						

LEGEND OF CREATION FROM THE CUTHA TABLET.

COSMIC HOSTS.

CHALDEAN ACCOUNT OF GENESIS, p. 94.

"19. The first year in the course of it

20. ONE HUNDRED AND TWENTY THOUSAND soldiers I 120000 I. sent out, and among them

21. not one returned.

I sent out, and not one returned.

23. The third year in the course of it, SIXTY THOUSAND

SEVEN HUNDRED I sent out, and not one returned." 60700 III.

AGGREGATE, 270700

THEORY OF PRIMES.

pI. 11382 pII. 22896 = A+B+C+D*+E ½ D* = 3856 pIII. 25863 pIV. 77137 P. 137278 2(137278) = 274556

"Foundation Stone of Khorsabad. Tablet of Silver." Records of the Past, Vol. XI, p. 36.

(Oppert.)

KHORSABAD SKETCH PLAN.

KHORSABAD DIMENSIONS.

(Assyrian Poles.)

	\ "	,	
A	ъ.		36
A	.C and BD, *	23	
G	H,		48
E	G and FH, *	29	
Е	C and DF,		6
A	BDC, KII, *	23 x	36
E	FHG, KI, *	29 x	48
	(Assyrian Cub	oits.)	
K	III, 82	8 x	144
K	II, 139	2 X	144
A	and		
K	zs, 222	0 x	144
K	Id, 56	i4 x	144

KHORSABAD AREAS.

"Records of the Past," Vol. XI. Oppert.

(Page 22.) "Neither at Persepolis, nor at Nineveh, is there to be found an exact square; EVERYWHERE AND VERY LIKELY BY AN UNKNOWN SUPERSTITION, WE MEET ALWAYS WITH OBLONGS differing slightly from an exactly quadrate form."

(Page 38.) "The construction of Khorsabad offered another problem to be resolved. The circumference ought to be 200 poles, and the surface *10 ARURAS. The Assyrian engineers took formerly the large back side of *48 poles, and then they fixed the monumental front at *36 poles. To gain a circumference of 200 poles, they ought to give to the entire edifice the depth of *52 (100-48) poles. The question was how to divide *52 INTO TWO UNEQUAL PARTS, as to obtain for the whole surface *2220 square poles. To that purpose they calculated first the central diagram, 36x52=1872, and divided the remainder, 348 into 12 (48-36) parts; they added therefore on both sides a rectangle, each 6 wide and *29 long. This is the geometrical resolution of the equation which we to-day would form algebraically:

$$(x+y)=*52$$
. $(48x+36y)=*2220$
Consequently: $(36x+36y)=1872$
 $(12x = 348$
 $x = *29$
 $y = 23$

KHORSABAD AREAS.

Square Cubits.

(Continued.)

'Kd, 81215; a difference of unity makes the Difference a multiple of 37 as the Sum is. It also becomes a function of primes;

KHORSABAD AREAS.

"Records of the Past," Vol. XI. p. 22.

"Neither at Persepolis, nor at Nineveh, is there to be found an exact square; EVERYWHERE AND VERY LIKELY BY AN UNKNOWN SUPERSTITION, WE MEET ALWAYS WITH OBLONGS differing slightly from an exactly quadrate form."

KI.	200448	6912× 29
KII.	119232	5184× 23
Ks.	319680	8640×37
'Kd.	81216	
"Kd.	81215	2195×37
	. (Assyrian	Cubits.)

THEORY OF PRIMES.

2 (Cube of 52)
$$= 281216$$

'Kd. $= 81216$
 $\frac{1}{2}$ Ks. $+ \mathbf{a} - \mathbf{pII}$. $= \mathbf{P} = \mathbf{137278}$

CUBE OF $52 = (10\mathbf{a} + \mathbf{P})$

"Kd. $- (\mathbf{b} + \frac{1}{2}\mathbf{D}) = \mathbf{pIV}$.

ABSTRACT OF CUTHA TABLET, KHORSABAD CITADEL AREAS AND ASSYRIAN CYCLES.

LEGEND OF CREATION FROM THE CUTHA TABLET.

"19. The first year in the course of it

20. *ONE HUNDRED AND TWENTY THOUSAND soldiers I

sent out, and among them

21. not one returned.

22. The second year in the course of it, *NINETY THOUSAND

I sent out, and not one returned.

23. The third year in the course of it, *SIXTY THOUSAND

SEVEN HUNDRED I sent out, and not one returned."

KHORSABAD AREAS.	COSMIC HOSTS.	ASSYRIAN CYCLES.
(Assyrian Cubits.)	(Nineveh.)	(Oppert.)
KI. 200448	NI. *120000	c 39180
*KII. 81216	NII. *90000	
KIII. 119232	NIII. *60700	C, 7(c) 274260
*KIV. 319680	NIV. 270700	

NUMERICAL SCHEME.

(Consecutive Combinations of Consecutive Numbers.)

I. (KI. +NI.)-c = (2 (CUBE OF
$$52$$
)+ 52)

III. (*KIII. +NIII.)-c = (CUBE OF 52)+ 144 *)

II. (KII. +NII. +c+**pI.**+**pIII.**+ $1\frac{1}{2}$ **D**+ $1\frac{1}{2}$ **b**)= 2 (**P**)- 52

IV. (KIV. -NIV.) = (**pII.**+**pIII.**+ b)

IV. NIV. = (C - $1\frac{1}{2}$ **D** - 8 [37]

IV. (NIV. + $1\frac{1}{2}$ **D** = 2 (**P**)

THEORY OF PRIMES.

22895 pII.

NOTE. *KIII.=828 x*144. *KIV.=KI. + KIII. *KII. =KI. - KIII.

"TEMPLE OF THE SEVEN LIGHTS," BABYLON.

CHALDEAN ACCOUNT OF GENESIS, P. 170.

		E	English	Assy	yrian			Areas	s.	Cons	ecutive
No.	Plati	forms.	Feet.	Feet.	Poles.	Squar	res.	Assyrian C	Cubits.	Diffe	rences.
I.	Earth	Platform	(314)?	290.81	14.54	211.41	211	211 (144),	30384		
II.	Brick	44	272	251.91	12.60	158.76	159	159 ("),*2	22896	*7488	*DI.
III.	"	66	230	213.01	10.65	113.42	113	113 ("),	16272	6624	DII.
IV.	66	46	188	174.11	8.70	75.69	76	76 ("),	10944	5328	DIII.
V.	4.6	"	146	135,21	6.76	45.69	46	46 ("),	6624	*4320	DIV.
VI.	66	"	104	96.32	4.81	23.13	23	23 ("),	3312	3312	DV.

NOTE.

("Records of the Past," Vol. XI. p. 37.)

12.9567 English Inches, 1 Assyrian Foot.

20 Assyrian Feet, 1 " Pole.

" Cubits, I " "

NUMERICAL SCHEME.

THEORY OF PRIMES.

E,	9640	
D,	7712 (E, D), 1733	52
С,	2981	
В,	2007)	4.4
A,	2007 556 } (C, B, A), 556	14
SUM.	*22896 DIFFERENCE. *1180	18

"TEMPLE OF THE SEVEN LIGHTS," BABYLON.

Areas.

Assyrian Cubits.

I. 30384

II. **22896** 7488 DI.

III. 16272 6624 DII.

IV. 10944 5328 DIII.

V. 6624 4320 DIV.

VI. 3312 3312 DV.

NUMERICAL SCHEME.

pI. (II.
$$+ \frac{1}{2}$$
D)-(DI. $+$ DII. $+$ 17 x $\frac{1}{2}$ **b**.)

pII. =II.

pIII.
$$(II. + \frac{1}{2}D) - 4b)$$

 $pIV.(pI.+pIII.+III.+\frac{3}{4}(\frac{1}{2}D))$

THEORY OF PRIMES.

a, 333 333 *556 A. 11382 pI.

b, 222 222 2007 B. 22896 pII.

1* 2981 C. 25864 pIII.

A, 555 556* 7712 D. 77137 pIV.

22896 pII.

NOTE. 556*, UNITY INCLUDED.

MELANGES D'ARCHÉOLOGIE ÉGYPTIENNE ET ASSYRIENNE.

TOME DEUXIÉME.

3e. Fascicule (7e. de la Collection.)

J. DE ROUGÉ.

CONCEPTION AND BIRTH OF HORUS SON OF ISIS.

	VERSION I.			VERSION II.		
I.	тнотн	30	30			
CONCEPTION.	Paopi	18	30			
	Athor		30			
	Choeak		30			
	Tobi		30			
	Mechir		30			
	Phamenoth		30			
BIRTH.	Pharmuthi	•	4			
	Pachons					
•	Paoni					
	Epep (The Ninth)			(30-9) = 21	21	CONCEPTION.
	Mesore			30	30	
I.	тнотн .			30	30	
	Paopi			18	30	
	Athor				30	
	Choeak				30	
	Tobi				30	
	Mechir				30	
	Phamenoth				30	
	Pharmuthi				28	BIRTH.
	TOTAL DAYS,	48	214	99	289	

MELANGES D'ARCHÉOLOGIE ÉGYPTIENNE ET ASSYRIENNE.

TOME DEUXIÉME.

3e. Fascicule (7e. de la Collection.)

J. DE ROUGÉ.

CONCEPTION AND BIRTH OF HORUS SON OF ISIS.

ABSTRACT OF DAYS.

 VERSION I.
 VERSION II.

 48 = h.
 99 = H.

 214 = h'.
 289 = H'.

 $10272 = 214 \times 48$ $289 \times 99 = 28611$

THEORY OF PRIMES.

11382 = pI.

22897 = pII.

25865 = pIII.

77137 =

 $22896 = A + B + C + D^* + E$ $\frac{1}{2}D^* - 888t = pIII - pII.$

pIV.

NOTE. $1110^* = 30 (37)$ $888\dagger = 24 (37)$ $629^* = 17 (37)$

14 DAY USE RETURN TO DESK FROM WHICH BORROWED

LOAN DEPT.

This book is due on the last date stamped below, or on the date to which renewed. Renewals only:

Tel. No. 642-3405

Renewals may be made 4 days priod to date due.
Renewed books are subject to immediate recall.

JUN 221972 9 1'

RECO LD JUL 1 3'72 -9 AM 9 9

[†].D21A-60m-8,'70 8837s10)476—A-32

General Library University of California Berkeley

