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Preface 

The writing of this book has been a personal exploration for me in the 
widest sense of the word. Its origins can be traced to my friendship 
with Mary Blade, an engineer, artist, and descriptive geometer who 
developed a project-oriented course on the relationship between math
ematics and design and taught it for many years at the Cooper Union. 
I am a mathematician and 10 years ago I presented some of Professor 
Blade's ideas to a number of colleagues from the Mathematics and 
Computer Science Departments and the School of Architecture at the 
New Jersey Institute of Technology. These discussions led to the of
fering of a course for students from the School of Architecture in the 
Mathematics of Design. Over the past 10 years, I have had the pleasure 
of observing beautiful works of art and designs created by my students, 
based on the mathematical ideas that I have presented to them. It was 
only years after I started that I learned that I was rediscovering a 
well-established field of inquiry known to some as design science. This 
book is meant to be an introduction to this field. I have attempted to 
make it as comprehensive a survey of the field as space and my own 
involvement in it permits. 

What is design science? It is a subject that has advanced from the 
twin perspectives of the designer and the scientist sometimes in concert 
with each other and sometimes on their own, and may be considered 
to be a geometric bridge between art and science. Design science owes 
its beginnings to the architect, designer, and inventor Buckminster 
Fuller. In a meeting with Nehru in India in 1958, Fuller said 

The problem of a comprehensive design science is to isolate specific in
stances of the pattern of a general, cosmic energy system and turn these 
to human use. 

The chemical physicist Arthur Loeb is one of the,, individuals most 
responsible for recognizing design science as an independent discipline. 
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He considers it to be the grammar of space and describes it as follows: 

Just as the grammar of music consists of harmony, counterpoint, and form 
which describes the structure of a composition, so spatial structures, 
whether crystalline, architectural, or choreographic, have their grammar 
which consists of such parameters as symmetry, proportion, connectivity, 
stability, etc. Space is not a passive vacuum; it has properties which 
constrain as well as enhance the structures which inhabit it. 

This book is an exploration of this grammar of space, with the objective 
to show, by way of demonstration, that this grammar can be the basis 
of a common language that spans the subjects of art, architecture, 
chemistry, biology, engineering, computer graphics, and mathematics. 
Perhaps design science's greatest value lies in its potential to reverse 
the trend toward fragmentation resulting from the overspecialization 
of our scientific and artistic worlds and to alleviate some of the isolation 
of discipline from discipline that has been the result of that overspe
cialization. 

Design science is an interdisciplinary endeavor based on the work 
of mathematicians, scientists, artists, architects, and designers. The 
early pioneers, some of whom have been influential in its development 
in varying degrees, include the inventor Alexander Graham Bell, the 
biologist D'Arcy Thompson, R. Buckminster Fuller, the structural in
ventor Robert Le Ricolais, Arthur Loeb, the recreational mathemati
cian Martin Gardner, the artist and designer Gyorgy Kepes, the artist 
M. C. Escher, and several architectural designers who have contributed 
continually to the field. These include David Emmerich, Stuart Dun
can, Janos Baracs, Anne Tyng, Steve Baer, Michael Burt, Peter Pearce, 
Keith Critchlow, and Haresh Lalvani. Reference to these people and 
others is found throughout the chapters and in the bibliography to this 
book. 

Mathematics serves as the foundation of design science, and the 
mathematicians who have had the most profound influence on my own 
thinking on this subject are H. S. M. Coxeter, Branko Grtinbaum, and 
Benoit Mandelbrot. Special mention must also be made of the work 
gathering and disseminating ideas on the part of the structural topol
ogy group at the University of Montreal under the leadership of Janos 
Baracs and the mathematician Henry Crapo. In addition, the chemist 
Istvan Hargittai has done enormously valuable work editing two large 
volumes on symmetry as a unifying force behind science and art and 
starting a new journal entitled Symmetry. In addition, I would like to 
acknowledge another journal, Space Structures, which is devoted pri
marily to structures from an architectural and engineering standpoint. 

The unsung heroes of design science also deserve a large share of 
the credit for its development. These are people who, for a variety of 
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reasons have labored, often on a single idea, in their studios, labora
tories, or studies to discover parts of the thread which binds this dis
cipline together. Today, mathematicians have, for the most part, given 
up the study of the roots of their subject in two- and three-dimensional 
geometry in order to delve into greater and greater realms of abstrac
tion. As Branko Griinbaum (1981) has lamented: 

It is a rather unfortunate fact (for mathematics) that much of the creative 
introduction of new geometric ideas is done by nonmathematicians, who 
encounter geometric problems in the course of their professional activities. 
Not finding the solution in the mathematical literature, and often not 
finding even a sympathetic ear among mathematicians, they proceed to 
develop their solutions as best they can and publish their results in the 
journals of their own disciplines. 

At the same time computer scientists have added their own form of 
abstraction to the study of geometry by replacing the constructive 
aspects of this subject with two-dimensional pictures on a computer 
screen. It is into this dearth of geometrical thinking that artists, ar
chitects, designers, crystallographers, chemists, structural biologists, 
and individuals from other disciplines have come with their extraor
dinary constructions and discoveries. A large part of this book is de
voted to bringing their ideas to light. 

A book such as this must have boundaries and so certain topics were 
regrettably omitted. For example, Chaps. 7 through 10, devoted to 
polyhedra, leave off where B. M. Stewart's fascinating toroidal poly-
hedra begin (Stewart, 1980). Also, most of the topics of this book relate 
to euclidean geometry, yet projective geometry is a far richer system 
of geometry as shown in the work of Janos Baracs and Henry Crapo 
and the many books and monographs on the synthetic approach to 
projective geometry published by the Rudolf Steiner Institute (Crapo, 
1978) (Edwards). 

It was only at the conclusion of my work on this book that I discovered 
what it was about. On one level, this book is a collection of special 
topics in ancient and modern geometry. On another it introduces the 
reader to many of the ways that geometry underlies the creation of 
beautiful designs and structures. At a deeper level, this book shows 
how geometry serves as an intermediary between the unity and har
mony of the natural world and the capability of humans to perceive 
this order. Le Corbusier has expressed this role of mathematics elo
quently (Le Corbusier, 19686): 

The flower, the plant, the tree, the mountain . . . if the true greatness of 
their aspect draws attention to itself, it is because they seem contained 
in themselves, yet producing resonances all around. We stop short, con
scious of so much natural harmony; and we look, moved by so much unity 
commanding so much space; and then we measure what we see. 
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In this book we shall measure and study the consequences of these 
measurements but try not to lose sight of the spiritual elements which 
give meaning and life to the study of design science. 

The book is written so that the theory is illustrated at each step by 
either a design or an application. However, no attempt has been made 
to be exhaustive in either theory or practice. Each chapter of the book 
is written so that it can be read separately. However, as is characteristic 
of design science, each chapter is also tightly interwoven with each of 
the others. As a result, the reader can choose a variety of paths through 
the book. Design science is a dynamic discipline. It is forever changing 
as each practitioner brings his or her new perspective to bear on the 
subject. In this spirit, the reader is invited to actively participate in 
the discovery of design science by carrying out some of the construc
tions, experiments, and problems suggested throughout the book and 
to think about how the ideas arise in the reader's own discipline. 

Although this book was not written as a textbook, if supplemented 
by a manual of additional exercises, problems, projects, and a guide to 
instructors, it can be used to teach a course like the one I teach at New 
Jersey Institute of Technology. McGraw-Hill is considering publishing 
such a supplementary manual. 

Jay Kappraff 
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Preface to the 
Second Edition 

Connections was originally written in the belief that mathematics, 
in its applications to Design Science, provides a common language 
spanning the disciplines of art, architecture and the natural sciences. 
Since Connections was published in 1990, I have been gratified 
to observe the rising interest in the discipline of Design Science. 
Numerous conferences on the interface between mathematics, science, 
art, architecture and design have fostered a sense of community 
among the participants. This has led to new research and collabo
rations, the creation of works of art, the publishing of new journals, 
and the establishment of new courses in mathematics and design. In 
this preface to the new edition, I will describe some of these activities 
and the individuals who have engaged in them. So much has 
happened over the past ten years that this discussion is not meant 
to be complete, but ra ther a sample of some of the significant 
developments. 

Perhaps the most fundamental changes in the field since 1990 
are the ease of computer visualization; the communication made 
possible through the Internet; and the access to building kits and 
other constructive materials. Much software is now available with 
which anyone who is interested can create and explore fractals, 
tessellations, polyhedra, minimal surfaces, etc. The Zome system 
invented by Steve Baer around 1970 has revolutionized the study of 
polyhedra, particularly the study of higher dimensional polytopes. The 
Zometool kit created by Mark Pelletier has now made this system 
easy to implement and accessible to a wide range of people for 
research and educational purposes. George Hart and Henri Picciotto 
have just published a Zometool Geometry book [200 IS] to facilitate its 
use. These resources make courses in design science more accessible 
and easier to teach. There is also a greater sense of community 
because internet researchers are more aware of what others are doing 
and can easily disseminate there results to each other and to the 
world. Two excellent websites, ISAMA (The International Society for 
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the Arts, Mathematics, and Architecture, www.isama.org) and George 
Hart 's website (www.georgehart.com), provide links to the web pages 
of many people making connections between art, mathematics and 
science. 

Arthur Loeb has been a pioneer in the field of Design Science and 
many of his contributions were documented in the first edition of 
Connections. Since the publishing of Connections, Professor Loeb has 
published another excellent book Concepts and Images [1993S]. Eric 
Weisstein has also accumulated a wealth of knowledge in his Concise 
Encyclopedia of Mathematics [1998S]. I reported on the exquisite art 
of origami in the first edition of Connections but neglected to mention 
the application of origami to polyhedron construction. Although there 
is a substantial literature of such books, I offer two references Unit 
Origami: Multidimensional Transformations by T. Fuse [1990S] and 
Modular Origami Polyhedra by L. Aimon, B. Arnstein and R. 
Gurkewitz [1999S]. I have also included three additional references of 
interest to polyhedra specialists: Polyhedra by P. Cromwell [1997S], 
Build Your Own Polyhedra by P. Hilton and J. Pedersen [1988S], and 
Spherical Models by M. Wenninger [1999S]. Design science is 
beginning to have applications in areas of mathematics not previously 
associated with this discipline such as dynamical systems and chaos 
theory. Some of these connections can be found in the book Symmetry 
and Chaos by Michael Field and Martin Golubitsky [1992S]. 

In order to properly understand three-dimensional structure one 
must go beyond to higher dimensional spaces. This is made clear 
in Thomas Banchoff's book Beyond the Third Dimension: Geometry 
Computer Graphics and Higher Dimensions [1990S]. Banchoff along 
with Haresh Lalvani and Koji Miyazaki are the leaders in conveying 
an understanding of structure in multi-dimensional space. Lalvani 
has pioneered the study and application of multi-dimensional space to 
architectural form through his continued discoveries and inventions 
of new hyperstructures. He, and his colleague William Katavolos, are 
co-directors of the recent ly founded Center for Exper imen ta l 
Structures, School of Architecture, Prat t Institute. Miyazaki (http:// 
space.jinkan.kyoto-u.ac.jp/kojigen/index.html) is a pioneer in research 
about polygons, polyhedra, and polytopes as seen in the architectural 
design and cultural history of Japan . He publishes a quarterly 
journal, Hyperspace, and he is the author of the recently published, 
Encyclopedia of Geometric Architectures [2000S] and An Adventure in 
Multi-dimensional Space [1986S]. Clifford Pickover, among his many 
popular books on mathematics and computer science, has also written 
Surfing Through Hyperspace: Understanding Higher Dimensional 
Universes in Six Easy Lessons [1999S]. Finally, Tony Robbin is an 
artist who has created four-dimensional art. In fact, some of his 
paintings must be viewed through special glasses. In 1992 he built a 

http://www.isama.org
http://www.georgehart.com
http://
http://space.jinkan.kyoto-u.ac.jp/kojigen/index.html
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60-foot sculpture, based on quasicrystal geometry for the three story 
atrium at Denmark's Technical University in Copenhagen. He has 
also wri t ten a book Fourfield: Computers, Art, and the Fourth 
Dimension [1992S]. 

Hardly a summer goes by wi thout four or five conferences 
convening. At the time of this writing, ISIS-Symmetry (International 
Society for the Interdisciplinary Study of Symmetry), under the 
leadership of Denes Nagy, is holding its 5th Congress subtitled 
Intersections of Art and Science, in Sydney, Australia organized by 
Liz Ashburn; the 3rd Internat ional Conference on Mathematics 
and Design will be held in Melbourne, Australia organized by Vera 
De Spinadel, Javier Barrallo, Mark Burry and others; the 4th Bridges 
Conference subtitled Mathematical Connections between Art, Music, 
and Science will be held at Southwestern College under the direc
tions of Reza Sarhangi with published proceedings [1998-200IS]; 
Symmetry 2000 was held last September in Stockholm organized 
by Istvan Hargittai; ISAMA 2000 was held last August in Albany 
under the direction of Nat Friedman, his tenth consecutive con
ference in art and mathematics; the MOSAIC 2000 Conference was 
held in Seattle; and the 3rd biannual Nexus Conference was held 
in Fer rara under the direction of Kim Williams with published 
proceedings [1996, 1998, 2000S]. 

There are two new electronic journals devoted to the intersection 
of art, architecture, mathematics, science and design. The Nexus 
Network Journal (www.nexusjournal.com), edited by Kim Williams 
was created in 1997, and the on-line journal Visual Mathematics 
(members.tripod.com/vismath/), edited by Slavik Jablan and Denes 
Nagy, was created in 1998 as a continuation of the ISIS-Symmetry 
printed journal Symmetry: Art and Science (Symmetry: Culture and 
Science). 

For many years courses in Design Science have been taught by 
Arthur Loeb at Harvard, Haresh Lalvani at Prat t Institute, Thomas 
Banchoff at Brown University, Koji Miyazaki at Kyoto University 
Graduate School of Human and Environmental Studies, and myself 
at NJIT. Through Connections, many other faculty have discovered 
the satisfaction that can be derived from engaging students in the 
construct ive activity of c rea t ing the i r own designs based on 
mathematical principles. Several textbooks are now available to help 
teach these courses (see Geometry by Discovery by D. Gay [1998S]). 
However, there is still a need for additional texts to help guide 
prospective teachers at both the college and pre-college levels. With 
the help of a grant from the National Endowment for the Arts, I 
wrote a Workbook on Mathematics of Design [1997S] and also, with 
the help the Media Center of The New Jersey Institute of Technology 
and a grant from the Graham Foundation, created an eleven part 

http://www.nexusjournal.com
http://members.tripod.com/vismath/
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series of videotapes entitled Mathematics of Design [1994S] to aid 
faculty who wish to use Connections as a primary text. 

As I mention in the introduction to Connections, the discipline of 
Design Science has advanced through the energy and creativity of 
many individuals, each focusing on a single idea. Several researchers 
not mentioned in the original edition of Connections have made impor
tant contributions to the field over the past ten years. Carlo Sequin 
has created an amazing computer program: Sculpture Generator 1 and 
2 in which he is able to generate three-dimensional models for sculp
ture using his program and 3-D fabrication techniques. Bathesheba 
Grossman has used that technology in order to make jewelry and 
small bronze sculptures. Brent Collins has created extraordinary 
sculptures by hand from wood reminiscent of mathematical surfaces 
and knotted structures. Some of his work can be found on the Bridges 
website (www.sckans.edu/~bridges/bcollins/bcollins.html). He has also 
collaborated with Sequin to fabricate his sculptures with the aid of 
the computer. Vladimir Bulatov, a member of the Russian Academy of 
Sciences, has created many polyhedral studies which can be found on 
his website (www.superliminal.com/links.htm). Charles Perry's geo
metric sculptures are now found throughout the world. His most re
cent work is based on knots and minimal surfaces leading to new 
shell sculptures in limestone. Nat Friedman, a mathematician and 
sculptor, has played a major role through his conferences and his 
assistance to others in the field to further the objectives of design 
science. George Hart, another polyhedral sculptor and computer scien
tist, has enriched the field with his creative work that can be seen on 
his website. He has also developed new fabrication techniques and he 
is also working on a history of polyhedra in art, in his book Euclid's 
Kiss [Hart, 200IS]. 

My only regret upon publishing the original edition of Connections 
was that when referring to the various crystalline states of carbon in 
Section 10.10, I mentioned only diamond and graphite and not the 
crystalline states known as the Buckminsterfullerenes. I was aware of 
the existence of this remarkable family of molecules as far back as 
1986. However, they burst onto the mainstream of science only in 
1990 just as Connections was in its final editing. This oversight is 
remedied in the current edition where I have placed several additions 
to the first edition in a "Supplement" section at the end of the book. 
Haresh Lalvani, whose many contributions were included in the first 
edition, has continued his work in higher-dimensional and non-
periodic spaces and structures. A supplementary section is devoted to 
his recent work which includes the discovery of a new class of hyper-
geodesic surfaces, new hyperspace labyrinths including a class of 
labyrinths in hyperbolic space, a class of saddle zonogons and saddle 
zonohedral packings, his generalizations of cubic and icosahedral 

http://www.sckans.edu/~bridges/bcollins/bcollins.html
http://www.superliminal.com/links.htm
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systems of nodes to irregular versions of these, and finally a new class 
of hyper-Escher patterns. I have also included in this Supplement 
additional mater ia l on the snub figures, a section on uniform 
polyhedra, and additional discussion of the Dorman Luke method of 
constructing the faces of dual polyhedra. I have also added some new 
material within the text on dihedral angles and ortho-schemes. 
References not included in the first edition are found at the end of the 
reference section and are referred to in the text by an "S" after the 
date. Other changes are minor. I wish to acknowledge, once again, the 
generous help that I received from Branko Grunbaum and Haresh 
Lalvani in writing the first edition of Connections, and to thank Peter 
W. Messer and Haresh Lalvani for their invaluable help editing this 
new edition. 

Since writ ing Connections my own professional life has been 
enriched by the many contacts that I have made as a result of the 
visibility that the book has offered to me and the wide approval with 
which its publication has been met. I was pleased that in 1991 the 
National Association of Publishers selected Connections as the best 
book in Mathematics and Science in the division of Professional 
and Reference. As a result of Connections, I made the acquaintance of 
and began collaborations with researchers such as the Kim Williams, 
Ben Nicholson, Anne Macaulay, Lawrence Edwards, Ernest McClain, 
Tons Brunes, Louis Kauffman, Stan Tenen, Janos Kapusta and Gary 
Adamson. Some of their work will be featured in my new book, 
Beyond Measure: A Guided Tour through Nature, Myth and Number 
to be published by World Scientific. It is my hope that the second 
edition of Connections will continue to play a role in breaking down 
the barriers between the arts and the sciences, and encourage others 
to explore the interfaces between these two human endeavors. 

March 2001 



Chapter 

1 
Proportion in Architecture 

Number is the bond of the eternal 
continuance of things. P H I I . I H . M S 

1.1 Introduction 

The history of proportion in art and architecture has been a search for 
the key to beauty. Is the beauty of a painting, a vase, or a building due 
to some qualities intrinsic to its geometry or is it due entirely to the 
craft of the artist and the eye of the beholder? 

The architectural and artistic record indicates that a variety of sys
tems of proportion have been used through the ages in an attempt to 
create beautiful works. Subjective elements have also played a role; 
here proportions of an object are modified to please the eye through a 
slow process of evolution. In architecture this process may extend over 
many generations in the gradual refinement of traditional forms. In 
painting or sculpture the process may involve selecting the most ad
mired proportions from nature. To a great extent each epoch of history 
has expressed itself through the art and architecture of that age 
[Panofsky, 1955]. As a result there has been vigorous debate as to 
what constitutes "the best" approach to producing great works, with 
each era discovering or rediscovering one part of the proverbial "ele
phant." This chapter will examine some of the approaches to propor
tion that have been used in the past and will show that they all can be 
analyzed in a similar manner. 

First we wish to state three canons that most practitioners would 
agree underlie a good design. All good design should have 

1. Repetition—some patterns should repeat continuously. 

2. Harmony—parts should fit together. 

3. Variety—it should be nonmonotonous (not completely predictable). 
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Many architects and artists would add to this a fourth requirement 
that the proportions of a design should relate to human scale. 

Psychological studies of perception seem to indicate that the mind 
finds overly complex patterns burdensome and unpleasant although it 
enjoys patterns that embody order and symmetry—in other words pat
terns that repeat in an organized fashion [Alexander, 1959]. In prac
tice, it also makes sense to use a small number of molds or modules 
over and over rather than fashioning numerous units of disparate size 
and shape. Once the modules from which to construct a design have 
been chosen, the various units must be capable of fitting together to 
make the finished form. The harmony of proportions should be 
achieved, according to the Renaissance architect Leon Battista 
Alberti, in such a manner that "nothing could be added, diminished or 
altered except for the worse [Gadol, 1969]." Finally, any system of pro
portions must be flexible enough to express the individual creativity 
of the artist or architect so that the unexpected may be incorporated 
into the design. There must always be an element of surprise to en
liven the spirit of the beholder. 

As for the preference for proportions of human scale, this reflects 
the desire of humans to feel personally connected to their ar t and their 
dwellings. People from primitive cultures are apparently more in 
touch with this wish, as can be seen in such direct anthropomorphic 
elements of architectural design as shown in Figure 1.1, which depicts 
the living compound of the Fali tribe of Africa and is shaped like the 
human torso [Guidoni, 1978]. We will show how people of various eras 
endeavored to satisfy these canons of design and will concentrate on 
how two systems succeeded to some measure in satisfying the canons 
of proportion. The first system was developed in antiquity and used by 
Roman architects, and the other was developed in the twentieth cen
tury by the French architect Le Corbusier. 

1.2 Myth and Number 

The nineteenth century mathematician Leopold Kronecker wrote: 
"The natural numbers came from God and all else was man made." In 
a sense Kronecker was echoing Plato's Timaeus [1977]: "And it was 
then that all these kinds of things thus established received the 
shapes of the ordering one, through the action of Ideas and numbers." 
As pointed out by Matila Ghyka 119781, Greek philosophers, and in 
particular Pythagoras, endowed natural numbers with an almost 
magical character. Pythagoras, a native of Samos on the western 
shores and islands of what is now Asiatic Turkey, took the advice of 
his teacher Thales, a rich merchant from Miletus who is known as the 
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Figure 1.1 

father of Greek mathematics, astronomy, and philosophy and who vis
ited Egypt to learn its secrets ITurnbull, 1961], [Gorman, 1979]. 

Pythagoras singled out the triangular array of 10 points which he 
called the tetraktys. This pattern is the fourth in a series of triangular 
numbers. 

The difference between each successive pair of triangular units is 
called a gnomon. In other words, 

U= U + G 

The basic units, U are (the empty set precedes the first dot): 
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The gnomons, G, are 

In mystical lore, according to John Michell [19881, the natural num
ber 1 was called the monad (origin of all numbers). The dyad 2 was the 
first feminine number and represented the first stage of creation, the 
split into the mutually dependent opposites of positive-negative, hot-
cold, moist-dry, etc. The number 3, the first masculine number, repre
sented the second stage of creation, the productive union of negative 
and positive which follows the separation and refinement of these op
posite elements. The sum of the first feminine and the first masculine 
number, 5, represented man, microcosmos, harmony, love, and health, 
while inanimate life was represented by the number 6. The tetraktys, 
10, represented the cosmos and macrocosmos, while two interlocking 
tetraktyses, below, form a Star of David in which 12 evenly spaced 
dots, representing the signs of the zodiac, surround a thirteenth, rep
resenting the "source of all being." 

Looking back from the present we can only speculate about the 
meaning of this cryptic symbolism. However, it is probably true that 
the prescientific mind found in the mystical mode of expression a con
cise way to convey the kernel of meaning in a mass of observations 
about the natural world. For example, the number 6 does seem to 
arise most frequently in inanimate forms such as snowflakes and 
other crystals. On the other hand the number 5 characterizes living 
forms such as the starfish and certain forms of radiolaria. 

Number and geometry also lies at the basis of many sacred struc
tures. Michell feels that certain sacred structures have the same un
derlying plan. In Dimensions of Paradise, Michell suggests that the 
layout of St. Joseph's settlement at Glastonbury (a sacred site in En
gland rich in legend), Stonehenge, and the plan of the allegorical city 
in Plato's Laws all conform to the ground plan of the New Jerusalem 
described in Revelation 21. His construction is either an intriguing co
incidence or, as Michell feels, evidence that ancient cultures may have 
possessed esoteric knowledge that has become lost to us. The reader 
must judge. 

The New Jerusalem diagram, as Michell refers to it, is generated 
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from a 3,4,5 right triangle. This, so-called, "Egyptian triangle" also 
had sacred significance to the Egyptians who used it in some of the 
key proportions of the Pyramid of Cheops (see Section 3.2). But what 
is so special about a 3,4,5 triangle? Well, the celestial sphere can be 
represented as a circle divided into 12 equal segments representing 
the regions of the Zodiac. Cut this circle open to a line with 12 equal 
segments. The line can then be folded up to a 3,4,5 right triangle with 
a perimeter of 12 units. 

Next Michell uses the 3,4,5 triangle to create a large square with 
sides of 11 units surrounded by four small squares each with sides of 3 
units as shown in Figure 1.2. Circles of diameter DL = 11 and £>s = 3 
are placed in the large and small circles, respectively. Michell has no
ticed that this ratio, when multiplied by a scale factor of 720, coincides 
with the ratio of the diameters of the earth and the moon, i.e., 

11 
3 

7920 
2160 

and to compound the "coincidence," 720 = (3 + 4 + 5)(3 x 4 x 5). 
The circumference of a circle through the centers of the small 

squares (see Figure 1.2) equals the perimeter of the large square [as 
close as 22/T approximates pi (check this!)! and effectively squares the 
circle. This conforms with the ancient Greek unfulfilled wish to con
struct, using only compass and straightedge, a circle with the same 
perimeter as a given circle. 

Finally, Michell creates his New Jerusalem diagram, shown in Fig
ure 1.3, by arranging twelve "moon" circles around the periphery of 

Figure 1.2 The underlying ge
ometry of the New Jerusulem 
diagram. 
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Figure 1.3 The Now Jerusalem diagram of ancient cos
mology. 

the "earth" circle. He placed three to the north, three to the south, 
three to the east, and three to the west in line with the description of 
the twelve gates to the Holy City in Revelation (see Section 5.2.2). 
These twelve circles are positioned by the apexes of three double 
tetraktyses. 

When Michell chooses a scale so that the dimensions of the large 
and small circles are 79.2 and 21.6 feet, respectively, key parts of this 
diagram closely coincide with the dimensions of Stonehenge and St 
Joseph's Chapel. The circle through the center of the "moon" circles is 
316.8 feet in circumference. But, according to Michell, this number re
peats at a variety of scales as the 31,680-foot perimeter around the en
tire settlement of Glastonbury as originally constituted and as the 
31,680-mile perimeter of New Jerusalem. Also, Pliny in his Natural 
History, gave 3,168,000 miles as the measure round the whole world. 

In ancient tradition, the square, by its axial geometry symbolizing 
the directions of the compass, represented the earth and the dimen
sions of space while the circle, symbolizing the celestial sphere, repre
sented the realm of the heavens and the dimension of time. Thus, an
cient mathematics, architecture, astronomy, and, as we shall see in 
Section 1.4, music may have been all entwined to form a holistic view 
of the cosmos. If Michell's analysis has validity, it can be said that an 
attempt was made to bring heaven down to earth and replicate it at 
all scales and to synchronize space and time 
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To a great extent the history of the study of proportion is an attempt 
to recover the practical methods of producing the beautiful art and ar
chitecture of ancient cultures from the sketchy utterances that have 
survived the ages and the artifacts and structures that comprise the 
archaeological record. 

1.3 Proportion and Number 

Once the Greeks established a concept of natural number, i.e., the pos
itive integers, they were faced with the task of generating the other 
numbers of the number system, i.e., the rational and irrational num
bers. Rational numbers are numbers that can be expressed as the ratio 
of integers mln where m and n are reduced to lowest terms and n * 0. 
Such numbers can always be represented as decimals whose digits re
peat or terminate after some point. Numbers which cannot be ex
pressed as the ratio of integers are called irrational numbers. These 
numbers have nonrepeating decimal equivalents. We who have grown 
up with a very convenient system for naming numbers such as 8.5, 
2.735, .333. . . , etc., have a difficult time dissociating the concept of 
number from the symbol for number. However, in ancient Greece no 
symbols for numbers, as we know them, existed. The symbols that had 
been used previously by the Babylonians and Egyptians for the pur
pose of surveying or keeping records had long since been forgotten. In
stead of representing numbers by symbols, Greek philosophers con
ceived of number as being the ratio of lengths. For example, if U is 
taken to be the basic unit or monad, the numbers % and % can be 
represented as shown in Figure 1.4. In other words, a group of three 
units stands in relation to a group of two units as 3:2 or 2:3 since three 
groups of two units equals two groups of three units. Any time a finite 
number of a group of units is exactly equal in length to the finite num
ber of another group of units, we say that the two groups are commen
surable. It was a common belief in the time of the Greeks that all pairs 
of lengths were commensurable. Great surprise and uneasiness re
sulted from the discovery that there existed pairs of lengths that were 

Figure 1.4 The proportional re
lation 3:2. Three pairs of two 
monads equals two triples of 
three monads. 
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not commensurable. In particular, the ratio of the diagonal of a square 
and the pentagon to their respective sides were the incommensurable 
ratios: 

V2:l and ct>:l 

where d> = (1 + \/5)/2 = 1.618...is the golden mean. This discovery 
represented a major intellectual stride forward since it had to have 
been made by pure reason rather than through measurement. The un
easiness was understandable since the problem of incommensurables 
threw into question the whole Greek system of representing numbers. 
How then could these incommensurable lengths be characterized? The 
brotherhood of Pythagoras dealt with this problem by banishing any
one who revealed their distressing secret, although Greek mathema
ticians developed great facility in constructing certain irrational num
bers with compass and straightedge. 

The following problem illustrates the profound difference between 
commensurable and incommensurable lengths. Try to solve it before 
reading on. 

Problem 1.1 Subdivide rectangles with the following proportions into the few
est number of congruent squares: 3:2, 27:15, and n/3:%. How many squares are 
needed to tile the rectangle in each case? Show that a rectangle with the pro
portions \ / 2 : l cannot be tiled by a finite number of congruent squares. What 
can you say in general about the possibility of tiling a rectangle with propor
tions a.bl 

It is obvious that for the first two rectangles 6 and 45 squares are 
needed with sides of 1 and 3 units, respectively. The third rectangle 
requires a minimum of 330 squares of Ve-unit sides, which can be seen 
by magnifying it by a factor of 6 to a rectangle of proportion 22:15 
where 6 is the least common denominator of 1V» and %. In Appendix 
l.A, we will show that rectangles with commensurable sides can be 
tiled with a finite number of congruent rectangles while rectangles 
with incommensurable sides cannot. 

Another problem of design that uses the concept of commensurable 
lengths is the problem of subdividing a given integer length L into 
numbers m and n of two modular lengths a and b units, respectively, 
where a and 6 are integers. This requires m and n to satisfy the equa
tion 

am + bn = L for m and n integers 

This is known as a Diophantine equation [Courant and Robbins, 1941]. 
Such equations have been studied since ancient times. The most ex
haustive study of the application of Diophantine equations to design is 
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P. H. Dunstone's book, Combinations of Numbers in Building [1965]. 
More is said about this problem in Appendix l.A. 

It took until the latter part of the nineteenth century before math
ematicians understood the nature of irrational numbers and could 
use them with confidence as part of the real number system. Never
theless, the archaeological studies of Jay Hambridge [1979], which ex
amined the proportions inherent in the structure of Greek vases and 
buildings such as the Parthenon, indicate that $> and v 2 were very 
much used. The recent work of two historians of architecture, Profes
sors Donald and Carol Watts [1986], has uncovered evidence that Ro
man architects may have based some of their ar t and architecture on 
a system (to be described later) derived from compass and straight
edge constructions of a series of irrationals based on V 2 and 6 where 
6 = 1 + V 2 = 2.414.... 

Greek mathematics also had a profound influence on artists and ar
chitects of the Middle Ages for whom the compass and straightedge 
were tools for organizing a canvas, often based on V 2 and <!> [Bouleau, 
1963]. Although this carried over to the Renaissance to some degree 
(see Section 3.6), for the most part buildings and canvases of the Re
naissance were organized by new principles of proportion based on 
commensurable ratios derived from the musical scale. 

1.4 The Structure of Ancient Musical Scales 

The aspect of Greek writings that had the greatest influence on Re
naissance architecture was the emphasis of Plato in Timaeus on the 
importance of the ratio of small integers. These numbers are the basis 
for the seven notes of the acoustic scale and Plato's assumption that 
the musical scale also embodied the intervals between the seven 
known planets as viewed from an Earth-centered perspective (Mer
cury, Venus, Mars, Jupiter, Saturn, the Sun, and the Moon), which he 
later referred to (in the Republic) as the "harmony of the spheres." 
These connections deeply influenced the neoplatonists of the Renais
sance who felt that, as a result of this connection, the soul must have 
some kind of ingrained mathematical structure. 

Before we examine how the Renaissance architects were able to cre
ate a system of architectural proportions based on the musical scale, 
let us first look at the structure of ancient scales. The ancient scale of 
Pythagoras was based on the simple ratios of string lengths involving 
the integers 1, 2, 3, and 4 which made up the tetraktys; all ratios were 
expressible in terms of the first two primes, 2 and 3 (the first mascu
line and feminine numbers). Pythagoras understood that if a string is 
shortened to half its length by depressing it at its midpoint, the re
sulting bowed or plucked tone sounds identical to the tone of the whole 
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string (or fundamental tone, as it is called) except that it is in the next 
higher register. This relationship, known to Pythagoras as a diapa
son, is what we now call an octave. 

If a tone and its octave are simultaneously plucked, they give off a 
luminous sound caused by the anatomy of the ear [Benade, 1976]. (Of 
course, Pythagoras did not know the reason.) This is why the octave is 
called consonant. Pythagoras also knew that when a string is short
ened to % and % of its original length, other consonant tones are 
formed which also give off bright effects when they are simulta
neously sounded with the fundamental. These special tones were 
known to Pythagoras as a diapente and a diatessaron, respectively. 
However, since they are the fifth and fourth notes of the scale, they 
are commonly known as a fifth and a fourth. Looking at this in a dif
ferent way, if a length of string is subdivided into two parts by a 
bridge, the resulting tones will be an octave, fifth, and fourth when 
the corresponding ratio of the bowed length to the whole length is 1:2, 
2:3, and 3:4 as shown in Figure 1.5. 

The Greeks defined the string length corresponding to a whole tone 
as the ratio between the fourth and the fifth, or %. The structure of 
the Pythagorean scale is described in Timaeus. It is formed by mark
ing off a succession of whole tones while preserving the ratios corre
sponding to the fifth and the fourth, as shown in Figure 1.6. This 
leaves two intervals of ratio 24%r,« left in the octave, which correspond 
to halftones. Ratios of string length corresponding to powers of 2 in
troduce no new tones into the scale; they merely transform the funda
mental tone to other octaves. The number 3 is needed to create new 
tones. For example, in Figure 1.7, G corresponds to the string length 
of % when the fundamental tone is C. When the string is shortened to 

Sliding bar 

Unison Fourth Fifth Octave 

Figure 1.5 A length of string representing the fundamental tone or unison 
is divided by a bridge to form the musical octave, a fifth, and a fourth. 
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C D E F G A B C' D' E' F' C' A' B' 

Figure 1.6 The Pythagorean scale derived from the primes 2 and 3. 

Figure 1.7 The Ptolemaic, or just, scale based on the primes 2, 3, and 5. 

(%)2, the tone D one-fifth above the G (the tone obtained by counting 
G, A, B, C, D) occurs, which when lowered one octave, 4/9 x 2 = % (the 
string is doubled in length), yields the tone D, a whole tone above C. 
All the tones of the Pythagorean scale are gotten in this way by re
ducing successive fifths by the appropriate number of octaves. 

It is in this context that origins are found for associating the arche
types of the "passive" feminine nature with the number 2 and the 
"creative" masculine nature with 3. The fact that it has taken thou
sands of years for these characterizations of male and female natures 
to begin to break down gives evidence to the power of archetypes as 
cultural forces. 

Various intervals of the scale can be related to each other by split
ting the octave by its arithmetical, geometrical, and harmonic means. 
In general, the arithmetic mean of an interval [a,b\ is the midpoint, c, 
of the segment and the points a, c, b form an arithmetic progression. 
The geometric mean is the point c such that ale = c/b, i.e., c = 
vab and a, c, b form a geometric progression. The harmonic mean, 
which is less familiar, is the point c, such that the fraction by which 
c exceeds a equals the fraction by which b exceeds c, i.e., (c - a)la = 
(b - c)/b. As a result, 

1 = 1 f 1 + I 
c 2 \ a b 

or 

c = 
2ab 

a + b (1.1) 
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and the series a, c, b is referred to as a harmonic series. For example, 
the interval [6,12] represents the octave 2:1. The arithmetic and har
monic means of 6 and 12 are 9 and 8, respectively. That 9 divides the 
interval into two ratios, 3:2 and 4:3, the musical fifth and fourth, 
while 8 divides the interval reciprocally into the ratios 4:3 and 3:2 is 
shown as follows: 

4 : 3 3 : 2 
/ W ^ 

I 1 1 
' n 1 

Thus we see that the combination of arithmetic and harmonic means 
duplicates proportions within an interval, which can be a way of sat
isfying the first canon of architectural proportion, namely, repetition. 

1.5 The Musical Scale in Architecture 

Now we turn to the manner in which Renaissance architects applied 
the Pythagorean scale. The Renaissance architect most influential in 
applying the musical scale to design was Alberti [Wittkower, 1971], 
[Scholfield, 1958]. He restricted the lengths, widths, and heights of his 
rooms to the ratios related to the ancient Greek scale that are shown 
in Table 1.1. 

TABLE 1.1 

Ratio Musical interval 

1:1 Unison 
4:3 Fourth (diatesseronl 
3:2 Fifth (diapente) 

16:9 
2:1 Octave (diapasonl 
9:4 
8:3 Eleventh (fourth above octave) 
3:1 Twelfth (fifth above octave) 
4:1 Fifteenth (next octave) 

All were consonant (or pleasant sounding) except for 9:4 and 16:9, 
which were compound ratios composed of successive fifths and fourths. 
To understand how these ratios are all related by a common system, 
we must first consider the series upon which all systems of proportion 
are built, the geometric series. 

3:2 4 :3 

I 
—t -

2:1 
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In Timaeus, Plato conceived of the geometric series as being the 
binding force of the universe: 

When God put together the body of the universe, he made it of fire and 
earth. But it is not possible to combine two things properly without a 
third to act as a bond to hold them together. And the best bond is one that 
effects the closest unity between itself and the terms it is combining, and 
this is done by a continued geometrical proportion,... so God placed water 
and air between fire and earth; and made them so far as possible propor
tional to each other, so that air is to water as water is to earth—so by 
these means and from these four constituents the body of the universe 
was created to be at unity owing to proportion. 

The geometric series referred to in the above passage is 

fire air water earth 

where 

fire _ air _ water 
air water earth 

Mathematically, abed forms a double geometric series if 

where the dots indicate that the series may be continued in both di
rections. Thus, a = 1 and 6 = 2 generates the forward series 

1 2 4 8 - -

while a = 1 and 6 = 3 generates 

1 3 9 2 7 - -

These two geometric series arise from the prime numbers 2 and 3 (the 
first feminine and masculine numbers), which lie at the basis of the 
Pythagorean scale, and they were arranged into a lambda configura
tion (A) by ancient commentators to Plato's work: 

I 

2 3 

4 9 

8 27 

We shall now see how this double geometric series relates to 
Alberti 's musical proportions. The first of these series is based on 
the octave (2:1). Another geometric series is formed by the ari th-
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metic means of each successive pair restricted to integer values 
only: 

1 2 4 8 16 32 . . . 

3 6 12 24 . . . 

Notice that while each number of the second series is the arithmetic 
mean of the two numbers that brace it in the upper series, each num
ber of the upper series is the harmonic mean of the pair of numbers 
that brace it from below. Also, each series cuts the other in the ratio 
3:2 and 4:3 (the musical fifth and fourth). This may be continued 
again and again to form endless geometric series in the ratio 2:1 from 
left to right, 3:2 along the left-leaning diagonal, and 4:3 along the 
right-leaning diagonal involving integers only: 

1 2 4 8 16 32 . . . 

3 6 12 24 . . . 

(1.3) 
9 18 36 72 . . . 

27 . . . 

Thus Plato's lambda is formed by the boundary of these geometric se
ries. 

P. H. Scholfield [1958J points out that this double series acts like a 
chessboard on which horizontal moves represent octaves and moves 
along the diagonal represent fifths and fourths. Alberti's ratios (see 
Table 1.1) are all represented by any group of numbers from the series 
forming the pattern: 

• • 8 16 

• • • s u c h a s 6 12 24 

• t 
9 18 

with the addition of the major whole tone 9:8. Alberti selected any 
three numbers from this subscale to represent the breadth, height, 
and length of a room. He generally took the height of a room to be 
either the geometric, arithmetic, or harmonic means of the length and 
breadth. It is easy to see that the subscale gives a convenient guide to 
selecting appropriate combinations of this kind. Thus Alberti's system 
followed the Pythagorean musical scale. 

Followers of Alberti such as Andreas Palladio based their architec
ture on a revision of the Pythagorean scale that was the work of the 
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Alexandrian astronomer Ptolemy. This scale, shown in Figure 1.7, 
achieved a higher order of consonance by considering ratios of the first 
five integers, which included the prime 5 in addition to 2 and 3. Thus 
Palladio's architecture included the ratio 3:5 corresponding to the mu
sical sixth (instead of the Pythagorean ratio 16:27), 4:5 (instead of the 
Pythagorean ratio 64:81), and 5:6 corresponding to the major and mi
nor thirds (a minor tone is one-half interval below the major tone) as 
Figure 1.7 shows. 

The double Series (1.3) can also be related to human dimensions in 
which a scale of modules is derived from submultiples of the height of 
a 6-foot person, or 72 inches. Each of these submultiples can then be 
added together in an arithmetical progression to form the whole. Thus 
the factors of 72 are arranged in Table 1.2. 

TABLE 1.2 

H 2 Q] 8 

3 6 M2J 24 

0 is H El 

For example, if the module m is taken to be V12 of the whole, six of 
these make up the whole: 

h - s -*\ 

m m m 

72 

m m m 

Scholfield has pointed out the surprising fact that six of the twelve 
subintervals in Table 1.2 (in boxes) result in English measures, 
namely, the inch, the hand (4 inches), the foot (12 inches), the span (9 
inches), the yard (36 inches), and the fathom (6 feet, or 72 inches). 

It was actually the Roman architect Vitruvius who spoke of the de
sirability of basing systems of proportion on the human body. For ex
ample, he specified that the entire body, when erect with arms out
spread, fits into a square and when spread-eagled, into a circle 
described around the navel. His 10 books on architecture [1960] com-



16 Chapter One 

prise the only surviving record of the architecture of antiquity, and 
these books greatly influenced the architecture of the Renaissance. In 
fact, Alberti's, Ten Books on Architecture were modeled after 
Vitruvius' books. In these books Alberti related the design of the clas
sical Greek columns, ionic, doric, and Corinthian, to dimensions of the 
human body [Gadol, 1969], Vitruvius' system was based on subdivid
ing the human form into 120 modules and considering its factors, 
listed in Table 1.3, which include series derived from the prime 5. The 

TABLE 1.3 

1 2 4 8 
3 6 12 24 
5 10 20 40 
15 30 60 120 

measurements of various parts of the body were then expressed as an 
appropriate fraction of the whole body. Thus not only could repetitions 
of proportions be incorporated in a design with the aid of this system 
but so also could modules of the same size be repeated to form the 
whole, often in symmetric patterns. 

Palladio took this system one step further by applying it to archi
tectural interiors. Not only did he apply the Renaissance system of 
proportion to the dimensions of a room but he designed the sequence of 
rooms in geometric progressions. Although Palladio claimed that 
"beauty will result from the form and correspondence of the whole 
with respect to the several par ts . . . that the structure may appear an 
entire and complete body" [Wittkower, 1971], the limitation of these 
geometric progressions prevented him from achieving this worthy ob
jective. The problem was that, in general, geometric progressions do 
not possess additive properties, i.e., the sum of two elements in each 
geometric progression of Series (1.3) is never equal to another element 
of the progression. Thus the second canon of proportion fails and the 
system is limited in its application to proportioning only parts of the 
whole plan. Along with criticisms concerning the validity of the claim 
that what pleases the ear must also please the eye, the lack of additive 
properties led to the demise of the system. 

1.6 Systems of Proportion Based on V2, e, and <}> 

The collapse of the Renaissance theory of proportion left architectural 
theory in a state of confusion. Without an adequate system, architects 
resorted solely to subjective judgments in their designs, often with 
dreadful results. However, in the nineteenth century architects, stim-
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ulated by an examination of proportions observed in nature during the 
process of self-similar growth of organisms (see Section 2.10), began to 
reexamine systems of proportionality in architecture. 

In this section we shall show why three proportions, V 2 : l , 0:1, and 
<t>:l, can be singled out as having special properties for use as the basis 
of architectural systems of proportion. Also, for reasons that we now 
state, it is unlikely that other proportions can satisfy our three canons 
of proportion as well. 

1.6.1 Additive properties 

First of all, it is easy to verify that the golden mean has the property 

1 + 4> = cj)2 (1.4) 

Multiplying Equation (1.4) by powers of ct> yields the series of expres
sions 

••• A + T = l , v + 1 = d), 1 + <l> = <t)2,<l> + <l)2 = 4>' \ . . . (1 .5) 

where the powers of <t> form a double geometric series which we shall 
refer to as the 4> series: 

. . . . - ^ . l , * , * 2 , * 3 , . . . (1.6) 
<J>2 <J> 

Because of Equation (1.5), the $> series also has the property that 
each term is the sum of the two preceding terms. Generally, such a 
series is called a Fibonacci series. That is, 

aoa1a2---a„_2a„.1a„--- (1.7a) 

is a Fibonacci series if 

a„ = a,,., + a„_2 (1.76) 

That is, the F series is 

1 1 2 3 5 8 13 21 3455 89-•• (1.8) 

generated by 1, 1, and Equation (1.76). 
All Fibonacci series have the property that ratios of successive 

terms approach 4> in the limit, al ternating above and below this num
ber (see Section 3.2), i.e., 

hm = 0 
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For example, from Series (1.8), 

2A = 2.0, % = 1.5, % = 1.667, % = 1.6, WB = 1.625 etc. (1.9) 

Using the Fibonacci properties of the <f> series, this series can be con
structed with compass and straightedge as we shall show in Section 
3.4. 

The golden mean and Fibonacci series are the basis of a useful sys
tem of architectural proportions developed by the French architect Le 
Corbusier, known as the Modulor. This system will be discussed in the 
next section. The golden mean and Fibonacci series also have other 
interesting mathematical properties, some of which will be discussed 
in the next two chapters. They are connected with certain natural pro
cesses such as plant growth, which will be discussed in Section 3.7. 

As we did for the golden mean, we can show that 6 satisfies the 
equation 

1 + 2fi = 62 (1.10) 

and that the powers of 0 form a double geometric series 

• • • ^ l f l e 2 - - - (1.11) 
(HO 

with the property that each term is the sum of twice the previous term 
and the term before that. Such a series is called a Pell's series. In gen
eral, Pell's series have the property 

a„ = o„-2 + 2a,,.! 

That is, 

1 2 5 12 29 70- •• (1.12) 

It can be shown that the ratio of successive terms in any Pell's series 
approaches 6 as a limit: 

lim ^ = 6 

For example, from Series (1.12) 

2/1 = 2.0, 5/2 = 2.5, i % = 2.4, 29/12 = 2 .416 , . . . (1.13) 

In Section 1.8, the ratio 6:1 will be shown to lie at the basis of a sys
tem of proportions used by the Romans during the first and second 
centuries. 
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1.6.2 Subdividing rectangles 

In Section 2.11, we shall describe the gnomic breakdown of rectangles 
into proportional units by a method known historically as the princi
ple of repetition of ratios, which accomplishes in the realm of geometry 
what the musical scale did in the realm of sound, namely, to provide a 
means to reproduce proportions within a design. In this section we 
consider the more general question of how to subdivide a rectangle 
into subrectangles exhibiting the fewest number of different propor
tions. 

The rectangle in Figure 1.8 is subdivided most generally by a ver
tical and horizontal line into nine different subrectangles: the four ev
ident in the figure, four additional ones gotten by combining adjacent 
rectangles, and the outer rectangle enclosing all of the others. How
ever, Figure 1.8(6) and (c) shows that this can be reduced to only two 
or three, respectively, if the rectangle has proportions V 2 : l or <t>:l. 
This will be reconsidered in Section 2.11 in connection with the prin
ciple of repetition of ratios. 

A similar analysis can be carried out for rectangles subdivided by 
two horizontal and two vertical lines. The 36 different rectangles for 
the general case can be reduced to 4 and 5 different rectangles if 6, 
v 2 , and cj> are used for the proportions. If four vertical and four hori
zontal lines are used, the 225 different rectangles can be reduced to 
only 11. 

Thus we see that proportions based on w2, 9, and d> facilitate the 
repetition of ratios that fit together to form a whole in aesthetically 
pleasing ways which satisfy our three canons of proportion. 

1 j> 1 _ 1 

1 

| 4,1 1 l 2 1 

( a ) ( b ) (c ) 

Figure 1.8 A rectangle subdivided by one vertical and one horizontal 
line into nine subrectangles. The rectangles have (a) all different 
proportions; (6) three different proportions based on $; (c) two differ
ent proportions based on V2. 
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1.6.3 Continued fraction expansions 

Perhaps the most convincing evidence of the mathematical pedigrees 
of <J>, 6, and V 2 is given by expanding them in what is known as a con
tinued fraction (see Appendix l.A) [Khinchin, 1964], [Olds, 1963]. Since 
<|> satisfies 

4>2 = 4) + 1 

we can solve for <J>: 

Replacing 4> repeatedly in this expression yields 

<)) = 1 + 1 

1 + 1 
1 + L_ 

Likewise, 

62 = 26 + 1 

and so, 

6 = 2 + ^ = 2 + 1 
9 

2 + ] _ 
2 + 1 _ 

Also, since V 2 = 9 - 1, it too can be expanded as the continued frac
tion. 

By terminating these fractions at different stages, the ratios called 
convergents given by Equations (1.9) and (1.13) for <J> and 9 are ob
tained. The series of partial fractions for v 2 is 

Vi = 1.0, 2A = 2.0, % = 1.5, % = 1.4, 17/i2 = 1.4166,... (1.14) 

From the theory of continued fractions, these ratios are the best ap
proximations to 4>, 9, and V 2 possible with denominators no larger 
than the given ones. 

Now that we have established 4>, 6, and V 2 as the cornerstone of a 
satisfactory system of proportion, we will study in more detail the sys
tem based on 9 and V 2 used by Roman architects of the first and sec
ond century and the Modulor system of Le Corbusier based on cj>. 
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1.7 The Golden Mean and Its Application to 
the Modulor of Le Corbusier 

Le Corbusier created the first modern system of proportion, which he 
called the Modulor [1968a]; [19686], [Martin, 1982]. This system sat
isfies the three canons of proportion in addition to being built to the 
measure of the human body. Unlike the Renaissance system, which 
used a static series of commensurable ratios to proportion the length, 
width, and height of rooms, Le Corbusier's system developed a linear 
scale of lengths based on the irrational number {)>, the golden mean, 
through the double geometric and Fibonacci cj> series: 

•••—aa^atfatf--- (1.15) 
<t> <t> 

for some convenient unit a. 
In general, the ratios involved in this system were incommensura

ble, although Le Corbusier often used an integer Fibonacci series ap
proximation to this series, enabling him to operate in the realm of 
commensurable ratios. However, the fact that Series (1.15) is a 
Fibonacci series satisfying Equation (1.5) enables the Modulor system 
to be manipulated analytically in terms of <}> and its powers rather 
than through its decimal equivalent. In this section we will study the 
Modulor. 

1.7.1 The red and blue series 

Le Corbusier created a double scale of lengths which he called the red 
and blue series. The blue series was simply a <)> series. This series is 
constructed by cutting an arbitrary length in the golden section, i.e., 
two segments with lengths in the ratio 4>:1. A method for doing this 
will be described in Section 3.4. Since Series (1.15) is a Fibonacci se
ries, all lengths of the double series can be constructed with compass 
and straightedge. The sequence of elements of the blue series is shown 
in Series (1.16), with 2d replacing a in the 4> series for arbitrary d (not 
drawn to scale). 

^ ^ 2d 2d4> 2dtf2d<$>3 

Blue series: • • • x x x x x x 

Red series: • • • x x x x x 

d d<$> dtf d4>3 dcj)4 (1.16) 
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The red series is constructed according to the pattern of Series (1.3); 
each length is the arithmetic mean of successive lengths of the blue 
series that brace it. Therefore, the resulting sequence of elements of 
the red series is interspersed between lengths of the blue series as 
shown in Series (1.16). According to Section 1.4, each length of the 
blue series is the harmonic mean of the two successive lengths that 
brace it from the red series. The following computation shows that the 
harmonic mean divides the difference between each pair of lengths of 
the red series in the golden section 1:4>. Consider the interval [d>2, 4>3] 
from the red series. Using Equations (1.1) and (1.5), the harmonic 
mean of this interval is 

24)24>3 

c = —2 -z = 24) 
4>2 + 4>'! 

which is the element from the blue series that intersperses the inter
val. By using the additive properties of the i> series, it is easy to show 
that 24) cuts the interval in the golden section. (Show this!) 

Another relationship between the red and blue series can be seen by 
considering any length from the blue series, say 24>". It equals the dif
ference between the lengths 4)" + 2 a n d <$>" ~1 from the red series as we 
shall show in Section 3.3, i.e., 

24)" = <t>'"2 - 4>"-1 (1.17) 

The series are drawn to scale in Figure 1.9 which shows how the two 
series work together with lengths of one interspersed with lengths of 
the other. This mitigates the effect of the too-rapid geometric growth 
of either series taken by itself. 

Figure 1.10 shows a set of rectangular tiles whose lengths and widths 
are measurements from either the red or blue series or both. Represented 
among these tiles are squares, double squares, and golden mean rectan
gles. This figure also shows that since the lengths and widths are mem
bers of a Fibonacci series, if two rectangles having the same width and 
two successive lengths from either the red or the blue series are joined, a 
rectangle with the next length in the red or blue series emerges. 

To get some experience with the many relationships between these 
tiles, the reader is encouraged to construct a set of rectangles and try 
to find interesting ways to combine them. Figure 1.11 shows several 

CM=dG(» I I I I I | 1 | 

CBIUC= 2dG(i) I I I I | I | 
2d 2</<t 2,/r- W 2<AM 2,1' 

Figure 1.9 The Modulor red and blue scale of lengths measured from a common origin. 
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d d* 2d di* ld$ di3 2dp 

Figure 1.10 The red and blue series of Le Corbusier's Modulor and the tiles of various 
proportions which the system gives rise to. There are three groups: rectangles whose 
side lengths are drawn only from the blue series (shaded in one direction), rectangles 
whose side lengths are drawn only from the red series (shaded in the opposite direc
tion), and those rectangles produced from pairs of dimensions, one red and one blue 
(both shadings superimposed). 

t i l ings of r ec tang les by red a n d b lue t i les , found in Le Corbus ie r ' s book 
Modulor [1968a]. 

Problem 1.2 Use the Fibonacci properties of the <b series shown in Equation 
(1.5) to show that the sum of the lengths across the top edges of the rectangles of 
Figure 1.11 agree with the sum of the lengths across the bottom edges. Also 
check the sum of the right and left edges for agreement. 

The Modulor sys tem is e x t r e m e l y versa t i l e . Once a r e c t a n g u l a r a r e a 
h a s been t i led by t h e Modulor , t h e t i les can be r e a r r a n g e d in m a n y 
different ways to form new t i l ings of t h e r ec tang le . I t can also be used 
to t i le r ec tang les of a r b i t r a r y d imens ions to w i t h i n a n y p rese t toler
ance (see Section 3.3). 
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Figure 1.11 A Modulor exercise by Le Corbusier. Eight rectangles are subdivided by 
Modulor rectangles and coded according to the table in the upper right-hand corner. 

Figure 1.12 shows some interesting breakdowns of a square 2(J>3 on 
a side into rectangles of the Modulor. In the last column a 5-inch 
square is tiled to '/4-inch tolerance. Each column rearranges the same 
tiles in three different ways. Thus the Modulor satisfies the three can
ons of proportion. It provides a small number of modules (the rectan
gles in Figure 1.10) capable of tiling a given rectangular space; the 
modules all have proportions based on the golden mean, ensuring rep
etition; and the system has sufficient versatility to enable the de
signer to find aesthetically interesting subdivisions. 

Construction 1.1 Construct your own set of modules and find your own break
downs of a 2c|>3 square. Also test the versatility of the Modulor system by tiling 
a 5-inch square with red and blue rectangles to within a Vi-inch tolerance. 

Despite these satisfactory properties, the Modulor was useful to Le 
Corbusier and other architects primarily as a theoretical tool, and 
only rarely has it been used for designing complete buildings. As Le 
Corbusier suggests in Modulor 2 [19686], this is to some extent be
cause the scale is too coarse and leaves large gaps at significant points 
in the design. However, we now show one way in which these gaps can 
be filled. 

1.7.2 Filling in the gaps 

Since any gap between two successive lengths of either the red or blue 
scale equals the preceding length of the scale, an exact scaled-down 
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Figure 1.12 A Modulor tiling by Allison Baxter. In the first three columns a 2<|>3 by 2<t>3 

square is subdivided into three different sets of of tilings. Each set uses the same tiles 
but is arranged in three different ways. The last column presents the tiling of a 5- by 
5-inch square to within '/i-inch tolerance by the same tiles arranged in three different 
ways. 

replica of the red and blue series up to this length fits exactly into the 
gap. For example, the gap of the length <b between c|>2 and 4>3 of the red 
series can be filled in by the red and blue series up to <J>. In this way 
the Modulor can be extended to a series that is self-similar at every 
scale, much as we shall see in the next chapter for the fractal patterns 
of Section 2.12 and the biological patterns of growth of Section 2.10. 
This can be done without leaving the Modulor system. We shall refer 
to such a self-similar system as being closed. 

1.7.3 Human scale 

Renaissance artists were well aware that the golden mean modulates 
the parts of the human body. For example, the Botticelli Venus shown 
in Figure 1.13 was subdivided by Theodore Cook into a sequence of 
powers of the golden mean [1979]. For example, ratio 

Navel to top of head 4>° <t>5 1 

N a v e l t o f e e t ~ <j)4 + tf> ~ $f ~ 4> 
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i?i 

Figure 1.13 Cook's analysis of a Botticelli Venus. 
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In other words l:<t>. This appears to be close to the average value for 
this ratio in the adult population at large [Huntley, 1970]. It is also 
the proportion that seems to have been chosen, both consciously and 
unconsciously, by artists in all ages to scale human figures in their 
paintings. 

The trademark of the Modulor is shown in Figure 1.14. A 6-foot 
British policeman with arms upraised provides the determining points 
of the red and blue series. If the policeman's upraised arm is given the 
value 2d/<\> on the blue scale while the top of his head is d, the remain
der of the scale is completely determined and can be constructed by 
compass and straightedge. (Try it!) 

Le Corbusier made these lengths concrete by choosing d so that it is 
the height of the 6-foot policeman (or 183 centimeters in the metric 
system). His upraised hand was then set at 226 centimeters. The other 
lengths of the scale are then approximated rather well by constructing 
two integer Fibonacci series based on these values, as shown in Figure 
1.14: 

Red: . . .27 ,43 ,70 , 113, 183,. . . 

Blue: . . .54, 86, 140, 226,. . . (1.18) 

Since Le Corbusier worked on both sides of the Atlantic, he found it 
to be of great practical importance and quite miraculous that when 
the red and blue scales based on the 6-foot policeman were converted 
to English units, the corresponding lengths were, to a close tolerance, 
either an integral number of inches or on the half inch [March and 
Steadman, 19741: 

Blue: . . .8 in, 13 in, 21 in, 34 in, 55 in, 89 in, 144 in 

Red: ...6V2 in, 10V2 in, 17 in, 27V2 in, 44 V2 in, 72 in (1.19) 

Equally good design results can be obtained by using the abstract 
scale of Series (1.16) or its Fibonacci approximations in Series (1.18) 
and (1.19). 

S/183 

\ 113 

\70 

226 / 

140 / 

85 / 

Figure 1.14 The "trademark" of 
the Modulor. A man-with-arm-
upraised provides, at the deter
mining points of his occupation 
of space—foot, solar plexis, head, 
tips of fingers of the upraised 
arm—three intervals which give 
rise to a Fibonacci series. 
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1.8 An Ancient System of Roman Proportion 

Near the mouth of the Tiber River stand the excavated brick remains 
of the ancient Roman port of Ostia. Among the ruins of this rich ar
chaeological site are those of a neighborhood of apartments, shops, 
and garden houses. According to the Watts, who studied the system of 
proportions that underlies the Garden Houses of Ostia, "even in their 
ruined state they convey a palpable sense of order and design." 

According to the Watts, the key to the design of the Garden Houses 
is a single geometric pattern based on the square and a particular way 
of dividing it came to be called the sacred cut. By ensuring propor
tional relations among the parts of the complex and the parts to the 
whole, the sacred cut lends unity and harmony to the design. The sa
cred cut works as follows [Watts and Watts, 1986]: 

A sacred cut of a reference square is constructed by drawing arcs that are 
centered on the corners and pass through the center of the square [as 
shown in Figure 1.15(a)]. By connecting the points where the arcs cut the 
side, one obtains a nine-part grid, whose central square is called the 
sacred-cut square. The length of each arc AB is equal, to within .6 per
cent, to the length CD of (the diagonal of) half the reference square [see 
Figure 1.15(6)]. Hence the sacred cut provides an approximate method of 
squaring the circle. The perimeter of a square composed of four lines CD 
is nearly equal to that of a circle composed of four sacred cuts [see Figure 
1.15(c)]. 

It is evident from Figure 1.15(a) that the ratio of the side of the square 
to the radius of the sacred cut is V2:1 while the ratio of the diagonal 
of the large square to the radius of the sacred cut is 2:1. The problem 
of squaring the circle, which was one of the central problems of Greek 
mathematics, probably marks the influence of the Greeks on this sys
tem of Roman proportions. As a matter of fact, it was the Danish 

( a ) ( b ) ( c ) 

Figure 1.15 Sacred cuts of a reference square. (Reprinted from "A Roman Complex" by 
Donald J. and Carol M. Watts. Illustrated by Tom Prentiss. E> Scientific American.) 
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scholar Tons Brunes who coined the term sacred cut. Brunes claims 
that the sacred cut was transmitted from Egypt to Greece in the sixth 
century B.C. by Pythagoras and then through the Romans to medieval 
Europe. As the Watts point out in their article, 

To ancient geometers, the circle symbolized the unknowable part of the 
world (since its circumference was proportional to the irrational number 
IT) while the square represented the comprehensible world. Squaring a 
circle was a means of expressing the unknowable through the knowable, 
the sacred through the familiar. Hence the term sacred cut. 

According to Watts, 

The geometric order of Ostia's Garden House complex is established by 
three successive sacred cuts. In Figure 1.16, a square roughly congruent 
with the perimeter of the complex encloses a circle that touches the cor
ner of the courtyard (a). Sacred cuts of the east and west sides of this ref
erence square determine the position of the outer walls of the courtyard 
buildings (b). The second reference square, concentric with the first, is 
defined by the width of the courtyard and the position of the fountains; 
the sacred cuts of its east and west sides guide the placement of the party 
walls along spines of the courtyard buildings (c). The third reference 
square is the sacred-cut square of the second and its cuts define the in
nermost walls of the courtyard buildings (d). The buildings are precisely 
five times as long as the final sacred-cut square, and their width is equal 
to its diagonal (e). A superposition of all sacred cuts shows how they un
fold from a common center, thereby emphasizing the major east-west axis 
of the complex (/). 

The sacred cut appears to have been used to proportion the design at 
all scales from the overall dimensions of the courtyard to the individ
ual buildings to the rooms within each building and even to the tap
estries on the wall. 

1.8.1 A double series based on the sacred cut 

The sacred cut can be related to a double scale quite similar to the red 
and blue series. Here each scale is the double geometric and Pell's se
ries with common ratio 6 discussed in Section 1.6.1, where as before 
9 = 1 + V 2 . The ratio of adjacent elements from Series 2 to Series 1 is 
V 2 : l . Thus, 

V2I V2 V2fl V262 V263 

0 

Series 2: •• • x x x x x • • • 

Series 1: • • • x x x x 

1 e e2 e3 Q.20) 
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(e) ( f ) 
Figure 1.16 Geometric order of Ostia's Garden House complex is established by three 
sacred cuts. (Reprinted from "A Roman Apartment Complex" by Donald J. and Carol 
M. Watts. Illustration by Tom Prentiss. © Scientific American.) 
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It can be verified that the lengths of Series 1 are the arithmetic 
means of the lengths from Series 2. Thus, according to the results of 
Section 1.4, the lengths of Series 2 supply the harmonic means be
tween adjacent pairs of lengths from Series 1. This breaks the distance 
between pairs of lengths from Series 1 in a ratio of 1:0, or 0.414 (as 
compared to l:<t> or 0.618 for the red and blue series). 

A double series of commensurable lengths which are good approxi
mations to Series 1 and 2 can be derived from the convergents of the 
continued fraction expansion of V 2 , given by Equation (1.14). The re
sulting double series: 

Series 2: 

1 3 7 17 41 

X X X X X 

Series 1: 

X X X X X 

1 2 5 12 29 (1.21) 

are each Pell's series with ratios closely approximating V 2 . Series 1 
and 2 of Series (1.19) and (1.20) also possess the following additive 
properties: 

1. The sum of two successive elements of Series 1 is an element of Se
ries 2, e.g., 1 + 2 = 3. 

2. The sum of an element of Series 1 and the corresponding element of 
Series 2 results in the next element of Series 1, e.g., 2 + 3 = 5. 

3. The difference between two successive elements of Series 2 is twice 
an element of Series 1, e.g., 7 - 3 = 2 - 2 . 

Using these additive properties and beginning with the two 
lengths 1, V 2 , all other lengths of Series 1 and 2 can be constructed 
with compass and straightedge. These properties can also be used to 
subdivide squares or rectangles into lengths from Series 1 and 2 
(see Figure 1.8). 

Of course this subdivision can be repeated at different scales. In fact 
courtyard buildings at Ostia are regulated by the sacred cuts of a 
square whose sides are 41 Roman feet and whose diagonal is equal to 
the interior width of the building, or 58 feet (twice 29 feet from Addi
tive Property 3). Also, gaps between lengths of Series 1 or Series 2 can 
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be subdivided into scaled-down, self-similar replicas of these series 
just as was done for the Modulor. However, there is an important dif
ference, discussed below. 

1.8.2 Filling in the gaps 

Just as the lengths of gaps in the red and blue series were found 
within the same series, Series (1.21) shows that the length of a gap in 
Series 1 is found in Series 2 of Series (1.21). As a result, gaps from 
Series 1 can be tiled by a self-similar replica of the entire double series 
up to this length. However, gaps from Series 2 are not found in the 
double series; if elements of Series 2 are doubled, a third series is ob
tained which contains the gap lengths of Series 2: 

Series 3: • •-2 26 282 283- • • 

Series 2: • • V 2 V26 V262-• • 

Series 1: - l 6 82 63-• • 

Series 2 and 3 now fill gaps from Series 2 with a double scale that is 
self-similar to the original pair. This process can be continued at any 
scale; however, it will require an infinite progression of scales ob
tained by doubling the preceding scale to get the next. We refer to 
such a system as being open. 

In conclusion, the Roman system based on the sacred cut appears to 
have been extremely successful as a system of proportionality. The 
system shows that the Romans and the Greeks were quite comfortable 
dealing with incommensurable proportions and that it was Renais
sance architects who lost this knack. As a result of the Renaissance 
architects' insistence on limiting themselves to commensurable pro
portions only, their systems lacked the additive properties needed for 
this whole design to be the sum of its parts. 

APPENDIX 1.A 

Under what conditions can a rectangle of proportions a:b be tiled by a 
finite number of congruent squares? If this rectangle is to be tiled by a 
finite number of squares, a and b must be divisible into a finite num
ber of segments of equal length, i.e., 

a = mp (l.A.l) 

and 

b = np (1.A.2) 
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for m and n nonzero integers, where p is maximized in order to tile 
with the fewest number of squares. The number of congruent squares 
N is then 

N = mn 

Dividing Equation (l.A.l) by (1.A. 2) yields 

a = ro (1.A.3) 
b n 

from which it follows that lengths a and b must be commensurable. If 
they are not, finite numbers m and n do not exist and the rectangle 
cannot be tiled by a finite number of squares. 

In the event a and b are commensurable, it follows from Equation 
(1.A.3) that 

a = km and b = kn (1.A.4) 

Thus, from Equations (l .A.l) and (l .A.2),p is maximized when m and 
n are the smallest positive integers satisfying Equation (1.A.3). In 
other words, k is the largest number that divides both a and b to yield 
integer quotients. If a and b are both integers (and they can always be 
taken to be integers by scaling the rectangle), k is what mathemati
cians call the greatest common divisor (GCD) symbolized by k = {a,b}. 
When integers a and b have no common divisor but 1, A = 1 and a and 
b are said to be relatively prime. So we see tha t m and n are merely the 
integers in the representation of alb in lowest terms. It is also evident 
from Equation (1.A.4) that k is the side length of the congruent 
squares. 

It can be shown that if positive integers a and b are relatively prime 
and d is a positive integer, the Diophantine equation, 

am + bn = d (1.A.5) 

for m and n integers, always has solutions when d is a multiple of the 
GCD {a,b} [Courant and Robbins, 1941]. In the event that m and n are 
constrained to be positive numbers as they would be if they repre
sented the numbers of two modular lengths subdividing an overall 
length L (see Section 1.3) and a and b are relatively prime, i.e., 
{a,b} = 1, it can be proven that there exists a critical number (CN) tha t 
equals (a - 1)(6 - 1) such that Equation (1.A.5) has at least one so
lution for d > CN and that there are exactly CN/2 - 1 solutions for 
values of d less than CN. 

To complete this cycle of ideas, the GCD of any two integers a and b 
can be determined by expanding alb in a special class of compound 
fractions known as continued fractions, Rather than give a lengthy ex-
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planation of how to carry out this expansion, we will generate it for 
one typical example and leave it to the reader to generate examples of 
his or her own or study more extensive treatises on this subject 
[Khinchin, 1964], [Olds, 1963]: 

840 229 = 1 
611 611 611/229 

6 1 1 - 2 + 1 5 3 - 2 + 1 
229 229 229/153 

229 = _76_ = _ J _ 
153 153 153/76 

76 " ^ + 76 

Since 76/1 leaves no remainder, this sequences of quotients ends and 
the GCD can be shown to be equal to the denominator of this quotient, 
or 1, which shows that 611 and 229 are relatively prime. 

Putt ing these results together, 

8 4 0 = 1 + 1 
611 

2 + 1 

1 + 1 

2 + 1_ 

76 

This continued fraction method of finding the GCD is equivalent to a 
procedure known as Euclid's algorithm [Courant and Robbins, 1941]. 

Problem 1.A.1 Find the continued fraction developments of %, 43/k>, and 27/i5. 
What is the GCD of the numerator and denominator in each case? 
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2 
Similarity 

To see a World in a Grain of Sand 
And a Heaven in a Wild Flower 
Hold Infinity in the palm of your hand 
And Eternity in an hour. WILLIAM BLAKK 

"Auguries of Innocence" 

2.1 Introduction 

The natural world presents itself to us with a great multiplicity of forms. 
The shapes of plants, animals, forests, mountains, clouds know no 
bounds. Yet something in the human mind has sought to tame this great 
diversity and reduce its orders of complexity to a few general principles. 
All religions and mythologies begin by creating a world of order from the 
surrounding chaos. The words of Blake express a yearning to see through 
the diversity of nature to the underlying connectedness of all things. 

Mathematics and science have introduced ways of naming, then clas
sifying, and finally understanding our observations of the natural world 
in order to gain mastery over it for better or worse. Much of this book is 
about how geometiy presents us with ways of understanding the diver
sity of forms. In this chapter we shall see how the geometrical notion of 
similarity gives a way of describing the process of growth in nature. 

We begin with a discussion of the the mathematics of similarity and 
then show how this relates to self-similar forms. We also present a 
brief introduction to the fractals of Benoit Mandelbrot, which are ul
timate generalizations of the notion of self-similarity and present us 
with a way of literally "holding infinity in the palm of your hand." We 
conclude this chapter with a brief discussion of some of the ideas of 
D'Arcy Thompson from his classic study, On Growth and Form [1966], 
in which he describes some of the factors that influence the growth of 
biological structures and cause organisms to alter their forms to fit 
their sizes. 
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2.2 Similarity 

Perhaps the most elementary transformation of a geometrical figure 
is a similarity in which the shape of a figure is preserved but its size is 
altered. Two figures are similar if corresponding lengths have the 
same ratio, that is, if one is either a magnification or a reduction of 
the other. We shall refer to the common ratio between lengths as the 
magnification or growth factor. 

Figure 2.1 shows lines drawn between corresponding points of two 
similar figures intersecting at a common point, P, called the center of 
similitude. This point is familiar; it is the point between the object and 
image in a pinhole camera. In Figure 2B.1 the object and image are 
placed side by side and corresponding points are stretched away from 
0 by a stretching factor k. Such transformations are called dilatations, 
and k is the growth factor of the two similar figures, since 

MP _OM 
NQ ON k 

Dilatations will be discussed further in Appendix 2.B where we will 
show that they are related to another important geometrical transfor
mation called inversion in a circle. 

If the corresponding lengths are all equal, i.e., the growth factor is 
unity, the two figures not only have the same shape but also have the 
same size although they may have different positions and orientations 
in space. Therefore, they can be matched point for point by moving 
them rigidly in space as we shall describe in more detail in Chapter 
11. In elementary geometry such figures are called congruent. In this 
book we will consider two kinds of congruence. When two figures can 
be matched point for point by a rigid body motion, they will be called 
directly congruent; when they can be matched by some combination of 
a rigid body rotation followed by reflection in a mirror, they will be 
called indirectly congruent, or enantiomorphic. 

Figure 2.1 Object and image of a pinhole camera are similar fig
ures. 
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2.3 Families of Similar Figures 

Figure 2.2 shows three similar squares, triangles, and sombreros. It is 
clear by the definition of similarity that any two circles or squares are 
similar, whereas for two triangles to be similar the lengths of their 
corresponding sides must be proportional and their angles must be 
equal. For two sombreros or for any two forms, in general, to be sim
ilar, a much larger number of proportional lengths may have to be 
specified. The following important theorem governs the areas of fam
ilies of similar figures. 

Theorem 2.1 The areas of a family of similar two-dimensional figures are pro
portional to the square of any characteristic length within the figures; the con
stant of proportionality depends on the shape of the figure and the characteristic 
length, i.e., 

A = cC2 (2.1) 

Thus for any pair of shapes from such a family, 

A) = cC)2 and A2 = ct-/ 

or 

In this equation, k = (£2/̂ i)> the growth factor. For example, if the 
characteristic length of a square is taken to be the length of its side, 
c = 1, which is consistent with the common definition of the area of a 

• [ _ _ 

Figure 2.2 Families of similar figures. 
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square, A = s2. However, if the characteristic length is taken to be the 
diagonal, A = Vz d2 and c = V2. 

Also the areas of families of circles and equilateral triangles are 
given in terms of the diameters d of the circle and sides s of the tri
angles by 

and A-^s* 4 

From Equation (2.2a), we notice that if we double a length, i.e., 
£2IV\ = 2, the area is multiplied by 4, i.e., A2/A1 = 4, as Figure 2.3 il
lustrates for squares and triangles. 

In Section 8.10 we shall use a version of this theorem generalized to 
volumes. The volumes of a family of similar three-dimensional figures 
are proportional to the cube of any characteristic length, i.e., 

v = ce 
from which we conclude that the volumes of any pair of figures from 
the family satisfy 

(2.26) 

2.4 Self-Similarity of the Right Triangle 

The dissection of a right triangle results in a family of similar right 
triangles. To see this, construct two congruent right triangles ABC, of 
any shape, as shown in Figure 2.4(a). Cut one of them along the alti
tude BD of length b, drawn to its hypotenuse AC to obtain the right 
triangles ABD and BCD, respectively. The altitude cuts the hypote
nuse of triangle ABC into line segments AD and DC of lengths a and 
c, respectively. That these two triangles along with the original are a 
family of similar figures can be seen by superimposing their common 
right angles, as shown in Figure 2.4(6). The common ratio between 
corresponding sides is 

Growth factor = 
b 
c 

(2.3) 

A l h 
£? 

ibi 

Figure 2.3 When a characteris
tic length is doubled, the area 
multiplies by four, illustrated 
for (a) a square and (6) a trian
gle. 
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(a) (b) 

Figure 2.4 Dissection of a right triangle into a family of three similar right 
triangles. 

Thus the right triangle embodies self-similarity. 
Also, by Equation (2.3), the altitude of the right triangle of length 6 

divides the hypotenuse into two segments of lengths a and c, where 6 
is the mean proportional (same as the geometric mean) between a and 
c. We refer to this as the theorem of the mean proportional. Equation 
(2.3) plays an important role in describing self-similar forms in na
ture, as we shall see in Section 2.10. Johannes Kepler fully recognized 
the importance of the self-similarity of the right triangle when he 
wrote: 

Geometry has two great treasures; one is the Theorem of Pythagoras, the 
other, the division of a line into extreme and mean ratio. The first we 
may compare to a measure of gold, the second we may name a precious 
jewel. 

Many proofs of the pythagorean theorem have been given, including 
one by President Garfield, another by Leonardo da Vinci, and an an
cient proof given in Section 5.13.3, based on rotational symmetry. One 
of the most elegant proofs is based on the similarity of triangles ABC, 
ABD, and BCD obtained by dissecting triangle ABC [see Figure 
2.5(a)!. In order to get a better picture of these similar triangles, we 
reflect them in mirrors lying on each of their hypotenuses as shown in 
Figure 2.5(6). If we denote the respective areas of these triangles by 
Ax, A2, and A3, 

A3 =Al+A2 (2.4) 

From Equation (2.1), 

A, = c (£3)
2, A2 = c (t2)\ A, = c (€,)2 (2.5) 

where €lt €2, and €3 are the sides of triangle ABC and the hypotenuses 
of the three similar right triangles. 

Replacing Equation (2.5) in (2.4), it follows that 

(e3)
2 = (*,)* + (e,)2 
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Figure 2.5 Similar families placed on the sides of (a) a right triangle ABC, (b) right 
triangles reflected from within ABC, (ci squares, and (d) busts of Pythagoras. 

From this proof, we see that if three squares are erected on the three 
sides of a right triangle [see Figure 2.5(c)], the sum of the areas of the 
squares equals the area of the square constructed on the hypotenuse. 
But Theorem 2.1 also shows this to be true of any similar figures con
structed on the three sides of the triangle, such as the busts of 
Pythagoras that H. Jacobs whimsically illustrates in Figure 2.5(d) 
[1987]. 
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2.5 Line Choppers 

A family of similar triangles can be used to divide a given length into 
fractional parts using only compass and straightedge. Such a line 
chopper can be constructed with an arbitrary number of division 
points, as Figure 2.6 shows for a line chopper with six equally spaced 
division points A0 , A1( A 2 , . . . , A 5 and parallel line segments A1B1,..., 
A5B5. Here lines AQA5 and A1B1 are drawn arbitrarily and we use the 
fact that through any point a line may be drawn parallel to the given 
line AlBl. 

Now if we want to divide a line segment of length L into three equal 
parts, we merely place the line segment with one end on A 0 and the 
other end along A3B3 as shown in Figure 2.6. By similar triangles, L 
is subdivided into thirds. To create a line segment of length VzL, 
merely use a compass to mark off one additional length of magnitude 
L/3. 

In this way, segments of length (mln)L for m and n positive integers 
can be constructed from a line segment of length L using only compass 
and straightedge. 

2.6 A Circle Chopper 

A pair of intersecting lines can be cut by a circle in six distinct ways, 
two of which are shown in Figure 2.7. In Figure 2.7(a), the intersec
tion point O lies interior to what we call a circle chopper and AOB, 
COD are chords of the circle. In the other figures, O either lies exte
rior to the circle chopper and OAB, OCD are either secant lines or tan
gent lines to the circle. 

That the two intersecting lines are cut by the circle chopper into two 
pairs of proportional line segments is given by the following remark
able theorem. 

A3-

-v -̂̂ A \ 

\ 3 \ L 

Figure 2.6 A line chopper subdivides a length L into a ra
tional proportion imln)L illustrated for V-.\ L and -At L. 
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Figure 2.7 A circle chopper di
vides a length so that OA • 
OB = OC • OD where (a) O is an 
interior point to the circle and 
(b) O is an exterior point. 

Theorem 2.2 The circle chopper subdivides any pair of intersecting lines so 
that 

OC OB (• •b> 

A limiting case of this theorem states that the two tangent lines 
drawn from a circle to their point of intersection are equal. 

The proof of this theorem for the case in which O is interior or ex
terior to the circle, as it is in Figure 2.7(a) and (&), follows from the 
fact that triangle AOD is similar to triangle BOC. These triangles are 
similar because the intersecting angles are equal, i.e., 

<£ DOA = < COB 

< BAD = <£ BCD 

a n d <£ ADC = * ABC 

because of Theorem 2.3 (also referred to in Appendix 2.A as Theo
rem 2.A.1). 

Theorem 2.3 Inscribed angles to a circle that intercept equal arcs on the cir
cumference of the circle are equal. 

For a proof of this theorem, see Appendix 2.A. Another proof of Theo
rem 2.2 following a radically different logic is developed in Appendix 
2.B along with a cycle of ideas leading to a formulation of hyperbolic 
geometry. As a corollary to Theorem 2.2, when 0 is interior to the cir
cle, it follows from Equation (2.6) that the products of the segments of 
the two intersecting chords are equal, i.e., OA • OB = OD • OC. This 
corollary can lead to alternate ways of solving geometrical problems. 
Consider Martin Gardner's [1978] two problems, following, which can 
be solved either by this corollary or by other means. 

Problem 2.1 In the middle of a park there is a large circular play area. The city 
council would like to put a diamond-shaped wading pool inside the circular area, 
as shown in Figure 2.8(a). How long is each side of the pool? 

(b) 
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(a) (b) 
Figure 2.8 Two problems by Martin Gardner. 

Problem 2.2 There is a famous puzzle about a water lily that the poet Henry 
Longfellow introduced into his novel, Kavenaugh. When the stem of the water 
lily is vertical, the blossom is 10 centimeters above the surface of the lake. If you 
pull the lily to one side, keeping the stem straight, the blossom touches the wa
ter at a spot 21 centimeters from where the stem formerly cut the surface. How 
deep is the water? Figure 2.8(6) helps to visualize this problem. Your task is to 
solve for x. 

2.7 Construction of the Square Root of a 
Given Length 

In Section 2.5 we were able to construct, with compass and straight
edge, any length m/n tha t is a rational fraction of a given unit. A 
length equal to vL can also be constructed with the aid of Figure 2.9 
as follows: 

1. Construct a circle with diameter AB where DB is taken to be one 
unit and AD is a line segment of length L. 

2. Draw a line through D perpendicular to AB. 

3. The length of line segment CD, where the circle cuts the perpen
dicular, has magnitude V Z . 

X 

Figure 2.9 Construction of the 
square root of a given length L. 
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This construction follows from the observation that ACB is a right 
triangle by the corollary to Theorem 2.A.2. As a result, the theorem of 
the mean proportional of a right triangle [Equation (2.3)] states that 

AD _ CD 
CD BD 

But if AD = L, BD = 1 while we let CD = x, 

L _ x 
x 1 

from which it follows that x = vL. 

2.8 Archimedes Spiral 

In Section 2.4 we showed that the right triangle can be subdivided into 
self-similar right triangles. But the right triangle is also connected to the 
more general theme of self-similar growth through the geometry of the 
spiral. The spiral is an archetypical symbol found in the art and meta
physics of people in every age. For example, spiral patterns appear on the 
walls of the cave dwellers, in the sacred symbols of the Buddhists and 
Hopi Indians, and in the mazes found on the doors of early Gothic cathe
drals. Jill Puree [1974], Anne Tyng [1969], and Jay Kappraff [1990] have 
explored the cultural and metaphysical meaning of the spiral. 

There are two fundamentally different kinds of spirals, the 
Archimedes spiral and the logarithmic spiral. The Archimedes spiral 
is rarely found in natural forms although it does correspond to the for
aging pattern of certain shellfish. It is the pattern formed on the 
ground by a horse tethered to a tree as it walks round and round the 
tree letting out its rope as it walks [see Figure 2.10(a)] or by a coiled 
snake. We represent this schematically as shown in Figure 2.10(6), 
where only the labeled points actually lie on the spiral. 

We see from Figure 2.10(6) that each time the horse walks around the 
tree it increases its distance from the tree by k units. Thus, since 2TT ra
dians equals the angle of one revolution, 8 / 2TT gives the total number of 
revolutions that the horse has made, and Table 2.1 shows the relation 
between the number of revolutions and the distance r from the tree. 

The Archimedean spiral leads to an arithmetic series in r. Thus we 
see from Table 2.1 that 6/2TT and r both increase in arithmetical pro
gression and we obtain the following relationship between them: 

r - ^— 0 or r = a6. 
Air 

where a = kl2ir 
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Ho K 2K 3K 4K 

(a) (b) 

Figure 2.10 (a) A horse tethered to a tree walks an Archimedes spiral as it unwinds 
the rope but keeps it taut; (6) a schematic diagram of the Archimedes spiral. 

TABLE 2.1 

e/2-rr 

2k 
Zk 

2.9 Logarithmic Spiral 

Now let us consider the more important logarithmic spiral. Interest
ingly, this spiral is built up from a right triangle. Consider any right 
triangle to which an altitude has been drawn to the hypotenuse from 
the opposite vertex, such as the one shown in Figure 2.4(a). 

Restating the theorem of the mean proportional, given by Equation 
(2.3), 

a _ b 
b~ c 

Now consider a sequence of right triangles arranged to form a spider 
web plotted on polar coordinates, as shown in Figure 2.11. The verti
ces of these triangles lie on a logarithmic spiral. By repeatedly apply
ing the theorem of the mean proportional to these right triangles, 

c_ 
b' a 

a _ b 
b~ c 

c_ =d 
d e 
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Figure 2.11 A schematic dia
gram of a logarithmic spiral. 

Now, if we let the distance from the center of the spider web to two 
vertex points of the spiral displaced by 90 degrees be a = 1 and b = k 
units, the above ratios all equal Ilk, making the successive points 
c = k2, d = k3, etc., and b' = Ilk, c' = 1/k2, etc. Thus we generate the 
double geometric series of numbers, 

1 1 
' k2k 

lkk2k3 (2.7) 

shown in Table 2.2. Since TT/2, or 90 degrees, represents a quarter of a 
revolution in radians, 

e 
TT/2 

records the number of quarter revolutions from point to point in the 
sequence. 

From Table 2.2 we see that the distance r from the center of the spi
der web forms a double geometric series as the number of quarter rev
olutions, 

9 
Tf/2 

forms an arithmetic series. 
From the table we obtain the following relationship between 9 and 

r = k II ( -2 ) 
or (2.8) 

where a = k2/". Taking logarithms of both sides of Equation (2.8), 

log r = (log c)9 (2.9) 

Therefore, on semilog graph paper, r versus 9 is a straight line con
necting (8,r) = (0,1) to (TT/2,AJ). 
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TABLE 2.2 

Vertex 

c' 
6' 
a 
b 
c 
d 

H 
W2 

- 2 
- 1 

0 
1 
2 
3 

r 

Ilk2 

Ilk 
I 
k 
It2 

k:i 

Problem 2.3 Spirals grow at different rates. With the help of a semilog plot, 
draw four spirals on polar coordinate graph paper in which k = 2, i|>, y/ii, and 1, 
where <S> stands for the golden mean. Notice how the growth rates of the spirals 
depend on /?. 

U s i n g t h e growth principle for t h e l oga r i t hmic sp i ra l t h a t t h e radial 
distance squares as the central angle doubles a n d t h e m e a n p roper ty of 
t h e r i gh t t r i a n g l e g iven by E q u a t i o n (2.3), o the r poin ts of t h e logar i th
mic sp i ra l can be cons t ruc ted w i th compass a n d s t r a igh t edge . (Try 
this!) 

G a r d n e r uses P rob lem 2.4 involv ing loga r i t hmic sp i ra l s to demon
s t r a t e t h e v a l u e of ins ightful m a t h e m a t i c a l t h i n k i n g [1978]: 

Problem 2.4 

Tom Pizza has trained his four turtles so that Abner always crawls to
ward Bertha, Bertha toward Charles, Charles toward Delilah, and 
Delilah toward Abner. One day he put the four turtles in ABCD order at 
the four corners of a square room. He and his parents watched to see 
what would happen. 

"Very interesting son," said Mr. Pizza. "Each turtle is crawling directly 
toward the turtle on its right. They all go the same speed, so a t every 
instant they are at the corners of a square." (See Figure 2.12.) 

"Yes Dad" said Tom, "and the square keeps turning as it gets smaller 
and smaller. Look! They're meeting right at the center!" 

Assume that each turtle crawls at a constant rate of 1 centimeter per 
second and that the square room is 3 meters on the side. How long will it 
take the turtles to meet at the center? Of course, we must idealize the 
problem by thinking of the turtles as points. 

Mr. Pizza tried to solve the problem by calculus. Suddenly Mrs. Pizza 
shouted: "You don't need calculus, Pepperone! It's simple. The time is 5 
minutes." 
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Figure 2.12 Four turtles, Abner, Bertha, Charles, and Delilah, traverse the sides 
of a square but are constrained to follow each other at all times. Their paths must 
be logarithmic spirals whose common center is the center of the square. 

What was Mrs. Pizza's insight? If you cannot provide the requisite in
sight to solve this problem, you can always diagram the paths of the tur
tles in small increments of time, drawing four sides of the square at the 
end of each interval. The result is the pattern shown in Figure 2.12. 

2.10 Growth and Similarity in Nature 

The logarithmic spiral is commonly found in nature, for example, in 
the form of the nautilus shell or the striations of the shells of other sea 
animals, as shown in Figure 2.13. This follows from an important 
property of spirals. Any arc of the spiral between two radii separated 
by an angle 6 is similar. In other words, one such arc can be magnified 
or reduced to form the others, as shown in Figure 2.14. It was pointed 
out by D'Arcy Thompson [1966] that the nautilus shell and the horns 
of a steer grow by accretion according to the genetic code of the ani-
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Figure 2.13 Natural forms illustrating logarithmic spiral growth, (a) Shell 
forms; (6) nautilus. 

Figure 2.14 The central angle of a logarithmic 
spiral intercepts similar arcs on the spiral. 

mal. Thus, if the outer part of the horn grows at a constant rate but 
faster than the inner part, a logarithmic spiral results as shown in 
Figure 2.15(a) for a sequence of wooden chips that approximate the 
annual growth of the horn [Stevens, 1974]. Furthermore, the above 
property ensures that each section of shell or horn will be self-similar, 
preserving the identity of that aspect of the organism. If the wooden 
chips are cut so that the cross sections of the cuts are not perpendicu
lar to the horizontal plane, as they are in Figure 2.15(6), the spiral 
will wind into three-dimensional space and is called a helix. Horns 
and teeth actually grow in helices whose projections onto the horizon
tal are logarithmic spirals. 

Problem 2.5 The helix shown in Figure 2.16(a) can be thought to represent a 
spiral ramp rising on the surface of a cylindrical building with radius R and 
height H and constant pitch a, where the pitch is defined as the angle between 
the direction of the spiral and the horizontal as seen in the edge view. If the 
height of the cylinder is H = 100 feet and the pitch is a = 30 degrees, how far 
must a person walk up the ramp compared to the distance straight up the side of 
the wall? Show that the distance up the ramp does not depend on the radius R of 
the cylinder. The following experiments with spirals supply a hint for the solu
tion of Problem 2.5. 
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( a ) 

Q 6 0 

( b ) 

Figure 2.15 A logarithmic spiral is formed when a horn grows faster on the outside 
than the inside illustrated with rectangular wooden blocks cut by a perpendicular 
plane. If the plane cuts the block at an angle, the growth pattern is helical. 

Experiment 2.1. Get hold of the cardboard cylinder from a roll of paper 
towels. Mark the spiral ridge of this roll with a red pencil. Cut open 
the roll along a vertical line AB to form a period rectangle of height H, 
width 2TTR, and pitch a, as shown in Figure 2.16(6) for the spiral 
ramp. Measure R, H, and a for this spiral. Since the points on both 
vertical sides of this period rectangle are considered to be identical, 
i.e., A = A', B = B', C = C, the line of constant pitch a continues to 
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(a) (b) 

Figure 2.16 (a) A helical curve on the surface of a cylinder; (6) 
the cylinder is opened to a period rectangle by cutting along a 
generator. The trace of the spiral is shown. 

rise from point C on the left side after reaching the identical point C" 
on the right side of the period rectangle. 

Also note that the spiral revolves about the cylinder in a counter
clockwise manner as in the threads of a standard screw. Such a spiral 
is called a right-handed spiral because the fingers close in a counter
clockwise direction when the right hand is closed into a fist. Right-
handed spirals are distinguished from spirals that slope in the oppo
site direction, left-handed spirals. 

Can a right-handed spiral be moved in space and matched up 
point for point with a left-handed spiral? Look at a right-handed 
spiral in a mirror and notice that it is different from a left-handed 
spiral. 

Construct a double helix as illustrated on the period rectangle of 
Figure 2.17(a). The configuration of the DNA molecule (the double 
helix) was discovered by Crick and Watson [see Figure 2.17(6)]. An
other property demonstrating the self-similarity of logarithmic spi
rals can be shown using calculus; namely, the angle between the 
radius and the tangent at any point is the constant angle I|J as 
shown in Figure 2.18. For this reason this spiral is sometimes 
called an equiangular spiral. This property is used by certain in
sects that fly toward a light along a logarithmic spiral. They may 

Figure 2.17 (a) Double helix drawn on a period rectangle. (6) the DNA double helix. 
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Figure 2.18 A fly moves toward 
a light source by intercepting 
light rays at equal angles «|>. The 
path is a logarithmic spiral. 

be thought to possess sensing mechanisms which cause them to in
tersect light rays at a constant angle. It can be shown, using calcu
lus, tha t 

tan»|i = 1/lna (2.10) 

where a = kll~ as before. These angles were also studied by Theodore 
Cook [1979J who correlated them with the spiral growth of various 
natural forms. 

2.11 Growth and Similarity in Geometry 

We have seen in Section 2.10 that spiral forms generally comprise 
dead tissue such as shells or horns in which new growth adds to old 
growth in just such a way as to maintain similarity. Let us investigate 
this process of growth geometrically. 

Begin with some geometric form or pattern, which we call a unit, 
and add to it another form or pattern, called a gnomon (see Section 
1.2), which is required to enlarge the unit while preserving its form. 
For example consider the following sequence of units: 

and gnomons 

The units are square patterns of dots while the gnomons are the L-
shaped patterns of dots which must be added to one unit to get the 
next largest unit in the sequence. 
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If we consider any rectangle whose sides are in proportion a:b and 
draw a line from one vertex that intersects the diagonal at right an
gles, the rectangle can be divided into two rectangles. The smaller of 
the rectangles, whose sides are in proportion b:c, is similar to the par
ent, as shown in Figure 2.19(a). This subdivision was known histori
cally as the principle of the repetition of ratios and was used by archi
tects during the Renaissance [Scholfield, 1958]. 

Referring to the similar right triangles AOB, BOC, and COE and 
using the theorem of the mean proportional given by Equation (2.3), it 
follows that the hypotenuses are in proportion, 

alb = b/c (2.11) 

and thus rectangle ABCD is similar to BCEF. 
We may state this in another way. Represent the class of similar 

rectangles with sides in ratio a:b by the symbol U, in which case 

U = U + G 

where G is the leftover portion, or gnomon, that remains when a sim
ilar rectangle U is removed from the parent [see Figure 2.19(6)]. This 
process can be repeated over and over again to yield a decomposition 
of U into an indefinite number of gnomons G and one similar unit U: 

U = G + U 

U = G + G + U 

U= G + G + ••• + G + U 

as shown in Figure 2.19(c). Successive units in this decomposition sat
isfy the geometric Series (2.7). For example, if the unit U is the rect
angle with proportions V2 : l , shown in Figure 2.20, 

a F 

^ \ a ' 7 
o / 
/^S' 

B 

h 

r 

G U / G 

G 

si 
SQM 

N / 

* ' 
G J x 

E c 

(a) (b) (c) 

Figure 2.19 Illustration of the principle of repetition of ratios, (a) Diagonal AC 
of rectangle ABCD is intersected at O by a line segment EB at right angles to 
AC; (b) rectangle ABCD is divided into a proportional unit U and a leftover part, 
or gnomon, G; (c) the process is repeated. Corresponding points of G form a log
arithmic spiral with center at O. 
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Figure 2.20 The unit U and gnomon 
square of proportion V2:l are equal. 

G of a 

V2 
1 

1 
x or x = 

V2 

Thus G = U, and if we have a rectangle of proportion 2:1, folding it in 
half and in half again must yield only rectangles of the same propor
tion. 

Sacred architecture is an area of study in which architects try to re
cover the geometrical ideas that have gone into the creation of certain 
revered structures of antiquity. The V3:l rectangle occurs in one such 
sacred form known as the Vesica Piscis. As Figure 2.21 shows, the 
Vesica Piscis is the fish-shaped region in common to two intersecting 
circles of equal radii whose centers lie on each others circumference. 
The common radius AB and the intersection points C and D form two 
inverted equilateral triangles. As a result, the surrounding rectangle 
has proportions V3:l . 

Problem 2.6 If the parent rectangular unit has ratio 3:1, use the principle of 
repetition of ratios to find the gnomon (G). 

Figure 2.21 (a) The Vesica Piscis; (6) marble relief of 
Christina vesica. 
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Figure 2.22 

Now consider the inverse problem: Given that the gnomon G is a 
square (i.e., G = S), as shown in Figure 2.22, what is the unit W First 
note from Equation (2.3) that 

Solving for x, x = <$> as we saw by Equation (1.4) where <$> is the golden 
mean. 

Thus the rectangle whose gnomon is a square has the proportion 
c|>:l, and a breakdown of this rectangle by the principle of repetition of 
ratios results in a logarithmic spiral of "whirling squares." Also, the 
proportions of successive units in this breakdown satisfy the double 
geometric and Fibonacci 4> Series (1.6) and form the basis of the 
Modulor series of Le Corbusier, discussed in the last chapter. 

As we did for the golden mean rectangle, <J>:1, we can show that the 
unit (U) whose gnomon (G) is a double square, i.e., two squares situ
ated side by side (G = DS) has ratio 0:1 where 6 = 1 + 
V 2 = 2.414....(Do this!) (See Section 1.6.1.) 

2.12 Infinite Self-Similar Curves 

In recent years, Benoit Mandelbrot, a Polish-born mathematician, has 
made a study of a strange-looking class of self-similar curves known 
as fractals [1982], [Kappraff, 1986]. He discovered that these curves 
and certain variants of them are a basic tool for analyzing an enor
mous variety of natural phenomena such as the shape of mountain 
ranges, coastlines, rivers, trees, star clusters, and cloud formations. In 
this section we will examine some of these self-similar curves a little 
more closely. 

2.12.1 Length and scale of a curve 

Viewing a curve at a given scale and the definition of its length are 
two intimately connected notions. There are many different ways to 
represent a curve at a given scale. One method is illustrated in Figure 
2.23, where the curve on the left, spanning the unit interval [0,1], is 
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< • 1 , N - 1 

L ( D - 1 

(a) 

(b) 

« • 1 /3 , N - 4 

L I 1 / 3 ) . 1 / 3 x 4 - 1.333 

« • 1 /9 , N • 20 
(c ) L I1 /9 ) • 1 /9 x 2 0 • 2 .222 

Figure 2.23 Determination of the length L of a curve spanning 10, 11 by 
approximating the curve with N line segments, (a) Representation of 
curve at scale of t = 1; (b) representation of curve at scale of e = '/a; 
(c) representation of curve at scale of e = Vs. 

shown on the right at scales of 1, Va, and Vfc in Figures 2.23(a), (b), and 
(c), respectively. The scaled curves are derived from the actual curve 
by subdividing the curve with dividers set to intervals of length equal 
to one-third and one-ninth of the unit, start ing at the beginning of the 
curve as illustrated by the arcs. Each new point is gotten by setting 
the compass point on the previous point and marking the intersection 
of the arc of the compass and the curve. The marked points are then 
connected with line segments. The length of the curve, He) at scale e 
is then defined by 

L(e) = eN(e) (2.12) 

where Nit) is the number of segments of length L that span the curve. 
The total length L of the curve is then defined as the limiting value 
that L(e) approaches as e approaches zero or, mathematically, 
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L = lim L(e) 
i - • (i 

A British meteorologist, Lewis Richardson, applied this definition to 
determine the coastal length of many different countries, and he dis
covered that, for each of them, the number of segments at scale e sat
isfied the empirical law 

N(e)=K€'D (2.13) 

where K and D are constants depending on the country. Inserting 
Equation (2.13) in (2.12), 

L(e) = Kei'D (2.14) 

which yields straight lines when L is plotted against e on log-log 
graph paper. 

Richardson's data indicate that the configuration of coastlines is de
rived from a general law of nature, and Mandelbrot's analysis of 
Richardson's data led to the following expression of that law: 

Each segment of a coastline is statistically similar to the whole, i.e., the 
coastline is statistically self-similar. 

2.12.2 Geometrically self-similar curves 

Curves are called geometrically self-similar if they appear the same 
at every scale. In other words, if we look at the curve from afar, it 
appears the same as it does in a closeup view, in terms of its details. 
In his book The Fractal Geometry of Nature [1982], Mandelbrot pre
sents a procedure for constructing curves tha t are geometrically 
self-similar. To unders tand how self-similar curves relate to 
Richardson's law, it is sufficient to set K = 1 and rewrite Equation 
(2.14) as 

L(e) = e {~\ (2.15) 

First, consider a trivial example of a self-similar curve, the straight-
line segment of unit length shown in Figure 2.24. This segment is self-
similar at any scale. For example, at the scale ¥.i, three similar edi
tions of the segment replicate the original. Thus, from Equation 
(2.15), 

L( ' / J ) = '/i x 3 

or 
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° i ! « 
A' ~ A 
~ means "is similar to" 

Figure 2.24 The unit interval: A trivial example 
of a self-similar curve with dimension D = 1. 

'(a) " 3 3 (1/3)1 

and consequently D = 1. 
Now consider a less trivial example of a curve, self-similar at a se

quence of scales (Va)n, n = 0, 1, 2, 3,. . . known as the .Kbc/i snowflake. 
Since the curve is infinite in length, continuous, and nowhere smooth, 
it cannot be drawn. However, it can be generated by an infinite pro
cess, each stage of which represents the curve as seen at one of the 
scales in the above sequence. Figure 2.25(a), (6), and (c) shows views of 
the Koch snowflake at scales of 1, l/i, and V», respectively, both as lin
ear segments on the left and incorporated into triangular snowflakes 
on the right. The snowflake is generated iteratively by replacing each 
segment of one stage with four identical segments one-third the orig
inal in length in the next stage. Thus, whereas for stage 1, 

L(l) = 1 

for stage 2, 

'(3) = 3 x 4 (2.16) 

or 
L(k) = I x -^ (217) 

(V4> 

Solving for D from Equations (2.16) and (2.17), 

log 4 
D = -. 5 = 1.2618... 

log 3 
For each successive stage in the development of the snowflake, the 
length is determined from Equation (2.15) for the same value of D. 

Each segment of a given stage is seen to be similar to a segment 3 
times as large as in the previous stage. Thus, in the limit, each seg-
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(a) 

"» . B / \ . 
B ~ A 

L d / 3 ) " 1 / 3 x 4 - 1/3 x 
(1 /3 ) D log 3 

(c) 

A" 

C ~ B 

B ' ~ A 

L I 1 / 9 ) • 1 / 9 x 1 6 • 1 /9 x 

D • 1.2618 

(d) 

Figure 2.25 The Koch snowflake: a nontrivial example of a self-similar 
curve with dimension D = 1.2618. (a) Koch snowflake at scale of e = 1; [b) 
Koch snowflake at scale of e = '/>; (c) Koch snowflake at scale of e = Ve\ Id) 
Koch snowflake at an advanced stage in its generation. 

ment of length (Va)" of the Koch snowflake must be geometrically sim
ilar to the whole, satisfying both Richardson's data and Mandelbrot's 
interpretation of it. This property of self-similarity at a sequence of 
scales is more evident in Figure 2.25(d), which shows a Koch snow-
flake at an advanced stage in its development. 

Mandelbrot shows that, as for the Koch snowflake, any geometri
cally self-similar curve satisfies 

D 
log AT 

log(l/r) 
(2.18) 

where N is the number of congruent segments of length r, the con
traction ratio, that replaces the unit interval in the initial stage of 
the iteration. Thus, for the Koch snowflake, N = 4 and r = Va. 
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Mandelbrot refers to D as the dimension of the curve, and he shows 
tha t for curves of infinite length on a plane surface spanning a fi
nite distance 

1 <D < 2 

where 1 is the dimension of a line and 2 is the dimension of a surface. 
The magnitude of D is a measure of the roughness of the curve. 

The relationship between N and /', expressed by Equation (2.18), is 
quite general and is illustrated for other geometrically self-similar 
structures in Figures 2.26 and 2.27. Figure 2.26 is an analogous curve 
to the Koch snowflake with dimension D = •%, while Figure 2.27 is the 
third stage of a space-filling Peano curve of dimension 2 that fills up 
the interior of the Koch snowflake. In its final stage, it would be a 
non-self-intersecting curve that touches every point within its outer 
boundaries. 

Mandelbrot coined the term fractal curves to refer to curves with di
mension 1 < D < 2, the term fractal surfaces to refer to surfaces with 
dimension 2 < D < 3, and the term fractal point sets for point sets with 
0 < D < 1. Although, according to this definition, fractals need not be 

Figure 2.26 Another fractal curve with dimension %. 
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< * . ! > 

Figure 2.27 The third stage in the generation of a space-filling Peano curve filling the 
interior of a Koch snowflake. ("Mandelbrot's Space Filling." £> 1978 by Benoit B. 
Mandelbrot. Reprinted by permission of Scientific American, Inc.) 
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self-similar, it is the class of self-similar fractals that are generated by 
Mandelbrot's recursive procedure. 

2.12.3 Fractals and scale 

Let's revisit the Koch snowflake shown in Figure 2.25, but this time 
imagine the curve to represent a spectrum of amplitudes of sound over 
an interval of time. Generally, a phonograph recording of sound, such 
as the sound of a violin, changes if the record is played fast or slow. In 
fact, a record of whale sounds is inaudible until the record is played at 
a sufficiently high speed. However, Koch snowflake music would 
clearly sound the same played at one-third the speed and then ampli
fied three times. More precisely, if the amplitude at time t is repre
sented by the function Bit), the scaling property of snowflake music is 
a statement about the identity of the functions B(t) and B(rt)/t, where 
r is the contraction ratio. Such sounds are called scaling noises and 
have been studied by a colleague of Mandelbrot's, Richard Voss, a 
physicist at IBM Watson Research Center [Gardner, 1978rf]. 

It is this so-called scaling invariance which is the most important 
property of fractals. To the degree to which a fractal represents a nat
urally occurring form or process, virtually all of the relevant informa
tion about the fractal model of this form or process is already present 
in the initial stages of its generation. This includes its self-similar 
unit, its mode of transformation from stage to stage, and its dimen
sion. Thus, a realistic image of the form or simulation of the process 
can be obtained with relatively little information about it. This has 
extremely important implications for image processing as Michael 
Barnsley shows in Fractals Everywhere [1988]. 

2.12.4 Statistical self-similarity 

Although the Koch snowflake can serve as a mathematical model of a 
coastline, as we mentioned in Section 2.12.1, it fails to represent ac
tual coastlines in two important respects. Its sequence of scales is 
bound to powers of Va. Thus, examining the curve at intervals of V* 
would yield none of its self-similar properties. Also as irregular as the 
snowflake is, its structure is completely ordered, unlike that of coast
lines. Both of these shortcomings can be overcome by randomizing the 
fractals. It was Mandelbrot's discovery that many natural phenomena 
such as coastlines and mountain ranges are statistically self-similar. 
For example, no matter at what distance the mountain range shown 
in Figure 2.28 is viewed, a similar pattern is reproduced, in a statis
tical sense. 

Mandelbrot also discovered that such things as fluctuations in the 
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Figure 2.28 A computer-generated landscape with dimension D = 2.5. 

levels of rivers; variations in the brightness of sunspots; changes in 
the rhythm, variations, and pitch of music; and fluctuations in the 
stock market all appear to be statistically self-similar. This has led 
Voss to make the daring conjecture: "The changing landscape of the 
world seems to be statistically self-similar [Gardner, 1978d]." 

2.13 On Growth and Form 

In Lilliput, "His Majesty's Ministers, finding that Gulliver's stature 
exceeded theirs in the proportion of twelve to one, concluded from the 
similarity of their bodies that his must contain at least 1728 (or 123) of 
theirs (by volume), and must needs be rationed accordingly [Thomp
son, 1966J." But as Galileo showed in great detail, creatures with di
mensions one-twelfth those of a human's body would not be able to 
survive unless their entire form changed appropriately. In order to 
confront the forces of their environments, organisms spanning the 
scale from very little to very big, e.g., from ants to elephants, must 
evolve different forms. The connection between growth and form is a 
subject of great fascination. Thompson's,classic, On Growth and Form 
[1966], and J. T. Bonner's Morphogenesis [1963] are devoted to inves
tigations of these and related issues. 

Similarity is also a concept of crucial importance to architects who 
must design buildings to large and small scales. Before the relation of 
size to form was understood, the architect had to be satisfied with 
copying examples of successful architecture without altering its di
mensions or else risk the collapse of the structures. History is replete 
with structures that failed after they were scaled up. In the back-
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ground we always have Galileo's warning that as a structure becomes 
larger it gets weaker. He cites as examples [1954]: 

Who does not know that a horse falling from a height of three or four 
cubits will break his bones, while a dog falling from the same height will 
suffer no injury? Equally harmless would be the fall of a grasshopper 
from a tower or the fall of an ant from the distance of the moon. And just 
as smaller animals are proportionately stronger and more robust than 
larger, so also smaller plants are able to stand up better than larger 

In this chapter we have described the mathematics behind similar
ity and discussed how certain biological structures are able to main
tain similarity during growth, which let us consider the question of 
why organisms generally must alter their forms to fit their sizes. 

In Section 2.2, we showed that 

V = c{e
s while S = c2€

2 

Thus, 

V cJ3 

s C2e 
so that the ratio of volume to area is proportional to the characteristic 
length of a given form. We give two examples of how this relation in
fluences the form of living organisms. 

First consider a cylinder, shown in Figure 2.29, which may be 
thought of as a crude model of a limb. Its volume and cross-sectional 
area is given by V = cxrf

3 and S = c2d
2 where d is the diameter of the 

cylinder. Thus, 

^ = cd (2.19) 

But V is proportional to the weight of the cylinder so that V/S is pro
portional to the force per unit area, or stress, upon the base of the 
limb. Equation (2.19) thus states that doubling the size of an animal 

Figure 2.29 A cylinder of volume V, cross-
sectional area S, and diameter d exerts a stress 
of VIS = cd. 
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has the effect of doubling the stresses experienced by its limbs. To 
compensate, the elephant has developed very thick limbs. 

As a second example of Equation (2.19), let S be the surface area of 
a warm-blooded animal, while V i s its bulk (volume). The rate of heat 
loss from a warm-blooded animal is proportional to its surface area, 
while the ra te of heat gain is proportional to its bulk (larger animals 
tend to burn a greater amount of energy per unit time), and the rate of 
heat loss must equal the rate of heat gain so as to keep its tempera
ture constant, according to Equation (2.19). Since the rate of heat loss 
for small animals (low values of €) relative to rate of heat gain is 
greater than for larger animals, small animals must consume many 
more calories in the course of a day, relative to their weight, than 
large animals. According to Thompson, 

Man consumes a fiftieth part of his own weight of food daily, a mouse will 
eat half its own weight in a day; its rate of living is faster, it breeds 
faster, and old age comes to it much sooner than to man. A warm-blooded 
animal much smaller than a mouse become an impossibility; it could nei
ther obtain nor digest the food required to maintain its constant temper
ature. 

Appendix 2.A 

Theorem 2.A.1 Inscribed angles that intersect equal arcs on a circle are equal. 

proof The following proof was communicated to me privately by Amos 
Franceschelli, a mathematics teacher retired from the Rudolf Steiner School in 
New York. It differs from the standard proof in that it is not analytical but, 
rather, it makes use of the symmetry of the circle and calls upon the reader to 
use quiet contemplation along with the logic of Euclidean geometry. We sketch 
the proof and leave the details (or quiet contemplation) to the reader. 

intuitively accepted or preproved properties (IAP) 

1. A circle has perfect symmetry by which we mean it can be rotated into itself 
about its center through any chosen angle (see Figure 2.A.1). A circle rotated 

V1 

Figure 2.A.1 A circle has perfect 
symmetry: any inscribed angle 
AVE can be rotated through an 
arbitrary arc W to a congruent 
angle A'V'B'. 
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into itself about its center will carry an inscribed angle AVB into a new po
sition A'VB'. Arcs W, AA', BB' will all be equal. 

The perpendicular bisector of any chord to a circle goes through the center of 
the circle and divides the circle into two symmetric halves related to each 
other by reflection. As a result of this reflection symmetry, two parallel lines 
intercept equal arcs on a circle. Conversely, if the endpoints of two equal arcs 
AB and CD are connected by chords AC, BD, the lines AC, BD will be par
allel, i.e., AC || BD (see Figure 2.A.2). 

Figure 2.A.2 Two pairs of paral
lel lines intersect equal angles. 

3. If two angles have their sides respectively parallel and in the same sense, the 
angles are equal (Figure 2.A.3). 

Figure 2.A.3 i, a = A, fS 

proof proper Given a circle with inscribed angles AVB and AV'B intercepting 
the same arc AB, rotate the circle about itself, together with angle AV'B only, 
say counterclockwise, until AV takes on the position A'V" \\AV and angle 
AV'B moves into the position of angle A'V "B'. (by first LAP) (see Figure 2.A.4). 

Then arc AB' = arc AB and <A'V"B' = <AV'B. Now 

arc AA' = arc W " (by second LAP) (2.A.1) 

Also, arcs A'B' - A'B = AB - AB (since arc A'B' = arc AB). Thus arc 
BB' - arc AA' and it follows from Equation (2.A.1) that arc BB' = arc W". 
Hence BV \\ B'V" (by the second IAP) and AV || A'V" (by the rotation we made). 
Therefore <AVB = <A'V"B' = <AVB (by the third IAP and by our rotation). 
Q.E.D. 

Theorem 2.A.2 Inscribed angles equal one-half of the central angle that inter
cepts the same arc. 
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Figure 2.A.4 Angle AV'B is rotated 
through arc V'V" to A'V'B' where 
AV = A'V". 

proof 
1. Given an arc AB of a circle, draw the central angle 20, extend one of the radii 

to a diameter of the circle at C, and consider the inscribed angle <ACB as 
shown in Figure 2.A.5. 

Figure 2.A.5 Inscribed angle 8 
equals one-half the central an
gle intercepting the same arc. 

2. If the central angle is taken to be 2fl, the inscribed angle must be 0, making 
use of the fact that the exterior angle of a triangle equals the sum of the al
ternate interior angles. This proves the theorem. 

corollary Any angle inscribed in a semicircle is a right angle. 

Appendix 2.B 

2.B.1 Centers of similitude and inversion 

If two similar figures are placed side by side with the same orienta
tion, the joins of any two corresponding points P and Q or M and N 
define a center of similitude O as shown in Figure 2.B.I. Similarly, 
corresponding points are stretched away from O by a factor k where 

OM OP , 
ON OQ 

In general, transformations in which points are stretched away from a 
center are called dilatations [Coxeter, 1955], 
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Figure 2.B.1 

N M 

Now consider what happens if two circles with centers at M and N 
are transformed by a dilatation as shown in Figure 2.B.2 where O is 
the center of similitude and P and Q are two points on the circle that 
correspond to each other under the dilatation 

OiV = OP = OP' • OP = OP'- OP (2.B.1) 
OM OQ OP' OQ OA- OB 

where OP'OQ = OA OB follows from Theorem 2.2. 
From Equation (2.B.1) it follows that, 

HP HP' - OA-OB- ON _ 2 (2.B.2) 
OM 

Now, any pair of points lying on the same half of a line through O 
and satisfying Equation (2.B.2) are said to be related by inversion in a 
circle of radius k and center at O. Thus, Theorem 2.B.I. 

Theorem 2.B.1 Any two circles, the corresponding points of which are related 
by dilatation, are also related by inversion. 

2.B.2 Another proof of Theorem 2.2 

Now let's look at a proof of the "circle chopper" Theorem 2.2 in Section 
2.6. Consider the circle of radius r and center at M that cuts a ray 
drawn from 0 at points A and B as shown in Figure 2.B.3. Drop a per
pendicular MS to OB. It is evident from the figure that 

OAOB = {OS - s) (OS + s) 

= (OS2 - s2) = OS2 - (r2 - h2) 

= (OS2 + h2) - r2 = OM2 - r2 

= t2 (2.B.3) 

where t depends only on point O and the circle but not points A and B. 
Thus any other line through O would yield the same value of t2. 

Much more can be gotten from the proof of this theorem than we 
bargained for. Since from Equation (2.B.3), t2 + r2 = OM2, we can see 
from Figure 2.B.4 and the fact that the tangent to a circle is perpen
dicular to its radius, by use of the pythagorean theorem, that t must 
be the length of the tangent to the circle from O. But lots of circles 
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Figure 2.B.2 Two circles related by dilatation. 

Figure 2.B.3 Alternative proof 
of Theorem 2.2 that OA • OB = 
constant. 

Figure 2.B.4 Construction of a circle orthogonal to a fam
ily of circles that share a common chord. 
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have AB for a chord. Therefore, there is a whole pencil of circles with 
tangent lines of the same length t from O. Thus, a circle through O of 
radius t is orthogonal to all circles from this pencil of circles through 
AB. 

Also, if point O is moved along line AB to O', a new circle with its 
center at O' cuts the pencil of circles through AB orthogonally. In this 
way, we can construct the set of mutually orthogonal circles shown in 
Figure 2.B.5. 

As a final piece in this web of ideas, since OA • OB = t2, A and B are 
related by inversion in each of the orthogonal circles to the pencil of 
circles through AB, as stated in Theorem 2.B.2. 

Theorem 2.B.2 Any circle through two points that are inverse with respect to a 
given circle intersects that circle orthogonally. 

2.B.3 The Poincare plane and 
stereographic projections 

The parallel axiom of euclidean geometry says that there is only one 
line parallel to a given line. This axiom was the subject of much dis
cussion throughout the history of mathematics. For centuries mathe
maticians tried to deduce it from the other axioms. Finally, in 1823 
Bolyai and Lobachevsky gave an example of another geometry called 
hyperbolic geometry that satisfied all the other axioms of euclidean 
geometry except the parallel axiom. This established that the parallel 

Figure 2.B.5 
nal circles. 

Two families of orthogo-
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axiom is independent of all the other axioms. In Bolyai's geometry, 
through any point there can be an infinity of lines parallel to a given 
line [Coxeter, 1961]. 

Poincare constructed a "model" of this hyperbolic geometry in which 
the euclidean plane is replaced by the interior of a circle called the 
Poincare plane and lines are represented by arcs of circles that cut the 
circle orthogonally. Figure 2.B.6(a) shows how an infinite number of 
lines (arcs) can be parallel to a given line (arc) in hyperbolic geometry. 
A pencil of arcs in the Poincare circle correspond to the set of lines 
intersecting at a common point in euclidean geometry [see Figure 
2.B.6(6)]. By Theorem 2.B.1 each of these arcs shares the chord 
through the intersection point and its inverse in the Poincare circle. 
Likewise, using Theorem 2.B.2, given two points P,Q in the Poincare 
plane, the unique line (arc of a circle) between them is an arc of the 
unique circle through P,Q and the inverse of either P or Q with re
spect to the Poincare circle. 

Poincare's hyperbolic universe is as different from the euclidean 
universe of our geometric experience as we can imagine. In Figure 
12.17, Douglas Dunham has generated, by computer, a print in the 
style of Escher's famous woodcut, Circle Limit I. All the fish in 
Dunham's print are "congruent." In what sense is this true? The 
Poincare circle is considered to be the "infinitely distant" edge of the 
"universe" and the fishes' "apparent" sizes decrease as they approach 
this circle. In other words, if you lived in this universe and wanted to 
walk from a point within it toward the edge, your footsteps would, in 
the euclidean view, seem to diminish to length zero as you approached 
the Poincare circle so that you would never be able to reach it. More 
generally, in hyperbolic geometry, all similar figures are congruent in 
the sense that if they are transformed one to the other, their lengths 
in the metric (formula for measuring length) of hyperbolic geometry 
are equal. There are many other geometric curiosities exhibited by the 
Poincare model of hyperbolic geometry such as the "idealized" equi
lateral triangle shown in Figure 2.B.7. It is the largest triangle in the 
hyperbolic plane. It has finite area, infinite perimeter, and angles of 

Figure 2.B.6 (a) Two parallel lines; 
(6) a pencil of lines intersecting at a 
point in the Poincare plane. 
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Figure 2.B.7 The largest trian
gle in the Poincare plane. 

zero degrees (although its vertices have a specious existence since 
they lie outside the "universe"). 

The Poincare model of the hyperbolic plane can be made more trans
parent by looking at it as the stereographic projection of the points on 
a sphere to points on a plane T tangent to the sphere at the south pole 
S from a projection point at the north pole N of the sphere (see Figure 
2.B.8). 

In this projection, the image of a typical point P is the intersection Q 
of NP with T. Thus points on the equator I map to the circle k in the 
plane. The south pole is at the center of k. Points in the northern 
hemisphere map to points outside of k while points in the southern 
hemisphere map to points inside k. The most notable property of the 
stereographic projection is that it maps circles on the sphere to circles 
on the plane and preserves angles between arcs that intersect on the 
sphere [Coxeter, 1961]. 

As P moves toward the north pole, its image Q moves further away 
from the south pole. Also, concentric small circles on the sphere of de
creasing radius around N map to circles in the plane of increasing ra
dius. iV is a singularity point of the projection, but sometimes it is said 
that N maps to the "circle at infinity." In this way, the "infinitely dis-

Figure 2.B.8 A stereographic projection. 
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tant" points of the plane are made palpable by associating them with 
the north pole of the sphere. 

Now take the projection k of the equator I in Figure 2.B.8 to be the 
boundary of the Poincare circle or plane. Intersect the sphere with a 
plane perpendicular to plane T. The curve of intersection between this 
plane and the sphere is a small circle v orthogonal to /. Since 
stereographic projections preserve angle, the arc of the small circle 
maps to an orthogonal arc of the Poincare circle, i.e., a line from hy
perbolic geometry. 
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Chapter 

3 
The Golden Mean 

Behind the wall, the gods play; they play 
with numbers, of which the universe is made 
up. LE CORBUSIER 

3.1 Introduction 

Fine artists, composers, architects, scientists, and engineers have of
ten created their best works by keeping an open dialogue with the nat
ural world. The natural world consists of a wonderful duality between 
order and chaos. Careful study of a cloud formation or a running 
stream shows that what at first appear to be random fluctuations in 
the observed patterns are actually subtle forms of order. Mathematics 
is the best tool that humans have created to study the order in things. 

Despite the infinite diversity of nature, mathematics and science 
have always attempted to reduce this complexity to a few general 
principles. In this chapter we investigate some of the many ways in 
which one enigmatic number, the golden mean 4>, appears and reap
pears throughout works of art and science [Huntley, 1970], [Doczi, 
1981], [Ghyka, 1952], [Tyng, 1975], [Kappraff, 1990]. Much of Chapter 
1 is devoted to describing the Modulor, an architectural system of pro
portion based on the golden mean, while Section 2.11 shows how (J> is 
related to patterns of spiral growth. In Chapters 5 and 6, the golden 
mean is shown to form the basis of a special kind of tiling that is now 
being used to explain the phenomenon of quasicrystals. In Chapter 8 
we shall see that the golden mean lies at the mathematical basis of 
the platonic solids. In this chapter, we shall see that this number, 
which proportions the Pyramid of Cheops and the Parthenon, also or
chestrates the growth of plants and serves as a key organizing ele
ment in the music of Bela Bartok. 
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3.2 Fibonacci Series 

Special consideration was given by the Greeks to the two harmonizing 
numbers, 10 and 6. Their ratio is 

10 5 

T or s 
Why is this ratio so special? According to Ghyka [1978], the cross sec
tion of the Pyramid of Cheops shown in Figure 3.1 has a hypotenuse 
and semibase of 89 ells and 55 ells, respectively (the ell was an an
cient Egyptian measure). 

The F series of Section 1.6.1, rewritten below, 

1 1 2 3 5 8 1 3 2 1 3 4 5589 ••• (3.1) 

is a Fibonacci series, and thus the ratio of successive terms approxi
mates the golden mean (see Section 1.6.1). Notice that % = 1.667 and 
8%5 = 1.619 are two such approximations. Actually, the right triangle 
shown in Figure 3.1(a), which approximates the measurement of the 
Pyramid of Cheops, has sides: 1, Vq>, <$>. Up to similarity, this is the 
only right triangle with sides in a geometric series just as the 3,4,5 
right triangle is the only right triangle with sides in an arithmetic se
ries. 

Problem 3.1 How far out in the F series must one go for the ratio of successive 
terms to get within five decimal place accuracy to c)>? Answer this question for 
the Fibonacci series that begins with 1, 3 (the Lucas series, 1, 3, 4, 7, 11, . . . ) . 

( a ) ( b ) 

Figure 3.1 (a) The perfect phi pyramid; (b) top view and elevation 89 ells along the 
hypotenuse with a semibase of 55 ells. 
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Anne Tyng [1975] has looked at a Fibonacci chain of linked forms as 
a model for neuron chains. Such a chain is shown in Figure 3.2. 

At each level a link acts either as an element in an ongoing chain or 
as one of the initiators of a new chain. These series within series may 
then be included as hierarchies within hierarchies of patterns. The 
spacing of elements in each row has a high degree of randomness; at 
the same time order is achieved through the overall pattern of propor
tional linkages. 

Similar hierarchical arrangements result in countless other pat
terns such as the one shown in Figure 3.3. According to Tyng: 

Here the growth of the trunk and branches of a tree is shown, where the 
sleeve of the cambium adds a new layer of wood annually, thickening 
each part of trunk and limbs in proportion to the amount of new growth 
of twigs and branches above it. 

Tyng has hypothesized that this tree diagram may be analogous to the 
clustering of nerve bundles in the brain. In the input from twigs to 
trunk, the Fibonacci size ratios increase from 1 to 13 in increased wire 
size, reducing friction for increased current, so that in the high 
Fibonacci numbers the size ratios would correspond to the <J>:1 ampli
tude ratio for observed values of neuron stability. 

mi in 
11 

in in 
34 

55 

Figure 3.2 An illustration of pattern, order, and hierarchy in Fibonacci growth. 
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Exercise 3.1 Create a hierarchical pattern from the Fibonacci series {1, 2, 3, 5, 
8, . . . } . Your fundamental pattern can be dots, lines, or anything else of your 
choosing. Order your modules to give a geometrical rendering of the Fibonacci 
series. It might be useful to use graph paper to help organize your work at first. 
One result of this exercise is shown in Figure 3.4. 
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Figure 3.4 Hierarchical pattern embodying the Fibonacci numbers. 
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The Fibonacci series had its origin in Liber Abaci, written in 1202 
by the mathematician Leonardo of Pisa, alias Fibonacci. In this book, 
Fibonacci posed the following problem: 

Rabbits always give birth to a pair of rabbits of opposite sexes. A pair of 
newborn rabbits must wait for a month to pass before they are mature 
enough to reproduce. Starting with a pair of rabbits determine the pro
gression of rabbit pairs as time goes on. 

Figure 3.5(a) shows the population of rabbit pairs on a tree graph (not 
the usual genealogical tree graph). Of course, this graph can be con
tinued indefinitely (continue it for two more months). Notice that the 
graph of the F series, which is an approximate geometric series, has 
more of the organic quality of an actual tree than the symmetric tree 
graph corresponding to the geometric progression shown in Figure 
3.5(6): 

1 2 4 8 16- • • 

Actually, the F series is an approximate geometric series. In fact, 
any number in the series is approximately the geometric mean (see 
Section 1.4) of the numbers directly preceding and succeeding it, in 
the sense that 

n = Fn.,Fn+1 + ( - i r + i (3.2) 

where Fn is the nth number in the F Series (3.1). This equation can be 
rewritten 

F^ F^ (- lr1 . , „ 
F , F ~ F F , ( ' 
x n - l M n * n± n-1 

This equation is also the consequence of the fact that the ratios of suc
cessive terms of the F series are convergents of a continued fraction 
[Khinchin, 1979]. 

As a consequence of Equation (3.3), the ratios of successive terms 
approach the limiting value ((> by approximating it successively from 
above and below. In Section 6.9 we will see how this limiting process 
manifests itself in patterns of plant growth. 

Because the ratio of successive terms in a Fibonacci series ap
proaches 4> in the limit, the golden rectangle, whose sides are the ratio 
<|>:1, is the most "stable" of all rectangles in the sense that start ing 
with any rectangle, a Fibonacci sequence of rectangles must approach 
a golden rectangle. A sequence of rectangles whose sides have ratios of 
successive terms from the F series beginning with a square (ratio 1:1) 
is shown in Figure 3.6. 
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Figure 3.5 A tree pattern (a) from the Fibonacci series and (b) from a geometric 
series. 

Figure 3.6 A rectangle of any proportions may be expanded to asymptotically approx
imate a golden rectangle illustrated for a 1:1 square. 
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3.3 Some Tiling Properties of 4> 

Since the Modulor scale, introduced in Section 1.7.1 is constructed ei
ther with lengths from the F series or powers of (J>, it is important to 
know whether these lengths can fit together to form lengths of arbi
trary dimensions. Otherwise, this series will be restricted to con
structing a special class of linear dimensions. 

One mathematical result along these lines is given by Theorem 3.1. 

Theorem 3.1 Any positive integer can be written uniquely as the sum of 
nonconsecutive Fibonacci numbers from the F series. 

Furthermore, the first number in the decomposition is obtained by 
extracting the largest number of the F series less than the given num
ber. The second number is the largest number from the F series less 
than the remainder and so on. For example, 

32 = 21 + 8 + 3 

As a matter of fact, this decomposition gives the winning strategy for 
a game known as Fibonacci Nim [Gardner, 1978a]. A stack of pennies 
is placed on the table. One player removes an arbitrary number of 
them. The other player can then remove up to and including twice as 
many pennies as the preceding number. The person to remove the last 
penny wins. The winning strategy is to always withdraw a number of 
pennies equal to the smallest number in the decomposition of Theo
rem 3.1. 

Another theorem of this kind is more directly applicable to our re
quirements; it is Theorem 3.2. 

Theorem 3.2 Any positive real number can be represented uniquely as a sum of 
nonconsecutive numbers from the <t> series: 

...—, ^, l , (J), 4> 2 , < J ) 3 , . . . 

As a result of Theorem 3.2, any length can be constructed to within an 
arbitrary preset tolerance by a sum of lengths from this series. Thus, 
lengths from the red and blue series can be arranged to fit any real
istic measurements, e.g., the 5-inch square of Construction 1.1. 

In other words, the <f> series works much like the number system 
base 2. In this system, every number up to and including 2 ^ can be 
written uniquely as a sum of all or some of the numbers from the se
ries: 

I I 1 Q 1)2 OS 1 )» -1 
• • • 2 2 , 2 ' L> A> * ' z ' • • • ' A 
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where 

N-l 

5 ) 2* = 2N 

k = - i 

Likewise, it can be shown that 

N-l 

2 4>* = 4>"+1 (3.4) 
A = - x 

Problem 3.2 Using the fact that the sums of infinite and finite geometrical pro
gressions with common ratio r are 1/(1 - r) and (1 - rn + 1)/(l - r), respectively, 
prove Equation (3.4). 

Another important tiling property of 4> is due to the additive prop
erties of the 4> series. Any positive power of 4> can be decomposed into 
a combination of 4> and 4>2, e.g., 

4>3 = l<t> + 14>2 

4>4 = 1 4 . + 24>2 

4>5 = 2<(> + 34>2 

4>6 = 3<t> + 5<1)2 

4)" = F„_24> + Fn_tf 

where the pattern of coefficients follows the numbers of the F series 
and Fn denotes the nth number in the series. We leave to the reader 
the task of using this series to verify Equation (1.17). 

3.4 The Golden Rectangle and the 
Golden Section 

In Section 3.2, a golden rectangle was built up from a rectangle of ar
bitrary proportions. On the other hand, in Section 2.11 we showed 
that a golden rectangle could be broken down arbitrarily into a se
quence of many whirling squares and one similar golden rectangle. 
For reasons mentioned in Sections 1.6 and 1.7, the golden rectangle 
has aesthetic qualities that have singled it out as an ideal geometric 
element with which to apportion space on an artist's canvas or propor
tion the doorways, windows, and facades of buildings, from the 
Parthenon to brownstones in Brooklyn. The following procedure can 
be used to construct a golden rectangle with compass and straight
edge: 
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1. Start with a square. 

2. Add the semilength of a side to the length from a vertex to the mid
point of the opposite side. 

The resulting length, along with the side of the original square, con
stitutes a golden rectangle, as shown in Figure 3.7. 

Figure 3.7 Construction of a 
golden rectangle using compass 
and straightedge. 

It is useful to be able to section a line into two subintervals with 
golden mean ratio, <t>:l. A simple construction of the golden section is 
found in the artist Paul Klee's Notebooks [1961]. To subdivide a line 
segment in the golden section, Klee suggests the following procedure 
(see Figure 3.8): 

1. Start with line segment AB. 

2. Draw AC = Vi AB perpendicular to AB. 

3. Circular arc CA intersects CB a t F. 

4. Circular arc BF intersects AB at G, breaking AB into the golden 
section. 

Once a pair of lengths 1 and <j> are determined, the <J> series can be 
constructed with compass and straightedge by making use of its 
Fibonacci properties given by Equation (1.5) as shown in Figure 3.9. 

Strange as it may seem, the 3,4,5 right triangle can be found inside 
of a square and related to the golden mean as follows: bisect the sides 
of the square and connect three of the square's vertices to the mid-

Figure 3.8 Dividing a line into its golden section 
with compass and straightedge. 
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Figure 3.9 Construction of a <& series with compass and straight
edge beginning with lengths 1 and <|>. 

po in ts of t h e sides by d iagona l s a s shown in F i g u r e 3.10. E a c h of t h e s e 
d iagona l s h a s l e n g t h V 5 / 2 , or $ - Vfe, a n d t h e r e s u l t i n g t r i a n g l e is a 
3,4,5 r i g h t t r i a n g l e [Lawlor, 1982]. 

Construction 3.1 Euclid showed in Book XIII of The Elements that the golden 
mean is closely related to the structure of a set of symmetric polyhedra known 
as the platonic solids. These solids are the subject of Chapters 7 and 8, and their 
relation to the golden mean is discussed in Section 8. 7. In the meantime, you 
can construct one of the platonic solids called the icosahedron by cutting slits 
through three golden rectangles and arranging them to form three mutually or
thogonal, self-intersecting rectangles as shown in Figure 3.11(a) and (b). Three-

Figure 3.10 A 3,4,5 right triangle within a square. 
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(a) (b ) 

Figure 3.11 An icosahedron, a polyhedron with 20 equilateral triangle 
faces, defined by the 12 vertices of three mutually orthogonal golden rect
angles. 

by-five index cards are very close approximations to golden rectangles and can 
be used for this construction. The icosahedron is formed by connecting the cor
ners of the rectangles by 30 equal lengths of string corresponding to the 30 
edges of the icosahedron. H. F. Verheyen has also related the structure of the 
Pyramid of Cheops to the icosahedron (see Section 9.9). 

3.5 The Golden Mean Triangle 

In F i g u r e 3.12, a n isosceles t r i a n g l e A B C is shown w i t h b a s e ang le s of 
72 degrees . U s i n g a compass , AD is m a r k e d off so t h a t AD = AB a n d 
t r i ang l e s A B D ~ A B C . T h u s AD cu t s t r i a n g l e A B C in to a u n i t a n d a 
leftover isosceles t r i a n g l e ADC, or gnomon. If we le t A B = 1 a n d 
AC = x, by s imi l a r t r i a n g l e s 

x_ 
1 

'36 

36 72 

Figure 3.12 The base angle of a 
golden isosceles triangle of type 
1, ABC. Angle CAB is bisected 
to form a similar golden triangle 
ABD and a gnomon ADC, also a 
golden triangle of type 2. 
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from which it follows, by algebraically solving for x, that x = §. Since 
triangles ABC and ADC have sides in the ratio <t>:l, they are both 
called golden triangles. The process can be repeated to form a se
quence of whirling triangles, as Figure 3.13 shows. 

Construction 3.2 Make designs using modules which are golden triangles and 
their gnomons, the sizes of which are related to each other by powers of the 
golden ratio. 

3.6 The Pentagon and Decagon 

The pentagon is totally governed by the golden mean since it may be 
subdivided into three golden triangles as shown in Figure 3.14. This 
figure also illustrates that for a pentagon 

Diagonahside = cf>:l 

As a result, given lengths 1 and c|>, a pentagon can be constructed with 
compass and straightedge. (Do this!) 

There are many equivalent ways of constructing a regular penta
gon, but if you really want to construct one painlessly, you can do it 
with a loop of a strip of paper [see Figure 3.15(a) and (6)]. Draw the 
loop tightly and crease along the edges neatly, and there you have it! 
Did you ever realize that every time you tie a knot, you are construct-

Figure 3.13 Whirling golden tri
angles. 
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Figure 3.14 A pentagon subdi
vides into one type 1 and two 
type 2 golden triangles. 

(a) (b) 

Figure 3.15 A pentagon can be constructed from a knot
ted strip of paper. 

ing a regular pentagon in the sense of Figure 3.15? See if you can 
come up with a geometric proof that this figure is a regular pentagon 
[Davis and Chinn, 1969]. 

According to John Michell, "an important exercise in sacred geom
etry is to combine the hexagon [symbolic of inanimate life; see Section 
1.2] and pentagon [symbolic of animate life] in one synthetic figure" 
[1988]. How this is achieved with tolerable accuracy using the Vesica 
Piscis (see Section 2.11) is shown in Figure 3.16. This figure was pub
lished by the artist Albrecht Diirer in his Course in the Art of Mea-

Figure 3.16 Approximate con
struction of a pentagon from the 
Vesica Piscis. 
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surement with Compasses and Rulers and was reproduced in C. 
Bouleau's The Painter's Secret Geometry [1963]. Michell relates how 
the Dutch artist Franz Deckwitz explained Durer's enigmatic print 
rich in geometric imagery, Melancholia (see Figure 3.17), by using 
this combination of hexagon and pentagon [1988]. D. Crowe also 
traces the history and geometry of the print [1990]. 

Figyre 3.17 Melancholia I, 1514. Engraving 243 x 187 mm. Centennial gift of Landon 
J. Clay. {Courtesy, Museum of Fine Arts, Boston) 
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(b)

Figure 3.18 (a) Star pentagons at decreasing scales. The ratio of lengths from
scale to scale is <1>2:1. The edges of the star cut each other in the golden section.
(b) Star octagons at decreasing scales. The ratio of lengths from scale to scale
is 8:1. The edges of the star cut each other in the ratio v2:1.

The star pentagram, a pentagon along with all its diagonals, was an
ideal symbol for the Brotherhood of Pythagoras since the diagonals of
a pentagon cut each other in the golden section as shown in Figure
3.18(a). Notice how the envelope of the star pentagram forms another
pentagon of edge length 1/<1>2. Contrast this with the diagonals of a
star octagon, shown in Figure 3.18(b), which cut themselves in either
v2 or e. Medieval and Renaissance artists and architects, influenced
by the compass and straightedge constructions of Greek mathematics,
based some of their art on star pentagon and octagon constructions.
Figure 3.19 shows a reproduction of Raphael's The Crucified Christ
with Ghyka's analysis to show its structure based on the pentagon and
the decagon [1952]. A sketch (not shown) from the Notebooks of
Leonardo da Vinci shows a church, never built, that has the structure
of a star octagon [Scholfield, 1958].

The decagon can also be inscribed in a circle. For such a figure,

Radius:side = <1>:1

The decagon shows up in the natural world as the shape of the DNA
molecule (see Figure 3.20). The vertices of a decagon star are also ev
ident in Dan Winter's star crystal illustrated in Figure 8.22.

3.7 The Golden Mean and Patterns of
Plant Growth

3.7.1 The geometry of plant growth

As a young man, Le Corbusier studied the elaborate spiral patterns of
stalks, or paristiches as they are called, on the surface of pine cones,
sunflowers, pineapples, and other plants (see Figure 3.21). This led
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Figure 3.19 (a) Raphael's The Crucified Christ (courtesy of the National 
Gallery, London); (b) a structural diagram of it due to M. Ghyka 

him to make certain observations about plant growth that have been 
known to botanists for over a century. 

Plants, such as sunflowers, grow by laying down leaves or stalks on 
an approximately planar surface. The stalks are placed successively 
around the periphery of the surface. Other plants such as pineapples 



The Golden Mean 91 

( b ) 

Figure 3.19 (Continued) 

or pinecones lay down their stalks on the surface of a distorted cylin
der. Each stalk is displaced from the preceding stalk by a constant an
gle as measured from the base of the plant, coupled with a radial mo
tion either inward toward or outward from the center for the case of 
the sunflower [see Figure 3.21(6)] or up a spiral ramp as on the sur
face of the pineapple [see Figure 3.21(a)]. The angular displacement \ 
is called the divergence angle and is related to the golden mean. The 



Figure $.20 Detailed computer-generated model of DNA 
seen from above. 

Figure 3.21 
sunflower. 

(a) 

spiral growth in plants, (a) Pineapple and pinecone; (b) 
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Figure 3.21 {Continued) 

radial or vertical motion is measured by the pitch h. The dynamics of 
plant growth can be described by X and h; we will explore this further 
in Section 6.9 [Coxeter, 1958]. 

Each stalk lies on two nearly orthogonally intersecting logarithmic 
spirals, one clockwise and the other counterclockwise. The numbers of 
counterclockwise and clockwise spirals on the surface of the plants are 
generally successive numbers from the F series, but for some species 
of plants they are successive numbers from other Fibonacci series such 
as the Lucas series (see Problem 3.1). These successive numbers are 
called the phyllotaxis numbers of the plant. For example, there are 55 
clockwise and 89 counterclockwise spirals lying on the surface of the 
sunflower; thus sunflowers are said to have 55,89 phyllotaxis. On the 
other hand, pineapples are examples of 5,8 phyllotaxis (although, 
since 18 counterclockwise spirals are also evident on the surface of a 
pineapple, it is sometimes referred to as 5,8,13 phyllotaxis). We will 
analyze the surface structure of the pineapple in greater detail in Sec
tion 6.9. 

3.7.2 Nature responds to a physical constraint 

After more than 100 years of study, just what causes plants to grow in 
accord with the dictates of Fibonacci series and the golden mean re
mains a mystery. However, recent studies suggest some promising hy-
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potheses as to why such patterns occur [Jean, 1984], [Marzec and 
Kappraff, 1983], [Erickson, 1983]. 

A model of plant growth developed by Alan Turing states that the 
elaborate patterns observed on the surface of plants are the conse
quence of a simple growth principle, namely, that new growth occurs 
in places "where there is the most room," and some kind of as-yet-
undiscovered growth hormone orchestrates this process. However, 
Roger Jean suggests that a phenomenological explanation based on 
diffusion is not necessary to explain phyllotaxis. Rather, the particu
lar geometry observed in plants may be the result of minimizing an 
entropy function such as he introduces in his paper [1990]. 

Actual measurements and theoretical considerations indicate that 
both Turing's diffusion model and Jean's entropy model are best sat
isfied when successive stalks are laid down at regular intervals of 
2TT/4>2 radians, or 137.5 degrees about a growth center, as Figure 3.22 
illustrates for a celery plant. The centers of gravity of several stalks 
conform to this principle. One clockwise and one counterclockwise log
arithmic spiral wind through the stalks giving an example of 1,1 
phyllotaxis. 

The points representing the centers of gravity are projected onto the 
circumference of a circle in Figure 3.23, and points corresponding to 
the sequence of successive iterations of the divergence angle, 2irra/<t>2, 
are shown for values of n from 1 to 10 placed in 10 equal sectors of the 
circle. Notice how the corresponding stalks are placed so that only one 
stalk occurs in each sector. This is a consequence of the following spac-

Figure 3.22 A plant, such as the celery plant, lays 
down new stalks where there is the most room. 
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\ . / \ •/ Figure 3.23 Points 2irn/<|>2 placed 
\ ^ / \ ^ / 2 on a circle for n = 1, 2, ..., 10. 

7 

ing theorem that is used by computer scientists for efficient parsing 
schemes [Knuth, 1980]. 

Theorem 3.3 Let x be any irrational number. When the points [x]f, [2x]f, 
[Zx]f,..., [nx]f are placed on the line segment [0,1], the n + 1 resulting line seg
ments have at most three different lengths. Moreover, [in + l)x]f will fall into 
one of the largest existing segments ([ ]f means "fractional part of). 

Here clock arithmetic based on the unit interval, or mod 1 as math
ematicians refer to it, is used, as shown in Figure 3.24, in place of the 
interval mod 2TT around the plant stem. It turns out that segments of 
various lengths are created and destroyed in a first-in-first-out man
ner. Of course, some irrational numbers are better than others at 
spacing intervals evenly. For example, an irrational that is near 0 or 
1 will start out with many small intervals and one large one. Marzec 
and Kappraff [1983] have shown that the two numbers 11$ and l/4>2 

lead to the "most uniformly distributed" sequence among all numbers 
between 0 and 1. These numbers section the largest interval into the 
golden mean ratio, (j>:l, much as the blue series breaks the intervals of 
the red series in the golden ratio. 

Thus nature provides a system for proportioning the growth of 
plants that satisfies the three canons of architecture (see Section 
1.1). All modules (stalks) are isotropic (identical) and they are re
lated to the whole structure of the plant through self-similar spirals 
proportioned by the golden mean. As the plant responds to the un
predictable elements of wind, rain, etc., enough variation is built 
into the patterns to make the outward appearance aesthetically ap-

i — m — x i x i x — i x ' l x i x — K — I x ' l )( i 
0 .1 .2 .3 4 .5 .6 .7 .8 .9 I 

Figure 3.24 Points {n§]f placed in the unit inter
val for n = 1, 2, ..., 10. 
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pealing (nonmonotonous). This may also explain why Le Corbusier 
was inspired by plant growth to recreate some of its aspects as par t 
of the Modulor system. 

3.7.3 Wythoff's game 

Theorem 3.3 is the key to describing the mathematics of plant growth. 
I made my own personal discovery of this theorem as the result of 
playing a Nim-type game known as Wythoffs game [Coxeter, 1953] 
with my students in a course called The Mathematics of Design that I 
teach at the New Jersey Institute of Technology [Kappraff, 1986a]. 
This game begins with two stacks of pennies. A proper move is to re
move any number of pennies from one stack or an equal number from 
both stacks. The winner is the person removing the last penny. The 
winning strategy is based on Theorem 3.4 due to S. Beatty. 

Theorem 3.4 If 1/x + 1/y = 1, where x and y are positive irrational numbers, 
the sequences [x], [2x], [3.x],... and [y], [2y], [3y],... together include every pos
itive integer taken once ([ ] means "integer part of," for example, [4>] = 1). 

For a proof, see [Coexter, 1953]. Since 1/<J> + l/<t>2 = 1 from Equation 
(1.5), Beatty's theorem shows that [n§], [nfy2] exhausts all of the nat
ural numbers with no repetitions as n takes on the values n = 1, 2, 
Table 3.1 shows results for n = 1, 2, . . . , 6. Can you notice a pattern in 
these numbers that will enable you to continue the table without com
putation? The pairs are also winning combinations for Wythoffs 
game. At any move a player can reduce the number of counters in 
each stack to one of the pairs of numbers in Table 3.1. The player who 
does this at each turn is assured victory. 

After playing Wythoffs game a number of times with my students, 
I noticed that if I considered the fractional parts of n rather than the 

TABLE 3.1 

n [n$] [rc<f>2J 

1 1 2 
2 3 5 
3 4 7 
4 6 10 
5 8 13 
6 9 15 
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integer parts, these satisfied Theorem 3.3. This led me to my work on 
plant growth. 

3.8 The Music of Bartok: A System Both 
Open and Closed 

It is understandable that architects should look to music in search of a 
system to proportion their buildings, as Alberti and Palladio did (see 
Section 1.5). After all, musical composition superimposes its emo
tional and aesthetic elements on a structure of supreme order. The 
music of Bartok, as analyzed by the Hungarian musicologist Erno 
Lendvai, embodies perhaps the fullest interplay between emotional 
content and structure [1966], [Bachmann and Bachmann, 1979]. 
Bartok based his music on the deepest layer of folk music. He believed 
that every folk music of the world can finally be traced to a few pri
meval sources. Through these sources, according to Lendvai, "[Bartok] 
discovered and drew into his ar t the laws governing the depths of the 
human soul which have not been touched by civilization." He was also 
greatly influenced by Impressionism and the atonal trends of his day, 
and combined the Western structures of harmony with folk music into 
an organic whole. 

Artists must create a system in which to frame their work. It is in
teresting to me that to achieve these primitive or "natural" effects, 
Bartok based the entire structure of his music on the golden mean and 
Fibonacci series—from the largest elements of the whole piece, 
whether symphony or sonata, to the movement, principal, and second
ary themes and down to the smallest phrase. In this regard his music 
resembles the organic wholeness of the Modulor, exemplifying a 
closed system (see Section 1.7.2). He contrasts this closed golden mean 
system with a dual system based on the overtones ascending from a 
fundamental tone—an open system analogous to the system of propor
tions at the basis of the Garden Houses of Ostia (see Section 1.8.2). It 
is beyond the scope of this book to examine Bartok's music in detail. 
We will, however, give three examples of his use of Fibonacci series: 

1. From Lendvai: 

In the first movement of Music for Strings, from the pianissimo (soft) the 
movement reaches the boiling point by a gradual rise to forte-fortissimo 
(very loud), then gradually recedes to piano-pianissimo (very soft) as 
shown in Figure 3.25. The 89 bars of the movement are divided into parts 
of 55 and 34 bars by the pyramid-like peak of the movement The form 
is proportioned within these units by cancellations of the sordino (or mute) 
in the 34th bar and its repeated use in the 89th bar.... Positive and neg-
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21 

34 

13 

55 
1 
1 

21 
89 

/// 

13 
34 
I 21 

- PPP 

( a ) 

PRIMARY EXPOSITION 
OF THEME 

tonic 

Cym 

PRIMARY 
EXPOSITION 

dominant 

Cym 

INVERSION 

Tam-Tam 

posi +negative pos. +neg. 

positive + negative 

positive negative 

POSITIVE 

( b ) 

Figure 3.25 (a) Important transitions in the first movement of Music for 
Strings, Percussion and Celesta by Bartok; (b) the theme is divided into 
positive and negative sections. 

a t i ve sec t ions e m b r a c e each o t h e r l i ke t h e r i s i n g a n d s i n k i n g of a s ing le 
wave. [Here, positive sections are long followed by short sections while 
negative sections are short followed by long sections as shown in Figure 
3.25(6).] It is no accident that the exposition ends with the 21st bar and 
that the 21 bars concluding the movement are divided into parts of 13 + 8 
[all elements of the F series]. 

2. In order to understand the other two applications of the 
Fibonacci series and the golden mean to the structure of Bartok's mu
sic, some understanding of musical notation would be helpful. Never
theless, even without such a background the ideas can still be appre
ciated, and they give a striking example of the utility of the golden 
mean. The ideas involve Bartok's use of the pentatonic scale. 

Pentatony is perhaps the most ancient human sound system. It rests 
on a pattern reflected by the melody steps of the major second (2), mi
nor third (3), and the fourth (5). The numbers in parentheses are the 
number of semitone intervals separating a note from the fundamental 
tone in the 12-tone chromatic scale. (The well-tempered scale, the 
scale upon which the piano is based, divides the frequency length cor
responding to an octave into an increasing geometric sequence with a 
common ratio, 21/12. The tones of the well-tempered scale are harsh 
when compared with tones corresponding to the ratio of small integers 
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of the just, or Ptolemaic scale (see Figure 1.7). There is unfortunately 
no way to define the chromatic scale so that the change from one key 
to another does not introduce new tones slightly different from the 
corresponding tones of the former key while also preserving the ratios. 
While players of stringed instruments can change the position of their 
fingers slightly to compensate for these changing pitches, the well-
tempered scale was a necessary compromise in order to accommodate 
the invention of the piano, which can have only a set number of keys.) 
Don't confuse these numbers with the notion of the musical "second," 
"third," etc., which denotes the number of notes that separate a given 
note from the base note in the seven-tone scale in any key, i.e., do, re, 
mi, ...(see Section 1.4). The black notes on the piano make up a 
pentatonic scale. Successions of two and three halftones are the inter
vals between the black notes, and almost any succession of notes 
played on the piano using only the black notes leads to a pleasant 
sounding tune. 

The pentatonic scale lies at the basis of the oldest folk melodies and 
the simplest nursery songs, which follow a la, sol, mi (2,3,5) form. The 
interval from la to sol is two halftones, thus "sol" breaks the interval 
from la to mi in the ratio 3:5—a Fibonacci approximation to the 
golden section. This golden-section cell division pervades all of 
Bartok's music. Bartok's use of this Fibonacci progression of tones can 
be followed in the last movement of the Divertimento. According to 
Lendvai, the principal theme appears in the variations (see Figure 
3.26). The intervals of the pentatonic scale demark the rising and fall
ing of the musical line about a center located at the golden section just 
as the musical dynamics (loudness and softness) were centered by the 

2 (s dJ ̂  • -r J J i IB m 

^ . m b^ „ b^- ^ !•*-• b £ ^ b f bbg 

j 8=5+3 
Continuation ; 

13=8+5 

Figure 3.26 Golden section cell division in the last movement of Divertimento. 

% 
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Fibonacci series in example 1. In line 1, the notes rise one halftone 
above the central note and fall one beneath it, i.e., (1,1). In line 2 they 
rise two halftones above and fall one below the center (2,1). Line 3 is 
(2,3), while lines 4 and 5 continue this progression to (3,5) and (5,8). 

3. Bartok also used Fibonacci numbers in an another way. Roughly 
speaking, the musical tissue of his music may be imagined to be built 
up of cells 2, 3, 5, 8, and 13 in size, i.e., the minor second (2), minor 
third (3), fourth (5), minor sixth (8), and the augmented octave (13). 
Such a progression, start ing with C as the fundamental tone, C, D, E 
flat, F, A flat, C sharp, is represented in musical notation in Figure 
3.27. 

Bartok contrasted this Fibonacci scale with a scale based on the se
quence of overtones of the fundamental note. To explain what is 
meant by the overtones of a tone, we must consider another aspect of 
the tone, namely, its wave properties. For example, a plucked string 
sets up condensations and rarefactions in the air that travel with the 
speed of sound. If a fundamental tone vibrates with a frequency of 100 
cycles per second, its octave vibrates at 200 cycles per second (2:1), its 
fifth at 150 cycles per second (3:2), etc. In other words, the frequency 
of musical interval is the inverse of the ratio of string lengths corre
sponding to that interval. It is well known that when a tone is 
sounded loudly, the ear manufactures all multiples of the tone, with 
the lower multiples more audible than the higher ones [Benade, 1976], 
(i.e., tones in the frequency ratios 2:1, 3:1, 4:1, 5:1, etc.). The first is 
the octave. The second is the fifth if it is lowered by one octave (i.e., 
3A x Va = %). The third is a double octave. The fourth overtone is a 
major third when lowered by two octaves (i.e., 5A x 1/2 x V2 = 5A). Con
tinuing in this manner, we find that the overtone scale is given by the 
increasing sequence of ratios along with their corresponding tonal 
names as follows: 

5 10 
4 8 

11 
8 

3 12 
2 8 

13 
8 

7 14 
4 8 

15 
8 

2 16 
1 8 

G 

The ratios are named from the tones on the well-tempered scale that 
they closely approximate. With the exception of A, there are no ap-

3 1 

O—be Q 

• ^ ( ° ) (3) (5) (8) (13) 

Figure 3.27 The Fibonacci scale of Bartok. The successive tones of the 
scale increase in a Fibonacci series of halftones. 
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proximations for those notes that use ratios of smaller integers. It is 
also notable that the frequencies of the overtone series form an arith
metic series with common difference of Vs. Thus, removing the arith
metic progression of the tones that form the overtone series from the 
geometric progression of tones that comprise the 12-tone chromatic 
scale leaves an F series of halftones, the only exception being the ma
jor second, D, that appears in both series. These two worlds of har
mony complement each other to such a degree that the Bartokian 
scale can be separated into Fibonacci and overtone scales, much as 
were the red and blue series of Le Corbusier and the pair of scales of 
the Garden Houses (see Sections 1.7 and 1.8). Separately, each is 
merely a part of a whole and neither can exist without the other, as 
shown in the following table: 

(0) = (12) (2) (3) (5) (8) (13) = (1) 

Fibonacci 
scale: C D E flat F A flat C sharp 

Acoustic (2) (4) (6) (7) (9) (10) (11) 
scale: C D E F sharp G A B flat B 

First of all, this system decouples all the notes of the 12-tone scale 
into two scales (although the D appears on both scales). Furthermore, 
the two systems reflect each other in the octave, or as musicians say, 
the fifth, 3:2, reflects the fourth, 4:3, since the fifth breaks the octave 
into a fifth and a fourth: 

3 
0 1 2 2 

1 1 1 1 
3:2 4:3 

Similarly, the major third, 5:4, breaks the octave into the major 
third and minor sixth, 8:5 (see Section 1.4): 

5 
0 1 4 2 
I \—| 1 

5:4 8.5 

For the most part, Bartok builds his compositions on this system al
though he deviates from it occasionally to create special effects. For 
example, in the finale of the Sonata for Two Pianos and Percussion, 
the acoustic scale C, E, F sharp, G, A, B flat, C contrasts with the 
golden mean section of the piece, C, E flat, F, A flat that dominates 
the first movement (see Figure 3.28). 

Systematically, the two scales are related by organically comple
menting and reflecting each other. Each is the other's negative reflec-
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(acoustic) 

Figure 3.28 Fibonnaci and acoustic scales in "Sonota for Two Pianos and Percussion." 

tion in the 12-tone system. These two scales also complement each 
other in terms of the emotional content of the music. The overtone sys
tem can only admit consonant intervals (by nature of the overtone 
harmonies). In other words, chords made up of notes from this scale 
are all pleasing to the ear. On the other hand, chords from the 
Fibonacci system are "tense" and "dissonant." Thus each system is ca
pable of disclosing one aspect of life. 

As Lendvai explains, Bartok was able to use his double scale to set 
up a duality between both the structural and emotional elements of 
his music. The essence of this duality lies in the closed nature of the 
Fibonacci scale, in contrast to the open nature of the overtone scale. 
While the dissonant golden mean harmonies move around the circle of 
fifths (a circle of progressively increasing fifths upon which Western 
music is built) and modulates from key to key, according to the par
ticular laws of harmony developed by Bartok, the overtone scale rises 
linearly from a common fundamental note. In this way tensions devel
oped in the first movement of a piece by golden mean harmonies are 
resolved in the last movement by the familiar chords of Western mu
sic based on the overtone scale. A striking example of this organic re
lation between the dual systems is shown by the opening and conclud
ing bars of the Cantata Profana (see Figure 3.29) in which the two 
scales mirror each other tone for tone—a Fibonacci scale and a pure 
overtone scale. 

diminished 

acoustic scale 

Figure 3.29 The opening and closing of Cantata Profana shows how the Fibonacci and 
acoustic scales mirror each other tone for tone. 
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TABLE 3.2 

Fibonacci scale 

Golden-section system 

Closed world 

Circular pattern of melody 

Uneven meter 

Asymmetries 

Demonaic world 

Organic 

Inspiration 

Augmentation-diminution 

Finite (circular motion) 

Overtone scale 

Acoustic system 

Open world 

Straight pattern of melody 

Even meter 

Periodicity 

Serene, festive world 

Logic 

Thought 

Stabilized forms 

Infinite (straight line) 

Lendva i says m u c h m o r e abou t t h e d u a l i t y of B a r t o k ' s two scales . 
Seve ra l of h i s dua l i t i e s a r e i l l u s t r a t ed in Tab le 3.2. 

The closed n a t u r e of t h e golden-sect ion h a r m o n i e s can be l i kened to 
t h e e m b l e m of D a n t e ' s In fe rno—the circle or r i ng—whi l e t h e over tone 
scale is a k i n to t h e symbol of h i s P a r a d i s i o — t h e s t r a i g h t l ine , t h e a r 
row, t h e r ay . Lendva i d r a m a t i z e s t h i s no t ion w i t h t h e following i l lus
t r a t ion : 

The golden-section can easily be (constructed) with the aid of a simple 
"knot" [as shown in Figure 3.15]; every proportion of this knot will dis
play the golden-section. It is this property of the pentagram that Goethe 
alludes to in Faust, Part I: 

Mephistopheles: 

Faust: 

Mephistopheles: 

Let me admit; a t iny obstacle 
Forbids my walking out of here: 
It is the druid's foot upon your 
threshold. 

The pentagram distresses you? 
But tell me, then, you son of hell. 
If this impedes you, how did you come in? 
How can your kind of spirit be deceived? 

Observe! The lines are poorly drawn: 
That one, the angle pointing outward, 
Is, you see, a little open. 
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Chapter 

4 
Graphs 

The crucial quality of shape, no matter of 
what kind, lies in its organization, and when 
we think of it in this way we call it form. 

CHRISTOPHER ALEXANDER 

Notes on the Synthesis of Form 

4.1 Introduction 

An artist or architect usually captures the earliest stage of an idea 
through a sketch depicting its raw outline. As work progresses, the 
rendering of the idea reveals more and more structure. Objects appear 
in their proper perspective, and length and angle become more defi
nite. This range of visual thinking also pervades mathematics 
through the subject of geometry. Like the artist or architect's finished 
product, euclidean geometry—the geometry most of us studied in high 
school—considers line segments to be of definite lengths and to meet 
each other at precise angles. However, not all geometries have these 
metric properties of length and angle. 

In this chapter, we discuss a freewheeling geometry of dots and 
lines called graph theory [Baglivo and Graver, 1983], [Trudeau, 1976], 
[Ore, 1963]. As for the artist 's or architect's rough sketch, graph the
ory preserves geometrical relationships only in their most general 
outlines. In graph theory, polygons are defined as cycles of lines con
necting two or more dots as shown in Figure 4.1. However, a line does 
not have to be straight in dot and line geometry, nor are there such 
things as perpendicular or parallel lines, and it does not make sense to 
talk about bisecting lines or measuring lengths and angles. 

The power of graph theory is that it can be used to model many pat
terns in nature from the branching of rivers to the cracking of brittle 
surfaces to subdivisions of cellular forms (see Figure 4.2) as well as 
many abstract concepts. The free-form geometry of dots and lines can 
be used to study these structures, and we shall see that this geometry 
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o }x( y 
( a ) ( b ) ( c ) 

Figure 4.1 Some graphical polygons. 

to ) ( b ) ( c ) 

Figure 4.2 (a) Pattern in soap bubbles; (6) patterns observed on the shore of a river 
when the mud has been dried up by the sun; (c) branching patterns of rivers. 

has a rich underlying foundation. We are going to start by investigat
ing what happens in a freewheeling situation. Before reading on, try 
this exercise. 

Exercise 4.1 Place dots on a piece of paper and then connect them with lines. 
Lines begin and end at dots and may loop around to begin and end at the same 
dot; however, two lines will not be permitted to intersect except at a dot. Can 
you find any pattern to the results? At first thought it would seem impossible for 
any order to come out of such an unstructured exercise. But is it? 

In order to make it easier to analyze things, let 

D = number of dots 

L = number of lines 

A = number of enclosed areas 

Observer 1 carrying out this exercise made two conjectures: 

L = D - 1 if all the dots are connected with a minimum of lines 
(4.1c) 

A + D - L = 1 (4.16) 
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Let's look at the diagrams in Figure 4.3 from which the observer made 
his conjectures. From the results it appears as though he is correct. 
But wait! observer 2 came up with the diagrams in Figure 4.4. These 
diagrams appear to each have more than one segment and so Equa
tion 4.16 does not apply. However, this equation can be modified so 
that it is true in every case that 

A + D - L = number of pieces in the diagram (4.2) 

It may appear at first that this exercise could have been made even 
more freewheeling if we permitted lines to cross at points other than 
the dots. However, Figure 4.5 shows that the same number of dots and 
lines can give rise to any number of enclosed areas if lines are permit
ted to cross. It may help to think of the lines as strings connecting a 
set of tacks—the problem is to untangle the strings so they don't cross 
in order to discover what A is. As we will see later, it's not always pos
sible to untangle the strings, so there are some diagrams in which A is 
not well defined. 

D = 3 
L = 3 
A 

D + A - L 

D = 2 
L = 3 
A = 2 

( a ) ( b ) 

Figure 4.3 Some dots and lines pictures. 

D = 5 
L = 5 
A =1 

( c ) 

D+A-

D = 3 
L = 2 
A = 1 
L = 2 

D = 8 
L =6 
A = 2 

D+A-L = 4 
Figure 4.4 Some more dots and 
lines pictures. 

(a) ( b ) 
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(a) 
Figure 4.5 If 
are possible. 

(b) (c) (d) 

are permitted to cross, an arbitrary number of enclosed areas 

Equation (4.2) has a very deep relationship to the nature of space 
and the real-world limitations which it imposes on design. By impos
ing more restrictions (the only ones that we have imposed so far are 
that lines must end in dots and must not cross), several startling re
sults will follow from this seemingly simple relationship. But first, 
let's put things in more formal mathematical terms. 

4.2 Graphs 

The theory of graphs will play a central role in this book since it gives 
us a way to study spatial structures unencumbered by the details of 
euclidean geometry. We will go into the subject enough to appreciate 
the applications to spatial design found in this chapter and the re
mainder of the book. First we redefine dots, lines, and areas to agree 
with common mathematical conventions. We call the dots, vertices, V, 
or sometimes nodes, the lines, edges, E, and the areas, faces, F. Often, 
we will use the same symbols, E, V, and F, to mean both the entity 
and the number of edges, vertices, and faces in the diagram. 

The reason for calling the lines edges is that we may consider them 
as the boundary edges of shapes, and the reason for referring to closed 
areas as faces will become clearer when we extend our ideas into three 
dimensions. (The enclosed areas will become the faces of polyhedra.) 

In addition, we are going to call the kind of diagrams we've been 
drawing graphs, or sometimes networks. By formal definition, a 
graph, G, is a set of edges and vertices: 

G = {V,E} 

We are relying here on the reader's naive idea of a set as a bunch of 
things along with a rule of membership that determines whether some 
object does or does not belong to the set. Sets also have no implied or
der and there are no duplications. 

The definitions of G, V, and E themselves contain sets. V is the ver
tex set and E is the edge set. E consists of pairs of vertices taken from 
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the set V. Thus if a and b are vertices, {a,b} or just ab is the edge con
necting a and b. It should be noted that in this definition: 

• {a,b} and {b,a} are the same thing (order doesn't count in sets) so 
that we do not give a direction to an edge. 

• ia,a) is meaningless (no duplications in sets). 

For example: 

G = {V,E} 

V = {1,2,3,4} 

E = {{1,2}, {1,3}, {2,4}} 

Given this information, we could draw a diagram showing the ver
tices and edges with no trouble [see Figure 4.6(a)] However, you 
should note that the formal definition of what a graph is makes no ref
erence to diagrams; it is a purely abstract idea. As such the graph can 
be expressed in other ways. For example, we can represent the graph 
by a matrix in which rows and columns represent vertices and a 1 is 
placed at each position wherever corresponding vertices are connected 
by an edge and a 0 is placed in the matrix wherever there's no con
nection. The matrix is 

Vertex number 

1 

1 
Vertex 2 
Number 3 

"0 
1 
1 

4 L 0 

s dropped, simply 

G = 

0 1 
1 0 
1 0 
0 1 

2 

1 
0 
0 
1 

1 
0 
0 
0 

3 4 

1 0 
0 1 
0 0 
0 0 

0" 
1 
0 

o-1 

(4.3) 

We call this the incidence matrix and denote it by G to emphasize that 
the matrix may be considered an abstract representation of the graph. 

Armed with either V and E or the matrix, we can also illustrate the 
graph by Figure 4.6(6). There is no unique way to represent the graph in 
a diagram, as can be seen by the examples above. However, each of the 
diagrams unambiguously shows the connections in the graph. We say 
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Figure 4.6 A planar graph can 
be redrawn with no crossovers. 

that these graph diagrams are isomorphic to one another, meaning that 
they exhibit the same structure and can be redrawn to look identical. If 
you think of the graph diagram as being composed of tacks and elastic 
strings, as we did earlier, you should be able to visualize means of chang
ing one diagram into another. While you should not confuse the diagram 
of a graph with the graph itself, since a graph is an abstract mathemat
ical concept and the graph diagram is a pictorial representation of the 
graph, it is common practice to refer to the graph diagrams as graphs, 
and we will follow that practice in this book. 

If two different graphs can be made to have identical matrices by 
relabeling their vertices, these graphs are isomorphic. For example, 
the two graphs shown in Figure 4.7, 

V, = {1,2,3,4} 

Ex = {{1,2},{2,4},{4,3},{3,1}} 

G2 = {V2,E2} 

V2 = {a,b,c,d\ 

E2 = {{a,b},{b,c},{c,d},{d,a}} 

are isomorphic even though one has crossing edges while the other 
does not since by matching up the vertices as follows: 

1 <-» a, 2 «-» b, 3 «* d, 4 «-» c 

both can be represented by the matrix 

0 1 1 01 
1 0 0 1 
1 0 0 1 

L0 1 1 0 

Problem 4.1 Find as many pairs of isomorphic graphs in Figure 4.8 as you can. 

The essence of graph theory lies in the fact that two graphs can be 
visually very different and yet isomorphic, as Figure 4.9 shows. This 
can be of great use in spatial design when we wish to create a variety 
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Figure 4.7 Two graphs with the same connectivity; 
they are graphically identical. 

Figure 4.8 Identify the isomorphic graphs in this figure. 

( a ) ( b ) 

Figure 4.9 (a) A graph with many crossovers; (6) an isomorphic copy drawn with two 
crossovers. 

of structures that look quite different but share the same basic plan 
(see Section 4.17). On the other hand, it is one of the difficult problems 
of graph theory to determine, in general, if two complicated graphs 
are isomorphic. They must certainly have the same number of faces, 
edges, and connected pieces. Each graph must also have the same dis
tribution of the number of edges touching each vertex. However, this 
is not enough as Figure 4.10 shows. (Why?) Another criterion helpful 
in deciding whether two graphs are isomorphic is given in Section 4.8. 
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3 4 

/ 

5 

/ 

' 

( a ) ( b ) 

Figure 4.10 Two graphs with the same number of edges and vertices, but they are not 
isomorphic. 

We have seen in Figures 4.6 and 4.7 that the same graph may be 
represented with crossing edges in one diagram but with noncrossing 
edges in another diagram. In general, if a graph can be drawn with 
edges that cross only at the vertices, it is called a planar graph, to dis
tinguish it from nonplanar graphs that can only be drawn with some 
edges crossing. Thus the graphs in Figures 4.6 and 4.7 are planar. In 
Section 4.10, nonplanar graphs will be discussed in greater detail. 

As we have noted, the formal definition of graphs does not allow: 

• More than one edge between two vertices 

• An edge with both ends attached to the same vertex 

• Directionality of edges 

But when we draw diagrams, it's easy to make sketches of "graphs" 
having some or all of the above properties. How can they be included 
in graph theory? The answer is to define new entities: 

• Multigraphs are graphs with one or more multiple edges, that is, du
plicate edges between vertices. 

• Pseudographs are graphs with loops, that is, one or more vertices 
have an edge starting and ending at the same vertex. 

• Digraphs are graphs with directed edges, that is, one or more edges 
have a specified direction to them. 

Figure 4.11 shows examples of a pseudograph and a digraph. 
The formal definitions for multigraphs, pseudographs, and digraphs 

are made by redefining the edge set so that it contains ordered pairs of 
vertices instead of sets of pairs of vertices. A more illuminating way to 
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d 

( a ) (bl 

Figure 4.11 
(digraph). 

(a) A pseudograph; (b) a directed graph 

see the differences is to look at incidence matrices for the diagrams of 
each type. Here are some matrices. The graphical representations of 
the pseudograph and the digraph shown in Figure 4.11 are 

a b e d a b e d a b e d 

a 
b 
c 
d 

"0 1 0 2" 
1 0 1 1 
0 1 0 1 

-2 1 1 0 - 1 

Multigraph 

a 
b 
c 
d 

a 
b 
c 
d 

- 1 1 0 1" 
1 0 1 1 
0 1 0 1 

Li i I o-l 
Pseudograph 

a b e d 

- 1 1 0 0" 
0 0 0 1 
0 1 0 0 

L 2 1 1 0 J 

Combination 

a 
b 
c 
d 

" 0 1 0 1 
0 0 0 0 
0 1 0 0 

Li i i o 
Digraph 

Problem 4.2 Try your hand at drawing the multigraph and the combination 
graph. 

You should compare the matrices and diagrams and see if you can 
recreate one from the other. There are certain characteristics of the 
matrices of each type that help in recognizing them: 

• A matrix of a graph is symmetric: If you read down a particular col
umn, it will read the same as reading across the corresponding row 
(the row for the same vertex as the column). In addition, the matrix 
of a graph always has zeros along the main diagonal—the diagonal 
line from the upper left of the matrix to the lower right corner. 

• The matrix of a multigraph has numbers other than Is in the ma
trix (signifying that there are multiple edges). 
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• The matrix of a pseudograph has Is on the main diagonal whenever 
a loop occurs; Is on the main diagonal signify loops. 

• The matrix of a digraph is not, in general, symmetric; corresponding 
rows and columns are not identical. 

4.3 Maps 

Everyone is familiar with maps. Figure 4.12 can either be looked at as 
the map of Europe, or it can be interpreted as an abstract map in a 
mathematical sense. The mathematical maps that we are going to ex
amine in this section are similar to the cartographer's map in that the 
faces are countries, the edges are their borders, and the vertices are 
the corners of the countries. Now let's turn to a formal mathematical 
definition of a map. A map M is a set of edges, vertices, and faces, 

M = {V,E,F} 

where F is the face set. The edges and vertices satisfy a specified in
cidence matrix, while each face from the set F consists of a cycle of 
non-self-intersecting edges (a cycle is defined in Section 4.5) and ver
tices with no repeats except for the first and last vertex and contain
ing no vertices inside it, i.e., F is a polygon (in Chapter 5 we will con
sider star polygons whose edges self-intersect). Polygons can have 
curved edges in this definition, and we will have to extend our notion 

Figure 4.12 A map of Europe. 
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of a polygon to include figures with two edges [see Figure 4.1(a)]. The 
faces of a map are linked together at edges so that each edge lies in 
exactly two faces. Finally, in the definition of a map, no country can 
lie completely within another as Vatican City does within Italy (see 
Section 4.5). For example in Figure 4.13, 

f\ = v3eBvbe6v4e3v3 

h = vxexv^v3e%vlte^x 

U = v1e1v2e2v3e6v5e6v4eiv1 

where fu f2, and f3 are three-, four-, and five-sided polygons, respec
tively. It may appear strange that the exterior of the map is consid
ered to be a face surrounded by the outer edges, the outside face. An 
explanation of this is in the next section. 

At this point, let us pause to wonder why a concept as natural and 
familiar as a map needs to be belabored and stated in the technical 
language of mathematics. Is this language artificial, or is it natural 
and necessary to convey the meaning? Our intuition about maps 
serves us well so long as we do not stray too far afield from the concept 
of a geographical map. Yet in this book, we will consider maps far 
from this familiar territory. Here, the language of mathematics serves 
as our only compass. Whether or not this language serves a purpose or 
is unnecessarily pedantic must await judgment. 

By defining the face of a map to be a polygon and each edge of a map 
to lie in exactly two faces, we have excluded some diagrams that we 
would like to consider as maps, namely, diagrams with hanging, or 
pendant, edges or faces. In Figure 4.14 the face connecting the hang
ing triangle lies in only one face, and the enclosed area with the pen
dant face is called a face even though it is not a polygon. Maps with 
pendant edges or faces are called pseudomaps. 

Copies of a map formed by placing the map on a flexible membrane 
and stretching the membrane without cutting are considered identical 

Figure 4.13 A map with three 
faces (including the outside face), 
five vertices, and six edges. 
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Figure 4.14 A pseudomap with a pendant face. 

or isomorphic. Edges and faces become distorted but sets E, F, and V 
maintain their integrity. 

The diagrams of maps and graphs are very much alike. In fact, any 
map may be considered to be a planar graph or a multigraph by tak
ing into account its vertices and edges and their interconnections but 
neglecting its set of faces. However, there are subtle differences be
tween graphs and maps: 

• A connected planar graph can always be represented as a map or a 
pseudomap (a connected graph is a graph in one piece). 

• A graph can give rise to more than one map (see Section 4.5). Figure 
4.15 shows two different maps with the same graph. 

• Graphs which are not connected (i.e., which occur in more than one 
piece) cannot be represented as maps (see Figure 4.16). 

M2 

Figure 4.15 The same graph can represent two 

M'i 

ifferent maps. 
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Figure 4.16 A graph which is 
not a map; the shaded face is not 
a graphical polygon. 

Because of the great similarity in the structures of graphs and 
maps, we develop their theory together. 

4.4 Maps and Graphs on a Sphere 

It may seem strange and needless to define the exterior of a map to be 
a face; however, there is a compelling reason for doing this. If the map 
is drawn on a sphere as shown in Figure 4.17(a), it is clear that the 
outside face is no longer unbounded and should be treated as any 
other face. In fact, any face could just as well serve as the outer face by 
imagining the sphere to be an infinitely stretchable membrane 
pierced at some point within this face as shown in Figure 4.17(6) and 
(c). The membrane is then stretched until the puncture point is moved 
to infinity [see Figure 4.17(d)]. A map results in which the punctured 
face becomes the outside face. 

Points on the sphere are now paired with points on the plane. (See 
Appendix 2.B for another way to pair points on a sphere with points in 
the plane.) The corresponding maps also share the same sets of faces, 
edges, and vertices and have the same incidence matrix. Thus, from a 
mathematical point of view, maps on the plane and maps on the 
sphere with one point removed are isomorphic. The same holds for 
graphs. 

( a ) (b ) ( c ) (d ) 

Figure 4.17 Transformation of a map on a sphere to a map on the 
plane, (a) Map on the sphere with face 1 punctured; (b,c) the 
puncture is widened; (d) map in the plane with face 1 on the ex
terior. 



118 Chapter Four 

2 / \ i 

3 2 J 2 3 

la) (b) (c) 

Figure 4.18 The outside face of a map is arbitrary, (a) Face c 
is the outside face; (b) map redrawn with face a as the out
side; (c) redrawn again with face b as the outside face. 

A map can always be redrawn with any one of its internal faces 
serving as the exterior face by first drawing the edges surrounding 
this face as the outer boundary of the new map as shown in Figure 
4.18. The other faces are then redrawn inside this outer boundary, 
making sure that their connectivities are preserved. It is helpful to la
bel all the vertices of the original map before exchanging faces in or
der to keep track of the connections between the vertices. 

Problem 4.3 Redraw the map shown in Figure 4.19 so that face /"is the outer 
face. 

Since all the enclosed areas, including one additional outer one, are 
now considered to be faces, and maps are always considered to be in 
one piece (connected), we can restate the constraint on space intro
duced at the beginning of the chapter for the case of maps on the plane 
or a sphere as 

F + V - E = 2 (4.4) 

This relation, discovered by Swiss mathematician Leonhard Euler and 
known as Euler's formula, is proven for connected planar graphs in 
the next section. 

4 

Figure 4.19 Redraw this map with face f as the outside 
face. 
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Problem 4.4 Show that Euler's formula holds for the graphs in Figures 4.14 and 
4.15, but it does not hold for the graph in Figure 4.16. Why is this so? 

In Section 4.11 we will generalize this relation to maps drawn on 
other surfaces. 

4.5 Connectivity of Graphs and Maps 

Information about the connectivity of a graph is given by the incidence 
matrix. A path between two vertices of a graph or map is defined as a 
succession of adjacent edges in a graph (i.e., a "walk" from vertex to 
vertex along specified edges). If there is a path connecting each pair of 
vertices, the map or graph is said to be connected. Since we have spec
ified in our definition of maps tha t no country can be buried within 
another, maps are always connected graphs. 

A cycle is a path from one vertex back to itself excluding the case 
where the steps are merely retraced. If a graph has no cycles, it is 
called a tree, an example of which is shown in Figure 4.20. The pat
terns of branching processes shown in Figure 4.2(c) are, in a sense, in
finite trees. 

Any connected graph with cycles can be transformed into a tree 
graph by removing some of its edges and leaving its vertices alone. 
The tree contains the least number of edges necessary to keep the 
original graph in one piece (connected). Thus, the result tha t we found 
in Equation (4.1a) of the introductory exercise holds for trees: 

E = V - 1 (4.5) 

As a matter of fact, this equation can be used to prove Euler's theo
rem, Theorem 4.1. 

Theorem 4.1 F + V - E = 2 for connected, planar graphs. 

proof Transform a connected, planar graph into a tree by removing selected 
edges. But for each edge that is removed, a face is also eliminated, which pre-

f 

/ \ / \ Figure 4.20 A tree graph. 
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serves the value of F + V - E. However, since the tree graph can be viewed as 
having a single exterior face, Equation (4.5) can be rewritten as 

F + V-E = 2 

which must then have been satisfied by the original graph. 

A connected graph can be disconnected into more than one segment 
by removing certain of its vertices and all the edges connected to these 
vertices. If the graph can be disconnected by removing only one ver
tex, it is 1-connected. If two or three vertices must be removed to dis
connect it, the graph is 2-connected or 3-connected (providing these 
graphs have more than two or three points, respectively, to start 
with). Graphs can also be disconnected by removing edges and leaving 
vertices untouched. However, this is of no interest to us. Examples of 
1-, 2-, and 3-connected graphs are shown in Figure 4.21. 

All connected planar graphs drawn in the plane can be represented 
by maps. Theorem 4.2 tells us which of these graphs can be drawn 
uniquely (except for isomorphic distortions) as maps. 

Theorem 4.2 There is only one map corresponding to a 3-connected planar 
graph. Some 1- and 2-connected planar graphs can be represented by more than 
one map. 

There are two special kinds of connected graphs that we will be re
ferring to in this chapter. The first is a complete graph with n vertices, 
abbreviated Kn, in which each vertex is connected to each of the other 
vertices. K5 is illustrated in Figure 4.22(a). The other is the bipartite 
graph, abbreviated Kmn, which is defined to be a graph whose vertices 
are divided into two sets. Each of m vertices of the first set is con
nected to each of n vertices of the second set as shown in Figure 
4.22(6) for KZ2. 

4.6 Combinatorial Properties 

The structure of a graph is determined by its incidence matrix. For 
example, the sum of the Is in a row (or column) of this matrix indi-

(a ) (b) (c ) 

Figure 4.21 (a) 1-connected graph; (b) 2-connected graph; (c) 3-connected graph. 
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Figure 4.22 (a) A complete graph 
with five vertices, K5; (b) a bi
partite graph, K3 2. 

( a ) ( b ) 

cates the number of edges that touch (are incident to) the vertex cor
responding to that row (or eolumn). The number of edges incident to a 
vertex v is called its vertex valence, which is symbolized by q(v) since q, 
in general, depends on v. We will refer to vertices having odd or even 
values for their vertex valences as odd or even vertices. Since each 
edge of a graph contains two vertices, the following relation holds: 

2 q(v) = IE (4.6) 
v 

where the summation is over all vertices v of set V. In the future, for 
the sake of brevity, we shall assume that the quantity being summed, 
e.g., q, depends on the elements of the set indicated under the summa
tion sign and omit the variable, e.g., v. In other words, Equation (4.6) 
will be rewritten: 

v 

Problem 4.5 Show that in a graph with more than one vertex there must be at 
least two vertices of the same valence. Remember that a graph cannot have 
more than one edge between vertices. 

The same relation holds for maps. In addition, another quantity 
called the face valence p is defined to be the number of edges that sur
round a given face. Since each edge of a map lies in exactly two faces, 

^p = 2E (4.7) 
F 

where summation is over all the faces of the map and the same short
hand convention is used as for Equation (4.6). 

This equation does not hold for graphs with pendant edges or faces 
such as the ones shown in Figures 4.14 and 4.20. However, Equation 
(4.7) holds for these graphs if the pendant edges are counted twice. To 
make sense out of this seemingly arbitrary counting procedure, imag
ine that the edges of such graphs are walls and a bug crawls around 
all the edges of the face with the pendant edge. As the bug crawls 
along either side of the wall corresponding to the pendant edge, this 
edge is counted twice. 

#w 
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Figure 4.23 

(a) (b) 

Problem 4.6 Verify Equations (4.6) and (4.7) for the graphs shown in Figure 
4.23. 

Many properties of graphs and maps can be deduced from Equations 
(4.6) and (4.7). One surprising result is expressed by the handshake 
lemma which states: 

At a party, the number of people who shake hands an odd number of 
times is always even. 

proof Draw a graph in which the people at the party are the vertices and an 
edge connects two vertices if these two people have shaken hands. Divide the 
graph into two sets of vertices, one set with odd vertex valence q0 and the other 
with even qe. From Equation (4.6), 

2 Qo + 2 9* = 2£ or 2 ) 9° = 2E ~ 2 1 e = even number (4.8) 
v v v v 

Since odd + odd = even and odd + even = odd, it follows that the odd numbers 
on the left-hand side of Equation (4.8) must pair in order to result in an even 
number. The proof follows since each term on the left-hand side represents a 
party goer who shook hands an odd number of times. 

Problem 4.7 For a hypothetical party with five people, draw the handshake 
graph and verify the lemma [Baglivo and Graver, 1983]. 

Another problem in the spirit of the handshake lemma follows. 

Problem 4.8 What can you say about the number of people at a party at which 
everyone knows exactly four other people present, except the host who knows 
everyone present [Baglivo and Graver, 1983]? 

4.7 Regular Maps 

There is a family of maps for which each vertex and face is like every 
other vertex and face. These are called regular maps. They could be 
said to have a "perfect symmetry." If you found yourself placed in a 
mathematical country defined by such a map, you would experience 
vistas of sameness in all directions and find yourself hopelessly lost. 
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In the search for order in a seemingly chaotic world, mathemati
cians and philosophers since antiquity have been fascinated by struc
tures exhibiting the level of perfection and order of the regular maps. 
The fact that there are only five of them, as we will show, makes them 
all the more precious. The next chapter will be devoted to a detailed 
study of these maps in a different context. 

Regular maps are defined as maps whose vertices have identical 
vertex valence q and whose faces have identical face valence p. For 
regular maps, Equations (4.6) and (4.7) can be rewritten as 

qV = 2E and pF = 2E (4.9) and (4.10) 

Figure 4.24(a) and (b) i l lustrate two infinite families of maps (which 
we refer to as trivial maps) with this property. This leads to Theorem 
4.3. 

Theorem 4.3 Except for the two trivial families, there are only five regular 
maps on the plane (or sphere). 

proof Solving Equations (4.9) and (4.10) for V and F and replacing in F + V -
E = 2 yields 

2E IF „ „ 
— + — -E = 2 
P 1 

(4.11) 

After some algebra, 

pq - 2p - 2q = ^ (4.12) 

Since the right side of this equation is negative, factoring the left side yields 

(p - 2)(q - 2) - 4 < 0 or (p - 2)(q - 2) < 4 

The only solutions to this equation, other than the trivial ones, are listed in 
Table 4.1 along with the number of edges, faces, and vertices of the correspond-

( Q ) 

J . etc. 

(b) 
Figure 4.24 Two trivial families of regular maps. 
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TABLE 4.1 

<7 

3 
3 
3 
4 
5 

P 

3 
4 
5 
3 
3 

Schlafli notation 

M 
{3,3} 
{3,4} 
{3,5} 
{4,3} 
{5,3} 

F 

4 
6 

12 
8 

20 

V 

4 
8 

20 
6 

12 

E 

6 
12 
30 
12 
30 

ing maps. F, V, and E are determined by solving Equation (4.12) for E and re
placing E in Equations (4.9) and (4.10) to get, after a little algebra, 

F = L E = A v = £ ( 4 1 3 ) 

p 2 q 
where £ = 4pq/ (2p + 2q - pq) 

Problem 4.9 Illustrations of the graphs in Table 4.1 are shown in Figure 
4.66(a). Before looking at them, try drawing them for yourself. Each of these 
maps is 3-connected and can, therefore, according to Theorem 4.2, be drawn in 
only one way. 

4.8 New Graphs from Old Ones 

Through isomorphism, the visual appearance of a graph can be dras
tically changed while preserving its underlying structure as we 
showed in Section 4.2. We now consider ways of transforming the 
structure of a graph G by adding or subtracting vertices and edges. 
There are three distinct ways of doing this: 

1. Graph G can be augmented to a new graph H by selectively add
ing additional vertices and edges. Since each vertex and edge of the 
original graph G is also a vertex and edge of the transformed graph if, 
we say that G is a subgraph of H and that if is a supergraph of G. For 
example, K5 is a subgraph of Figure 4.25(a) while K33 is a subgraph of 
Figure 4.25(6). 

(b) to ) 
Figure 4.25 These graphs contain (a) Kb as a subgraph; (b) K33 as a subgraph. 
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2. Graph H can be reduced to G by selectively erasing certain edges 
and vertices. However, whenever a vertex is erased, all edges incident 
to that vertex must also be erased (otherwise G would not be a graph). 
In this case G is a subgraph of H. 

3. An arbitrary number of vertices may be placed within the edges 
of graph G to obtain graph H, called the subdivision of G, i.e., a hole is 
erased on an edge and a vertex is inserted in the hole. In this case G is 
usually not a subgraph of H. 

In Section 4.2 we showed that it can be tricky to determine whether 
or not two graphs are isomorphic. Besides the four properties men
tioned there, another property preserved by isomorphism is the distri
bution of subgraphs. That is, if two graphs are isomorphic and you se
lect a subgraph at random from either one, the other will necessarily 
have an isomorphic subgraph. Hence, you can prove that two graphs 
are not isomorphic by finding a subgraph of one that is not a subgraph 
of the other. For example, Figure 4.10(a) and (6) cannot be isomorphic 
since Figure 4.10(a) has a cycle of eight edges and vertices A, C, D, F, 
E, G, H, B, A but Figure 4.10(6) does not. 

In Section 4.10 these three ways to alter a graph will be used to 
state an important theorem about nonplanar graphs making use of 
the obvious fact that supergraphs and subdivisions of nonplanar 
graphs are also nonplanar. 

4.9 Duality 

Each map contains the seeds of another map called its dual, which 
is constructed by placing a vertex within each face, including its 
outside face, and connecting two vertices by an edge if their corre
sponding faces are adjacent (share an edge). Thus, since each edge 
of the original map lies in exactly two faces, each edge of the orig
inal is paired with one edge of the dual map. An example of a map 
and its dual is i l lustrated in Figure 4.26(a) and then redrawn in 
Figure 4.26(6). 

Notice in Figure 4.26(a) that the dual of the dual map is the origi
nal. This reciprocal relationship is true of all duals so long as the ex
terior of the map is considered as a face. In fact, vertex v1 of the orig
inal map corresponds to the outside face fx of the dual. However, any 
face of the dual could equally well serve as the outside face (see Sec
tion 4.4). For example, Figure 4.26(c) and (d) shows the dual redrawn 
so that fx is now an inner face and vertex v4 of the original map cor
responds to the outside face fA of the dual. (It is possible that for some 
maps, the redrawn dual may not be isomorphic in a map sense to the 
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( a ) ( b ) ( c ) 

(d ) ( e ) 

Figure 4.26 Dual maps, (a) A map is drawn with dotted lines and its dual map 
is drawn with solid lines; face 1 is the outside face; (6) the dual is redrawn; (c, d) 
the dual map with face 4 as the outside face; (e) the vertex corresponding to the 
outside face of the original map is taken to be the point at infinity. 

original dual and so one should probably refer to "a" dual rather than 
"the" dual.) 

Finally in Figure 4.26(e), the vertex of the dual corresponding to the 
outside face of the original map is taken to be the point at infinity in 
the sense of Section 4.4. In this case the edges of the dual that corre
spond to the outer edges of the original map are drawn with arrows to 
indicate that they all meet at the point at infinity. 

From a mathematical point of view, a map and its dual may also be 
considered structurally identical despite their different appearances 
although they are not isomorphic. To explain what we mean by struc
turally identical, let's consider a map in terms of its abstract struc
ture. To each face of the original there corresponds a vertex of the dual 
while edges are paired, i.e., 

face «-> vertex 

edge <-> edge 

In this sense, the dual map is encoded in the original, and any state
ment made about the faces of the original can be translated into an 
equivalent statement about the vertices of the dual. For example, if a 
face of the original is surrounded byp incident edges,/? incident edges 



Graphs 127 

surround the corresponding vertex of the dual. Likewise, if a vertex of 
the original has q incident edges, the corresponding face of the dual 
has q edges incident to it. Also if two vertices are connected by an 
edge in the original, the corresponding two faces share an edge (are 
adjacent) in the dual. 

Although the original and its dual are structurally identical (but 
usually not isomorphic), they are visually dissimilar. Duality will 
play an important role throughout this book as it offers alternative 
ways of viewing a given structure as we already saw in the duality of 
Bartok's music (see Section 3.8). 

Problem 4.10 Draw the map dual to the one shown in Figure 4.19. 

Problem 4.11 For the regular maps shown by looking ahead to Figure 4.66(a), 
show that one of these maps is self-dual (the map and its dual are isomorphic) 
while the other maps form dual pairs. 

4.10 Planar and Nonplanar Graphs 

The development of graph theory has been motivated by the search for 
solutions to puzzles and games. The bipartite graph Ka3, shown in 
Figure 4.27(a), is the source of one such puzzle for a rainy day. 

Problem 4.12 Three people at odds with each other, each represented by one of 
the upper vertices of the bipartite graph, want to draw water from each of the 
three wells represented by the lower vertices, but they do not wish to have the 
possibility of meeting each other during their trips to the well. Can you devise 
paths from people to wells that meets this condition? 

After trying different ways to redraw this graph, you will come to 
the conclusion tha t at least one path must cross, i.e., the bipartite 
graph is nonplanar. Figure 4.27(6) shows the graph redrawn with one 
crossover. 

Puzzle solvers have never been put off by the challenge of trying to 
solve a problem advertised as being impossible; witness the many "so
lutions" that are still found for squaring the circle or trisecting an an
gle. However, it is instructive to see how the impossibility of unravel-

Figure 4.27 (a) The bipartite 
graph K33; (b) Ka3 redrawn 
with one crossover. 
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ing a bipartite graph is inherent in the basic constraints on space that 
we have already accepted. 

proof that K33 is nonplanar If K33 is planar, it forms a map in the plane for 
which V = 6 and E = 9. Replacing these values in Euler's formula for the plane 
and solving for F yields 

F=2+E-V=5 

The smallest cycle of edges on the bipartite graph has four edges. If it is as
sumed that all faces have face valence p = 4, a lower estimate of Equation (4.7) 
is 

20 = 4F < 2E = 18 

which gives rise to a contradiction. The conclusion is that the bipartite graph 
must not have been planar. 

It may seem strange that a geometrical property of a graph (edge 
crossings) has been proven by algebraic means. This is frequently 
done by mathematicians and it usually endows the proof with an aura 
of magic. The proof materializes apart from our intuitive understand
ing, i.e., it is not obvious. When this occurs, there is often a more 
transparent geometrical proof of the same result. For such a proof we 
refer you to [Ore, 1963]. 

Problem 4.13 The complete graph with five vertices, K&, is another example of 
a nonplanar graph. Prove this by the same technique that we used to prove that 
the bipartite graph was nonplanar. Redraw this graph with only one crossing. 

Why have we gone to such great lengths to demonstrate and prove 
that the bipartite graph K33 and K5 are nonplanar? It would be rea
sonable to imagine, and it is most certainly true, tha t countless other 
graphs are also nonplanar. However, in 1930 K. Kuratowski made the 
amazing discovery that all nonplanar graphs must contain within 
them, in a special sense, either K5 or the bipartite graph K33. 

Theorem 4.4 (Kuratowski) Every nonplanar graph is a supergraph of a subdi
vision of K3 3 or Ka (see Section 4.8 for an explanation of supergraph and sub
division). 

According to Kuratowski, the graph in Figure 4.9(6) must be 
nonplanar since it contains a subdivision of K3 3 within it (check this!). 
Although Kuratowski's theorem represents another interesting con
straint on space, it is generally not very helpful in spotting nonplanar 
graphs since the two basic nonplanar graphs are usually well camou
flaged within the the graph under consideration. How then does one 
go about unraveling a complex graph with many crossing edges? A 
good way is to do what was done for the bipartite graph in Figure 
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( a ) ( b ) 

Figure 4.28 Planar graphs can be drawn without edge crossings by reorganiz
ing its vertices around the periphery of a circle, (a) A planar graph with many 
crossovers; (b) the same graph without crossovers. 

4.27(6). The vertices are arranged around the periphery of a circle and 
numbered so that nearby vertices on the circle connect to each other. 
This technique is illustrated in Figure 4.28 for a more complicated 
graph. 

Of course once you have unraveled the planar graph and made it into 
a map, it is easy to generate other maps by reordering the vertices. 

Problem 4.14 Apply this technique to drawing another map corresponding to 
the graph in Figure 4.28(a). 

4.11 Maps and Graphs on Other Surfaces 

A legend [Tietze, 1965] states that once upon a time in a remote land, 
there lived a man with five sons who were to inherit his land after his 
death. However, in his will the father made the condition that each of 
the five parts into which the land was divided must border on each of 
the other four parts. In addition, he required that each of his sons 
build a road from his residence to the residence of each of his brothers 
and that each of these roads was to run separately without crossings 
and without touching the land of a third brother. 

When the father died, the five sons worked hard to find a division of 
the land to meet the terms of the will—all in vain. The brothers sank 
into gloom as it became clear to them that their father's will could not 
be fulfilled. Suddenly a traveling wise man appeared and claimed to 
have a solution. 

Problem 4.15 Before reading on, try to find this solution. Before attempting the 
five brothers' problem, solve the same problem assuming that there were only 
four brothers (much easier). 
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The solution to the four brothers' problem is shown in Figure 
4.29(a). A solution to the five brothers' problem is shown in Figure 
4.29(6). The solution involved building a bridge from the land of 
brother D to the land of brother E. The moral of this story is that what 
is possible to do on a surface depends on the nature of the surface. 

Up to this point we have limited ourselves to a study of graphs on a 
plane surface or a punctured sphere, which is equivalent to the plane. 
In the introduction to this chapter we saw how subtle properties of the 
plane imposed constraints on graphs. What if we consider graphs and 
maps on other surfaces? Will there be new constraints? In this section 

( b ) 

Figure 4.29 (a) Solution to the four brothers' problem; (6) solution to the five 
brothers' problem. 
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we will explore this question using the intuitive concept of a surface 
as a thin membrane rather than the highly abstract mathematical 
definition in which a surface has no thickness. The mathematical 
point greatly disturbed Buckminster Fuller, who refused to acknowl
edge its existence since it confounds all practical experience. 

The general study of curves and surfaces is carried out in the branch 
of mathematics called topology [Firby and Gardiner, 1982], [Francis, 
1987]. From an intuitive point of view, two surfaces are considered to 
be topologically identical, or homeomorphic (the topological equiva
lent of isomorphic), if one surface can be imagined to be constructed of 
a flexible membrane capable of being deformed without cutting to 
form the other surface. In this deformation, nearby points on the orig
inal surface are still nearby on the deformed surface. For example, the 
donut and cup of tea in Figure 4.30 are topologically equivalent. 

This definition is not very good from a mathematical point of view 
since surfaces do not have thickness and cannot be dealt with materi
ally (despite Fuller's protests). Nevertheless, it gives us an easy way 
of visualizing different families of surfaces. For example, by this def
inition, a cube is certainly homeomorphic to a sphere. Also a sphere 
with two holes and a bent cylinder, or handle as it is called, extending 

TEACUP 

Figure 4.30 A torus is shown to be homeomorphic to a teacup. 
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( b ) ( C ) 

Figure 4.31 The torus in (a) is homeomorphic to a sphere with one handle in (6) and 
(c) to a cube with a tunnel through it. 

from one hole to the other is homeomorphic to a torus (inner tube) [see 
Figure 4.31(a) and (&)] as is the cube with a tunnel pictured in Figure 
4.31(c). Spheres with more than one handle are homeomorphic to 
multitori as Figure 4.32 shows. The sphere is called a singly connected 
surface, which means that any closed curve within it can be shrunk to 
a point and still remain entirely within the surface. Tori and multitori 
surfaces are called multiply connected surfaces, which means that cer
tain closed curves within the surface (e.g., the curves surrounding the 
holes) cannot be shrunk to a point without leaving the surface. 

Figure 4.32 A sphere with three handles is homeomorphic to a triple torus. 
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If a map is drawn on a surface such as a torus or sphere, the value of 
the Euler number, X = F + V - E, can be computed. For example, 
X = 2 for a cube where F, V, and E are the faces, vertices, and edges of 
the cube while x = 0 for the map drawn on the cube with a tunnel (pic
ture frame) shown in Figure 4.31(c). (Check this!) It can be proven 
that maps on homeomorphic surfaces share the same Euler number. 

Although surfaces can be extremely complex, as Figure 4.33 shows, 
this complexity is nicely organized by Theorem 4.5. In it, closed sur
faces are surfaces that enclose a region of space, while oriented sur
faces have well-defined notions of "in" and "out" defined at each point 
on them (see the next section for an example of a nonoriented surface). 

Theorem 4.5 Any closed oriented surface in three-dimensional space is 
homeomorphic to a sphere with h handles. 

The number of handles h characteristic of the surface is called its 
order, or genus. Thus, a sphere is a surface of order 0 while a torus has 
order 1. Euler's formula can now be generalized far beyond its original 
scope. 

Theorem 4.6 For any map on a closed oriented surface homeomorphic to a 
sphere with h handles, 

F+V-E = 2-2h (4.14) 

An elementary proof of this theorem is suggested in [Beck, 1969]. 
The method that we used in Section 4.5 to prove the theorem for the 
plane, i.e., h = 0, fails for h > 0. 

Figure 4.33 Alexander's horned sphere. 
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4.12 The Torus and the Mobius Strip 

Now that we have seen that the nature of graphs depends on the sur
face upon which they are drawn, perhaps the two nonplanar graphs on 
the plane, K5 and K33) can be drawn without crossovers on some other 
surface just as the five brothers' problem was solved on a new surface. 
In fact, we shall show that these graphs can be drawn as planar on a 
torus. 

In order to draw a map on a torus, it is convenient to cut the torus 
open to a period rectangle as shown in Figure 4.34, which is much the 
same as we did for the cylinder in Figure 2.16. The torus is given two 
cuts and the edges a and b where the torus was cut are identified. Fig
ure 4.35 shows an example of a map drawn on the torus with F = 4, 
V = 4, E = 8, and F + V - E = 0. Figure 4.36 shows KB drawn as a 
planar graph on the period diagram of a torus. 

Problem 4.16 Try your hand at drawing K3S as a planar graph on a period 
torus. Cut a cylinder open to a period rectangle with a single crosscut and show 
that K5 and K3 3 are still nonplanar on the cylinder. 

The Mobius strip is an example of a nonoriented surface. A render
ing of this surface by the artist M. C. Escher is shown in Figure 4.37. 
A sailboat making one cycle about a Mobius strip with its sail pointed 
in an "upward" direction, as in Figure 4.38(a), would find its sail 
pointed in the reverse direction after one cycle about the surface. This 
indicates that up and down are ill-defined concepts for a Mobius strip. 
Figure 4.38(a) represents a period rectangle of a Mobius strip. The op
posite orientation of the arrows on the left and right sides of the period 
diagram signifies that the strip is to be given one half twist before glu
ing the identified edges together. 

Figure 4.34 A torus is opened to a period rectangle 
by cutting two loops on its surface. 
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b 

I i ' ' 1 

F4 I F2 I F4 

" F3 | F, ! F3 " 

F4 I F2 ' F4 

I 1 » 1 1 
b 

Figure 4.35 A map with four faces, four vertices, 
and eight edges, i.e., F = V - E = 0, drawn on 
the period rectangle of a torus. 

Figure 4.36 K5 drawn on a torus without crossovers. 

Problem 4.17 Build a Mobius strip by folding it up from its period rectangle. 
Check to see that it is one sided by coloring it with one continuous stroke. Also 
show that it is bounded by a single closed curve. Enjoy its surprising properties 
by cutting it parallel to its edge along its centerline. Build another Mobius strip 
and cut it along a line drawn parallel to the edge but one-quarter of the width of 
the strip. Finally, show that K5 and K3 3 can be drawn as planar graphs on the 
Mobius strip [Struble, 1971]. 

Problem 4.18 Draw a solution to the five brothers' problem on a period torus. 

The following general theorem pertains to nonplanar graphs: 

Theorem 4.7 Any graph that is nonplanar on the plane or a sphere can be rep
resented with no crossings on some closed oriented surface. 

The procedure is simple. Construct a wire model of the graph. 
"Thicken" the edges and solder them together at the vertices as illus
trated in Figure 4.39(a) for a model of K4. It is more of a challenge to 
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(b) 
FIgyre 4.38 Folding up a Mobius strip from a period rectangle. 

( a ) ( b ) 

Figure 4.39 All graphs are planar on the appropriate surfaces 
formed by constructing the graph from wires and thickening the 
wires, (a) K4 embedded in this way in its wire model; (b) K9fS 
drawn on a sphere with one handle. 
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find the surface of lowest order upon which a nonplanar graph is pla
nar. The genus of such a surface is called the genus of the graph 
[Firby, 1982]. Figure 4.39(&) shows that K33 has genus 1 since it is 
planar on a sphere with one handle. 

4.13 Magic Squares 

A magic square is a square matrix of numbers that add up to the same 
value if added along the rows, columns, or diagonals. The following is 
an example of a 3 by 3 magic square: 

4 9 2 

3 5 7 

8 1 6 

Magic squares are ancient mathematical structures that some authors 
feel were used to encode sacred information [Andrews, 1960], [Michell, 
1983], [Critchlow, 1976], e.g., the magic square in Diirer's "Melancho
lia" (see Figure 3.17). 

4.13.1 Construction of a magic square 

There are many ways to construct n by n magic squares. If re is even, 
the procedure is far from straightforward [Andrews, I960], If re is odd, 
the following simple procedure can be used: 

1. Place a 1 in the square beneath the central square. 

2. Place all numbers from 1 to re2 in the square in order. Any given 
number is placed one square below and one square to the right of 
the last number. In this process, think of the square as a period 
torus. A square beneath the bottom square is equivalent to the top 
square of the same column. A square to the right of the last square 
of a row is equivalent to the first square to the left in the same row. 

3. During the process of generating numbers, there may be a number 
already occupying the square for which you are aiming. The rule 
says to deposit the number two steps below the previous number in 
the same column of the period torus. 

4.13.2 Patterns from magic squares 

Once you have generated an n by n magic square, you can use it to 
generate patterns in many different ways. One way is to place the 
numbers from 1 to re2 (the last one) in rows and connect them in the 
order in which they appear in the magic square. For example, the pat-
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Figure 4.40 A magic square pattern. 

tern for the 3 by 3 magic square is shown in Figure 4.40. The numbers 
are connected according to the order in which they appear in the 
square above. 

Problem 4.19 Create a 5 by 5 magic square and draw its pattern, using the 
above procedure. This square represents the planet Mars in ancient cosmology. 
According to John Michell [1983], the Litchfield Cathedral in England was ded
icated to St. Chad, whose feast day is March 2, i.e., the month of Mars. Its un
derlying design is suggested by the magic square for Mars. It is built of red 
brick, the color of Mars. The city of Litchfield was formerly called "Liches from 
Mars," a remarkable set of coincidences. 

Problem 4.20 Ancient cosmology associates the following magic squares with 
the sun, the moon, and the five planets known at that time (in addition to the 
Earth): 3 by 3, Saturn; 4 by 4, Jupiter; 5 by 5, Mars; 6 by 6, the sun; 7 by 7, 
Venus; 8 by 8, Mercury; 9 by 9, the moon. 

1. According to Michell, the sun and the moon governed the underlying struc
ture of the New Jerusalum diagram described in Section 1.2. Generate the 
magic square and patterns for the moon. Since the moon is an odd magic 
square, you can use the above procedure. 

2. The magic square of the sun is 

6 32 3 34 35 1 

7 11 27 28 8 30 

19 14 16 15 23 24 

18 20 22 21 17 13 

25 29 10 9 26 12 

36 5 33 4 2 31 

Draw its pattern. All its numbers sum to 666, a sacred number known in 
Revelation as "the number of the beast." Early Christians associated this 
number with Rome and pagan rites. According to Michell the chapel at 
Glastonbury (see Section 1.2) was destroyed during the Reformation because 
its dimensions embodied this number. 

None of this can be taken too seriously from the vantage point of our 
rational world. Nevertheless, the power that pure numbers held over 
the ancient mind is fascinating. 

4.14 Map Coloring 

Exercise 4.2 Take a piece of paper and make a map by drawing five straight or 
curved lines, each starting and ending at the edge of the paper, and five closed 



Graphs 139 

curves. Your map might look like the one in Figure 4.41(a). How many colors do 
you need to color the map so that two faces that share an edge have different colors? 

It is surprising that even though your map might look like a com
plex work of modern art, you only need two colors [see Figure 4.41(6)]. 
In fact, you would need only two colors regardless of how many lines 
you drew in your map. To see this, draw another line in Figure 
4.41(a), such as the one straight from one corner to the opposite corner 
in Figure 4.41(c). Now to see tha t you only need two colors, all you 
have to do is to reverse all the colors below or above the line you have 
drawn. It will look like the drawing in Figure 4.41(d) [Struble, 1971]. 

Color the maps in Figure 4.21 using the fewest number of colors so 
that no two faces bordering on each other (i.e., those that share an 
edge) have the same color. You should find that no more than four col
ors are needed. Although no one has ever found a map in the plane 
that needs more than four colors, for nearly 100 years mathematicians 
tried in vain to prove this easy sounding result for all maps on the 
plane. Finally, in 1976 two mathematicians, K. Appel and W. Haken, 
succeeded in proving the four-color problem with the help of a com
puter, making it the first problem in pure mathematics to use the 
computer in an essential way. 

Although the coloring problem for the plane (and sphere) was solved 
only recently, it has long been known that seven colors are sometimes 
needed and always enough to color a map on the torus. Figure 4.42 
illustrates two such maps (both isomorphic) called Szilassi Maps on 
period diagrams of a torus. In each map, seven hexagons are drawn so 
that each hexagon borders the other six. Figure 4.43(a) is folded up to 
a torus in Figure 4.43(6) and (c). Another more interesting example of 
a map requiring seven colors will be given in Section 4.16. 

Since the maximum number of colors needed to color a map depends 
only on the genus or order of the surface, and not on the map or shape 

( a ) ( c ) 

( b ) (d ) 
Figure 4.41 A two-color problem. 
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(a) tb) 
Figure 4.42 A Szilassi map with seven hexagonal faces each 
bordering on the other six shown on a period parallelogram. 

( b ) 

( c ) 

Figure 4.43 The seven-color problem on a torus, (a) A period rectangle with 
seven faces each bordering on the other six is folded up (6) to the torus in (c). 
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of the surface, we say that the chromatic number is an invariant of the 
surface [Firby and Gardner, 1982]. The Euler number is another in
variant of the surface (we proved this for a plane surface in Section 
4.5). 

4.15 Regular Maps on a Torus 

Just as there are only five regular maps on the sphere (or plane), there 
are only three classes of regular maps that can be created on a torus. 
As before, we shall call a map regular if each face has identical face 
valence p and each vertex has identical vertex valence q. One such 
map was illustrated in Figure 4.42(6) in which seven hexagons meet 
three at each vertex. Let's prove that there are only three classes of 
regular maps on the torus and find out what they are. 

Once again we make use of Equations (4.9) and (4.10) along with 
Euler's formula for a torus: 

qV=2E pF = 2E and V + F - E = 0 

Replacing the first two equations in the third we get 

E(- + - - I ) = 0 (4.15) 
W P I 

Since E is not zero, the second factor must equal zero. After a little 
algebra this leads to 

(p - 2)(q - 2) = 4 

The only positive integer solutions to this equation are p = 3, q = 6; 
p = 4, q = 4; and p = 6, q = 3 or {3,6}, {4,4}, and {6,3} using Schlafli 
notation. 

There is an important difference between these regular maps and 
the ones on the sphere in Section 4.4. The regular maps on the sphere 
are unique in that their numbers of vertices, edges, and faces are 
fixed. On the other hand, Equation (4.15) shows that the number of 
edges E is indeterminate and therefore so are V and F. Thus the three 
regular maps on the torus are actually classes of maps, and there are 
an infinite number of possibilities in each class. For example, the reg
ular map {6,3} with seven hexagonal faces drawn on a period rectangle 
that has been distorted into a parallelogram was shown in Figure 
4.42(6). The Hungarian mathematician Lajos Szilassi created a poly
hedron based on this map, which will be discussed in the next section. 

In fact, an infinite number of all three classes of regular maps can 
be represented by triangles, parallelograms, and hexagons outlined on 
the tr iangular graph paper shown in Figure 4.44. A different map of 
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Figure 4.44 A triangular grid illustrates the three regu
lar tilings on a torus {3,6}, {4,4}, and {6,3}. 

each class is obtained by adjusting the size of the period parallelogram 
that frames the map. In Section 5.3, the period parallelogram is per
mitted to become infinitely large, which leads to three possibilities for 
regular maps with an infinite number of faces covering the plane. 

4.16 Szilassi and Csaszar Maps 

We would like to focus now on the Szilassi map since it is interesting 
from the point of view of design. We showed in Section 4.14 that this 
map gives an example on the torus of a map that requires seven colors 
to color it. We can make this map come to life in an interesting way. 
The faces of the map become polygons with straight-line edges 
spanned by planar membranes, and these faces combine to form a 
closed surface tha t is a distortion (homeomorph) of a torus. Such a sur
face is an example of a polyhedron, the subject of Chapter 7. One such 
Szilassi polyhedron is illustrated in Figure 4.45 [Gardner, 1978c], 
[Szilassi, 1986]. 

Construction 4.1 Using the patterns in Figure 4.46, construct a Szilassi poly
hedron. Color each of the faces with a different color to demonstrate the need for 
seven colors to color some maps on the torus. 

A dual map to the Szilassi map, called a Csdszdr map, can be drawn 
by placing a vertex in each of the hexagonal faces of the Szilassi map 
and connecting vertices by an edge if the corresponding faces share an 
edge [Gardner, 1975], [Beck, 1969], [Szilassi, 1986]. This dual map 
{3,6} with all tr iangular faces has the property that each of its seven 
vertices are connected to each of the other six, i.e., it is the complete 
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Figure 4.45 A Szilassi polyhedron. 

2« 

graph K7. The Csaszar map can also be materialized in the form of a 
polyhedron as the following construction indicates. 

Construction 4.2 A Csdszdr polyhedron, discovered in 1949 by the Hungarian 
mathematician Akos Csaszar, is pictured in Figure 4.47. It can be constructed 
using the pattern shown in Figure 4.48 where the numbers represent the verti
ces. Vertices 2, 5, 3, and 4 were selected to form a regular tetrahedron (see 
Chapter 7). The edge lengths and interfacial or dihedral angles (see Section 
7.10) are listed in Table 4.2. 

Color the map in the table using the fewest colors. This is equivalent to col
oring the vertices of the Szilassi polyhedron so that no two adjacent vertices 
(connected by an edge) have the same color. 

The Csaszar map gives an example of a map on a torus with the 
property that each vertex is connected by a single edge to each of the 
others, and each of its faces is a simple polygon, with the result that 
no face can have a diagonal. Can other complete graphs be repre
sented as a map on some surface? Certainly the triangle map, K3, and 
the regular map, K4, can be depicted as maps on the plane or sphere. 

In order to find still other maps with each vertex connected to all 
the others, i.e., with faces having no diagonals, we call upon Equa
tions (4.9), (4.10), and (4.14) once again. Since each vertex is con
nected to the others, q = V - 1, and it follows from Equation (4.9) that 

V(V - 1) = 2E 
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Figure 4.46 Patterns for making a model of a Szilassi polyhedron. 

Since no face can have a diagonal, and vertices are connected by a 
single edge, all faces must have exactly three edges; then p = 3, and 
Equation (4.10) becomes 

3F = 2E 

Restating Euler's formula for a surface homeomorphic to a sphere 
with h handles, 

F + V-E = 2-2h 
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Figure 4.47 A Csaszar polyhedron. 

Inserting the first two of these equations into the third and doing 
some algebra yields 

(V - 3)(V - 4) 
h = 12 

where h is an integer. There are an infinity of solutions to this equa
tion. Each solution corresponds to a regular map on some surface. The 
properties of the first three are computed from these equations and 
listed in Table 4.3. 

The case h = 0 corresponds to a regular map of K4 drawn on a 
sphere, while h = 1 represents the Csaszar map K7 drawn on a torus. 
The case of h = 6 has yet to be constructed in the form of a polyhedron. 

4.17 Floor Plans 

4.17.1 Evolution of a floor plan 

Up to now we have focused on some mathematical aspects of graph 
theory. We have shown how graphs follow naturally from the simplest 
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Figure 4.48 Patterns for making a model of a Csaszar 
polyhedron. 

TABLE 4.2 

Edge 

(1-6) 
(2-5) 
(3-4) 

(2-4) = (5-3) 
(2-3) = (5-4) 
(3-7) = (4-7) 

(2-7) = (5-7) 
(1-5) = (6-2) 
(1-2) = (6-5) 
(1-4) = (6-3) 
(1-3) = (6-4) 
(1-7) = (6-7) 

Edge length 

10.00 
24.00 
24.00 
24.00 
24.00 
12.89 
17.15 
18.69 
12.55 
12.55 
17.36 
5.86 

Dihedral angle (degrees) 

76.133 
70.533 
54.433 
51.050 
52.717 

340.133 
74.417 

339.317 
156.850 
204.467 
41.667 

243.500 

TABLE 4.3 

h 

0 
1 
6 

V 

4 
7 
12 

F 

4 
14 
48 

E 

6 
21 
66 

P 

3 
3 
3 

9 

3 
6 
11 

notions of placing dots and lines on a piece of paper and lead to com
plex questions of interest primarily to mathematicians. The remain
der of this chapter is devoted to showing some applications of graph 
theory. In this section we show how graphs provide a natural tool to 
aid architects in developing a floor plan. In the next section we show 
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that the bipartite graph serves as the appropriate tool with which to 
study the bracing of structures, and we conclude this chapter with a 
brief discussion of eulerian and hamiltonian paths through a graph. 

There is a stage in the design process that precedes the concrete 
planning stage. Alexander, whose quote introduces this chapter, has 
written eloquently on this subject [Alexander, 1964]. In this initial 
stage, linkages or connections may be drawn between the various 
components of a design to indicate their relationships to each other in 
the design of an airplane, an industrial process, or a building. These 
linkages, or connections, can be understood and manipulated best by 
using graphs. 

Graphs enable the architect to conceive of the relation between the 
rooms of a building with respect to each other and with respect to the 
outside environment with no need to specify the details of room shape. 
In other words, graphs reveal the underlying structure of a floor plan, 
leaving the details of building planning for the next stage of the de
sign. 

In this section we show how graphs can be used in an evolutionary 
process to design the floor plan of a one-story building. 

4.17.2 From floor plan to graph 

The floor plan of a one-story building can be thought of as a map. This 
is illustrated by Figure 4.49(a). Corresponding to a floor plan, another 
planar graph can be drawn such as the one shown in Figure 4.49(6). 
This graph, called the adjacency graph, places a vertex in each room of 
the floor plan and the exterior and connects vertices if the correspond
ing rooms of the floor plan share all or part of a wall. 

Another way to indicate the connectivity of the rooms in a house is 
shown in Figure 4.50(6). This access graph connects two rooms, repre
sented by vertices of the floor plan in Figure 4.50(a), by an edge if 
there is direct access from one room to the other through a door or par
tition. Access to the exterior is via a window or a door. The access 
graph is generally more relevant to the design of floor plans than is 

E 

L C 

D 

B 

K 

(a) 

Figure 4.49 (a) Floor plan; (6) adjacency graph. 
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Deck Br. 
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Den 

Hall 

Mas. Br. 

' ' 

:u 
Bath 

3 = C 

Deck 

Dining 

3C3 

Living 

Car 

Kitchen 

Ent. 

• • 

( a ) 

Exterior 

Figure 4.50 (a) Floor plan; (&) access graph. 

the adjacency graph. Both access and adjacency graphs are sometimes 
referred to as connectivity graphs of the floor plan. 

A graphical analysis of three house projects by Frank Lloyd Wright 
are shown in Figure 4.51(a), (&), and (c) [March and Steadman, 1974]. 
Although the overall designs of these houses are square, circular, and 
triangular, respectively, the access graph—identical for all three 
houses—is shown in Figure 4.51(d). Thus Wright's rich repertoire of de
signs led to strikingly different final results using the same underlying 
structure. This also illustrates the potential value of the graphical 
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(c ) 

B bedroom F family room O office 
B' Sundt bedroom / bathroom P pool 
C car port K kitchen T terrace 
D dining-room L living-room Y yard 
E entrance 

Figure 4.51 Three houses by Wright: (a) Life house, 1938; (b) Ralph Jester 
house, 1938; (c) Vigo Sundt house, 1941; (d) access graph for the three 
projects. The dotted lines refer to the additional bedroom, B, in the Sundt 
house. 

method when used by a skillful designer, although there is no evi
dence that Wright used this method himself. 

4.17.3 From adjacency graph to floor plan 

It is more important in designing a building to be able to go from the 
adjacency or access graph to the floor plan. For simple adjacency 
graphs this can be done directly. 
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Problem 4.21 Draw the floor plan of a four-room house in which each room bor
ders on the other three, i.e., K4 is a subgraph of the adjacency graph. 

Not every adjacency graph results in a floor plan on one story, as 
the next problem shows. 

Problem 4.22 Try to draw the floor plan of a five-room house in which each 
room borders on the other four, i.e., K5 is a subgraph of the adjacency graph. 
Why can't this be done? 

If the adjacency or access graph is planar, a one-story floor plan can 
be constructed as the dual to this graph. In this section we outline a 
procedure for generating a floor plan from partial information about 
the access graph and apply it to generating the structure of Wright's 
Blossom House shown in Figure 4.52(6) [Rowe, 1976]. 

Step 1. The access graph generally emerges from the first step in the 
design process. The architect begins by obtaining a partial list of re
lationships between the rooms of the building from the client, i.e., a 
partial list of adjacencies is given for a house («-» means "is connected 
to"). For example, 

a Conservatory 
b Rear porch 
c Dining room 

d Butler's pantry 
e Kitchen pantry 
f Kitchen 
g Terrace 
h Living room 

i Stairs 
j Library 

k Hall 
I Reception room 
m Porch 

*-» c 

** / 
«-» d,h 
<-> c, e 

** d,f 
«-» b, e, 

<-» h 

** c,g, 

** f . h 
«-» k 

*+ h,j, 
<-» k 

<-> k 

These accesses can be summarized by an incidence matrix (not shown; 
see Section 4.2), in which the sum of all the Is in each row represents 
the number of rooms that access a given room. 

An incomplete access graph is drawn [see Figure 4.52(a)]. Notice 
how the accesses correspond to those in the actual floor plan of the 
Blossom House shown in Figure 4.52(6). Also, notice that a vertex cor
responding to the exterior of the house has not been included in the 



Graphs 151 

Conservatory 5 ) Rear Porch 

Kitchen 

Stairs 

( b ) 

Figure 4.52 (0,6) A partial access graph and floor plan of 
Wright's Blossom House; (c) completed access graph of the 
Blossom House shown with open vertices and dual map or 
rough floor plan shown with closed vertices. 
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O Vertices of Adjacency Graph © Vertices of Plan Graph 

( c ) 

Figure 4.52 (Continued) 

access graph. In order to generate the floor plan, it is essential to in
clude the exterior or outside vertex. 

The architect must see whether this partial list of connectivities can 
be realized as the floor plan of a one-story building. This can be done 
if this partial access graph is a planar graph (as it is in this case). In 
general, the access graph will have many edge crossings and will have 
to be redrawn with no crossing edges before proceeding to the next 
step. The technique for drawing such planar graphs was described in 
Section 4.10. 

Step 2. The architect completes this partial list of relationships to ob
tain a complete access graph of the floor plan that satisfies both the 
client's wishes and the architect's design sense. This is shown by the 
open dots in Figure 4.52(c) where the architect has connected the liv
ing room to the butler's and kitchen pantries and to the library in ad
dition to specifying which rooms have openings to the exterior repre
sented by the black dot. 

Step 3. The dual map, whose vertices are shown with closed dots, is 
superimposed in Figure 4.52(c) upon the access graph. The dual of a 
planar access graph is, in general, a rough floor plan in that the walls 
encircle spaces representing the rooms in an amorphous way. One 
trick to drawing a coherent dual is to make sure that the vertex rep-
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resenting the exterior face of the access graph, labeled o in Figure 
4.52(c), is on the opposite side of the dual map from the vertex of the 
dual representing the outside face of the access graph, labeled 1 in 
Figure 4.52(c). 

Step 4. A problem can arise in generating the floor plan if the exte
rior face appears as an interior face in the dual. This is not the case in 
our example, but it can easily happen if the dual is drawn differently 
[see Figures 4.26(a) and (c)]. If the outside face does appear as an in
ner face of the dual, the dual must be redrawn with the exterior face 
on the outside. The method for doing this is to place the map on a 
sphere, puncture the face o, and stretch it out to the plane. The pro
cedure for drawing a map with a given face on the outside was de
scribed in Section 4.4. 

Step 5. In the last step in the evolution of the floor plan, the rough 
floor plan is changed into a more satisfactory design by distorting the 
rooms without altering their connectivities as shown by the actual 
floor plan of the Blossom House in Figure 4.52(6). Notice tha t the final 
form of the floor plan is suggested in its rough outlines by the dual 
map. It is at this final step in the evolution of a floor plan that the 
design instincts of the architect enter the process. This method is use
ful to the architect if it suggests possibilities for the design which may 
not have been obvious to him or her from the start. 

Remark 1. This procedure can also be used to design rooms of a mul
tistory dwelling if the rooms on each story are separated and the 
rooms on two different levels are connected by a stairwell. 

Problem 4.23 It is an interesting design exercise to take an existing floor plan 
and exchange some centrally connected space with the exterior while maintain
ing all of the connectivities, i.e., adjacencies or accesses, from room to room. This 
is done by the method developed in Section 4.4 where the dual map is placed on 
a sphere and the space to become the exterior is punctured and the dual redrawn 
with this space as the outside face. Try this idea out for the Blossom House 
where the living room is to be exchanged with the exterior. Before proceeding, it 
is best to number the vertices of the dual in order to keep track of the connec
tions of vertex to vertex during the exchange. 

Problem 4.24 In a somewhat artificial example, a client has requested an ar
chitect to build a house with the following adjacencies: 

b bedroom b <-» c, d, e 

c circulation space c <-» b, k, I 
d dining room d *^b,k, I 
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e exterior 

k kitchen 

I living room 

e «-» b, k, I 

k ** c, d, e 

I <-» c, d, e 

Draw the connectivity graph and construct a floor plan as the dual of the con
nectivity graph. Show that if the kitchen is required to border on the exterior, 
the floor plan cannot be realized. Why? Relocate the kitchen so that the floor 
plan can be realized. 

Construction 4.3 Starting with a hypothetical set of client constraints, apply 
the five-step procedure of this section to create a floor plan of a house, office 
suite, school, etc., that satisfies these constraints. 

4.18 Bracing Structures 

In this section we discuss a graphical solution to a problem of bracing 
an architectural structure. This problem is, for the most part, repro
duced from Incidence and Symmetry in Design and Architecture by 
Jenny A. Baglivo and Jack E. Graver [1983], who based their exposi
tion on the work of E. Bolker and H. Crapo [1977]. The structure is a 
rectangular grid of squares whose edges are steel beams which are 
pin-jointed at each point. Although each beam in the grid is rigid, the 
structure itself is not since there is flexibility at the joints. Figure 4.53 
shows some possible movements of 1 by 1 and 2 by 3 grids. 

We are interested in bracing the structure to make it rigid. The 
grids in Figure 4.53 can be made rigid by adding cross braces to each 
square as shown in Figure 4.54. However, considering the high build
ing costs, we wish to make these structures rigid by adding the fewest 
number of crossbeams possible. 

Experiment 4.1. Many of the ideas discussed here can be tested by us
ing a model of a rectangular grid constructed from cardboard strips 
and roofing nails. For each beam use a strip of cardboard which is 3 
inches by Vz inch; for each crossbeam, use a strip of cardboard which is 

& 

Figure 4.53 Some movements 
which can occur in a simple 
square and 2 by 3 grid. 
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Figure 4.54 Bracing a structure 
to make it rigid by adding a 
crossbeam. 

(b) 

4 inches by V2 inch. Punch holes in the cardboard strips with centers 
Vi inch in from the ends (see Figure 4.55). The holes should be as near 
to the same diameter of the roofing nails as possible. Thirty nails, 49 
strips, and 10 long strips are sufficient for the experiments of this sec
tion. Experimental grids are constructed by placing the nails straight 
up, on a smooth surface, and slipping the short strips over them to 
form the grid. 

1. Construct a simple square. Note that the opposite sides remain par
allel however you distort the square. Now place one of the long 
strips on the diagonal of the square and observe how it becomes 
rigid. 

2. Construct a 3 by 3 grid. Experimentally find the minimum number 
of crossbeams that will make this structure rigid. 

To pursue the discussion further, we need to define certain terms. 
By a bracing, we mean a collection of crossbeams placed in an n by m 
grid. By a rigid bracing, we mean a bracing which makes the grid a 
rigid structure, that is, in which the only movement possible for the 
grid is as a single unit. We are interested in characterizing the mini
mum rigid bracings, tha t is, those which use the smallest possible 
number of crossbeams. We call this the bracing problem. 

For a minimum rigid bracing, removal of a single crossbeam de
stroys the rigidity of the structure. Although it is possible tha t differ-

, . < 
Jm. 1 

6 

i in. 1 

1 

6 

2} in. 

31 in. 

1 , . 
1 J in. 

1 

6 

' i in. 1 

1 

Figure 4.55 Cardboard strips for a bracing experiment. 
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ent minimum bracings might require different numbers of cross
beams, this turns out not to be the case. 

In Figure 4.56, we compare several bracings of a 3 by 3 grid. 
Bracings (a) through if) are all rigid. The others are not. Distortions of 
bracings (g), (h), and (i) are also included in the figure. Bracings (d), 
(e), and (/) are minimum rigid bracings. 

Experiment 4.2. Construct all of the bracings that are illustrated in 
Figure 4.56 and check the statements that have been made about 
them. Can you draw any general conclusions from your experiments? 

Consider an n by m grid. (For the purposes of illustration, we will 
continue to use a 3 by 3 grid.) The vertical beams along one row of 
squares of the grid will be called the elements of the row. Correspond
ingly, the horizontal beams down one column of squares of the grid 
will be called the elements of the column. The following lemma gives a 
very simple, but useful, observation about the movement of elements 
in any distortion of the grid. Figure 4.57 illustrates this lemma. 

Lemma In any distorted grid all the elements of a row (column) are parallel. 

Consider the 3 by 3 grid in Figure 4.58(a). By bracing the square in 
the second row and first column, the first two elements of row 2 are 
perpendicular to the middle elements of column 1. But then, by the 

(a) 
$ 

$ $ 
(d) 

i 
1Z0 (g) / 

/ 1 

(b) 

/ 

/ 

/ 

/ 

4 
7 (e) 

/ / 

/ 

/ 

/ (h) 

/ 

/ 

/ 

/ 

(c) 
* 

/ 

/ (f) 4 / / 

/ (0 
* 

/ 

/ 
Figure 4.56 Some bracings of a 3 by 3 grid. 

* 

/ 
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Figure 4.57 In any flexing of a 
grid the elements of each row 
and each column remain paral
lel. 

Elements of row . Elements of column l 

a 

Figure 4.58 By the lemma, the elements of row 2 are perpen
dicular to the elements of column 1. 

lemma, all of the elements of row 2 will be perpendicular to all the 
elements of column 1 under any distortion. This is illustrated in Fig
ure 4.58(6). (Using your model of the 3 by 3 grid, verify these state
ments.) 

A rigid bracing has the properties that the elements in a fixed row 
are parallel to the elements in every other row; the elements in any 
column are parallel to the elements in every other column; and the 
elements of each row are perpendicular to those of each column. This 
sounds as though there are very many constraints on the structure, 
but let us take the analysis of the lemma one step further. Consider a 
3 by 3 grid as braced in Figure 4.59(a), and place a second crossbeam 
on the second row and the third column position of our grid [see Fig
ure 4.59(6)]. As before, the elements of row 2 will always be perpen
dicular to the elements of column 3. Since the first crossbeam assured 
us that the elements of row 2 would be perpendicular to those of col
umn 1, we can conclude that the elements of columns 1 and 3 will be 
parallel no matter how we distort the grid. This is illustrated in Fig-
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(fl) 

/ / 

Figure 4.59 By the lemma the elements of row 2 are perpendicular 
to the elements of columns 1 and 3. 

ure 4.59(6). Thus, we have satisfied three of the constraints using only 
two crossbeams. By properly placing additional crossbeams we will be 
able to control all of the constraints. But the analysis is delicate. The
orem 4.8 provides a quick method for knowing where to place the 
crossbeams to ensure a rigid bracing and how many crossbeams are 
needed for a minimum rigid bracing. 

We now have the basis for a theoretical method of dealing with the 
bracing problem. Consider an n by m grid. Represent the rows by n 
vertices labeled r1,r2, • • • ,rn, and represent the columns by m vertices 
labeled cltc2,... ,cm. If the square which is in row i and column j is 
braced, we place an edge between vertices rt and Cj. A bracing of the 
grid can then be represented by a subgraph of the complete bipartite 
graph Knm; we call this the bracing subgraph of that bracing of the 
grid. The bracing subgraphs of three of the bracings in Figure 4.56 are 
pictured in Figure 4.60. A careful study of these subgraphs leads to 
the following observations: first, the bracing subgraph for the mini
mally braced grid, Figure 4.56(d), is a tree; second, the bracing 
subgraph for the nonrigid grid, Figure 4.56(/J), is not connected; third, 
the bracing subgraph for the overbraced grid, Figure 4.56(a), is con
nected but contains a circuit. These observations, along with observa
tions from other examples, lead to Theorem 4.8. 

(c ) 

Figure 4.60 Bracing subgraphs for three bracings in Figure 4.56 
illustrating Theorem 4.8: (a) minimally braced grid; (6) nonrigid 
grid; (c) overbraced grid. 
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Theorem 4.8 

1. A bracing of an n by m grid is rigid if and only if the corresponding bracing 
subgraph is connected. 

2. A bracing of an n by m grid is a minimum rigid bracing if and only if the 
bracing subgraph is a tree. 

Since we know the relationship between the number of vertices and 
edges for a tree graph is given by E = V - 1, we see that every rigid 
bracing of an n by m grid contains at least n + m - 1 crossbeams. Fur
thermore, if a rigid bracing contains more than n + m - 1 
crossbeams, it is always possible to find a set of beams to delete with
out affecting the rigidity of the structure. 

proof The proof is presented here only in its most general outlines. If the brac
ing subgraph is connected, there is a connected path leading from any row r to 
any column c, e.g., r = rh, cit r,-, ch = c. By applying the lemma, it can be shown 
that each element of row rh and r,- is perpendicular to each element of column ct 

and that each element of columns c; and ck is perpendicular to each element of 
row rj. From this we infer that each element of rh is perpendicular to each ele
ment of ck and in particular the element of the grid in the hth row and &th col
umn must be a square. Thus bracing the square in the row rh and column ck does 
not alter the rigidity of the grid. By the same argument each square of the grid 
can be shown to be effectively braced. Part (2) of the proof follows from the fact 
that a tree is a connected graph with the least number of edges. 

4.19 Eulerian Paths 

It is thought that graph theory had its origin in a paper written by 
Euler in 1736. In this paper Euler used graph theory to solve several 
popular puzzles of the time, such as the bridges of Koenigsberg [Ore, 
1963], [Euler, 1979]. 

The different parts of the city of Koenigsberg, today known as 
Kalingrad, lay on either bank of the river Pregel, between a fork in 
the river and on the island of Kneiphof as shown in Figure 4.61(a). 
Seven bridges connected the various parts of the city, and people had 
always wondered whether it was possible to walk across all seven 
bridges without retracing a bridge. 

Euler saw that the problem could more easily be studied by reduc
ing island and banks to points and drawing a graph (or, as we will 
sometimes say, a network), in which two points are connected by an 
edge whenever there is a bridge connecting the corresponding land 
masses, as shown in Figure 4.61(6). 

In this way Euler was able to abstract the problem so that only in
formation essential to solving the problem was highlighted and he 
could dispense with all other aspects of the problem. It is for this rea
son that graphs find great utility as a conceptual tool in many differ
ent disciplines. 
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( b ) 

Figure 4.61 The seven bridges of Koenigsberg (a) as originally 
drawn by Euler in the Proceedings of the St. Petersburg Acad
emy of Sciences in 1736; (b) as a graphical representation. 

The Koenigsberg bridge problem is an example of a class of similar 
problems concerning graphs that can be stated as follows: 

Given a connected graph, find a path that traverses each edge of the 
graph without retracing an edge. 

Such a path is called an eulerian path, or E path as we shall refer to 
it. If the beginning and end point of the Euler path are the same, 
the eulerian path is called an eulerian circuit. Restat ing this prob
lem leads to a famous ra iny day recreation: Can you draw a given 
graph without taking your pencil off the page and without retracing 
edges? 

Problem 4.25 Which of the graphs shown in Figure 4.62 can this be done for? 
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Figure 4.62 Which of these graphs have Euler paths? 

After attempting to find E paths in several graphs, it is natural to 
ask whether there is some simple criterion by which you can predict, a 
priori, whether a graph contains such a path. Some experimentation 
and application of logic should convince you that in order to have an E 
path, whenever the path enters a vertex, there must be another path 
that leaves it. The only exceptions to this rule occur for the beginning 
and ending point of the path, if these points are different. Restating: 

A necessary condition for the existence of an eulerian path through a con
nected graph is that all vertices be even, i.e., have even vertex valence 
with the possible exception of two. 

What is somewhat surprising is that this simple condition also guaran
tees that the graph contains an E path. However, we will not prove this. 

Problem 4.26 The graph shown in Figure 4.63 represents the hallways of a mu
seum. Pictures are to be hung on one side of each hall. If possible, design a tour 
that will enable a person to see each exhibit exactly once. Indicate where the 
entrance and exit should be built. Number the edges and represent the tour as a 
sequence of edges. 

r*v 

Figure 4.63 A schematic of the 
circulation space of a museum. 
Does this graph have an Euler 
path? If so, find it. 
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r~ ~i r n 

i i i 
Figure 4.64 Find a path through each of these 
floor plans that goes through each door exactly 
once. 

Problem 4.27 A floor plan is shown in Figure 4.64 for a five-room house. All 
doorways are shown. If possible, design a walk that takes a person through each 
doorway once only. 

Along with his discovery of graph theory, Euler set forth the gen
eral properties of networks in a set of four rules [1979]: 

1. The number of odd nodes must be even or zero (handshake lemma 
of Section 4.6). 

2. If a network has no odd nodes, it can be traveled along a path using 
all the edges without repeating an edge, beginning and ending at 
any node (i.e., there exists an Euler cycle). 

3. If a network has only two odd nodes, it can be traveled along an E 
path that begins at one of them and ends at the other one. Any 
route (a path with no repeating edges) that begins at an even node, 
however, cannot traverse the network on an E path. 

4. Any network that has more than two odd nodes can be fully ex
plored by several disconnected routes without traveling over a 
branch more than once. If it has 2n odd nodes, it can be fully ex
plored in n routes, each traveled on an E path. 

Problem 4.28 This is an old puzzle that asks whether you can draw the diagram 
in Figure 4.65 with three strokes of the pencil. You are not permitted to go over 
any line twice. Use Euler's rules to analyze this problem. 

Jearl Walker [1986] shows how networks can be used to solve 
mazes. There are procedures guaranteeing that one can find a path 
through a maze, if such a path exists, even when no map is explicitly 

Figure 4.65 Can you draw this 
with three strokes of your pen? 
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given. Other procedures enable people who are lost to retrace their 
steps to the beginning of a labyrinth. Also, some of the procedures use
ful in exploring a maze have applications to problems of computer pro
cessing, traffic control, electrical engineering, and many other fields. 

4.20 Hamiltonian Paths 

As simple as it is to find a necessary and sufficient condition for a 
graph to have an eulerian path, the problem of finding those condi
tions that predict when a graph possesses a path containing each ver
tex of the graph once only has yet to be solved. Such a path is called a 
hamiltonian path, or H path, after the mathematician William Rowan 
Hamilton, who first studied this problem. 

Problem 4.29 Find a hamiltonian path through each of the regular maps shown 
in Figure 4.66(a). Which of them does not possess an eulerian path? Show that 
the graph in Figure 4.66(6) has no hamiltonian path. 

Donald Crowe shows how H paths of two-, three-, and higher-
dimensional cubes can be incorporated into a strategy for solving an 
old puzzle known as the Towers of Hanoi [Beck et al., 1969]. For this 
puzzle, N circular discs with holes in their centers, each with a differ
ent radius, are piled on one of three posts in order of decreasing radii 
as shown in Figure 4.67. The object of the puzzle is to transfer the 
discs to the last post so that they appear, once again, in order of de
creasing radii. The middle post can be used for intermediate transfers, 
but at no time in the transfers can a disc of larger radius sit atop one 
of smaller radius. The total number of transfers to transfer N rings is 
2^ - 1. A legend surrounding this puzzle has the priests at the high 
temple of Benares working day and night to transfer 64 rings from one 

DODECAHEDRON OCTAHEDRON ICOSAHEDRON 

( a ) 

RHOMBIC DODECAHEDRON 

(b ) 

Figure 4.66 (a) The five regular maps on the plane or sphere. Each of them has a 
hamiltonian path, (b) A graph with no hamiltonian path (the correspondence of these 
graphs to polyhedra will be explained in Section 7.5). 
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Figure 4.67 The Tower of Hanoi. 

diamond needle to another at the center of the world after which 
"tower, temple, and Brahmins alike will crumble into dust, and with a 
thunderclap the world will vanish." However, undue worry is not 
called for since it takes 18,446,744,073,709,551,615 moves to carry 
this out. 

We find that the order of the vertices in the H path of an n-
dimensional cube (hypercube) yields a strategy for carrying out the 
transfers of N rings. For example, a two-dimensional cube, or square, 
and its H path is shown in Figure 4.68. If movements to the left or 

(a) 

lb) 

2< 

( c ) 

(d) 

Figure 4.68 Hamiltonian paths on a (a) line segment; (6) square; (c) cube; 
(d) tesseract (four-dimensional cube); (e) directions of the one-, two-, three-, 
four-cubes. 
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right are considered as movements in the first dimension, while move
ments up and down are movements in the second dimension, the se
quence of moves constituting the H path of the two-dimensional cube, 
using the vectors in Figure 4.68(e), is 121 as shown in Figure 4.68(6). 
But this is also the strategy for transferring two discs from post 1 to 
post 3, where disc 1 is the smaller of the two discs, i.e., transfer disc 1 
to post 2, then disc 2 to post 3, then disc 1 to post 3. 

Likewise, the strategy for transferring three rings is 1213121, 
which corresponds to the H path of the three-dimensional cube where 
3 refers to a movement in the third dimension, as shown in Figure 
4.68(c). (Check to see that this strategy succeeds in transferring the 
three rings.) 

This line of thinking to an H path for a four-dimensional cube yield
ing the strategy for transferring four rings: 121312141213121. But 
what do we mean by a four-dimensional cube? Strictly speaking, we 
are unable to represent such a cube in three-dimensional space, but 
we can depict its three-dimensional projection by taking each of the 
eight vertices of the cube and translating them one unit in a given di
rection as shown in Figure 4.68(d), similar to the way the three-
dimensional cube was generated from the two-dimensional cube. 

Problem 4.30 Another three-dimensional projection of a four-dimensional cube 
is shown in Figure 4.69(a). You can see that it divides space into eight compart
ments, C, counting the exterior of the cube as a compartment. Count edges, 
faces, and vertices and show that they satisfy Ludwig Schlafli's generalization 
of Euler's formula: 

F-E + V-C = Q (4.16) 

(a) (b) (c) 

Figure 4.69 (a) Cube in four-dimensional space; (b) Tetrahedron in four-dimensional 
space; (c) octahedron in four-dimensional space. 
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Verify Schlafli's equation for the projection of a four-dimensional tet
rahedron, shown in Figure 4.69(6) and a four-dimensional octrahedron 
shown in Figure 4.69(c). Notice that each vertex in the 4-cube and 4-
tetrahedron is 4-valent (q = 4); each edge is in common to three cells, 
while each face is in common to two cells. Graphs with these valencies 
or greater possess the necessary condition of a family of graphs known 
as 4-polytopal graphs since they are graphical representations of poly-
hedra in four-dimensional space [Coxeter, 1973]. Such graphs will 
play an important role in determining the rigidity of three-
dimensional structures in Section 7.8. 

Four-dimensional and higher-dimensional cubes are now being used 
as optimal networks for the flow of information in parallel processing 
computers [Hillis, 1987]. It should also be mentioned in passing that 
the old Chinese rings puzzle [Ball, 1967] is essentially the same as the 
Tower of Hanoi. That is, the solution to the Chinese rings—suitably 
interpreted—gives the same hamiltonian circuit on the rc-cube as the 
Tower of Hanoi. We can say that the Tower of Hanoi, the Chinese 
rings, and the ^-dimensional cube have isomorphic structures. In Sec
tions 10.13 and 10.14 we shall see that /i-dimensional cubes play an 
important role in characterizing polyhedra. 
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5 
Tilings with Polygons 

Pattern is born when one reproduces the 
intuitively perceived essence. 

SOETSU YANAKI, UNKNOWN CRAFTSMAN 

5.1 Introduction 

Something basic in the human mind has led us to create repeating 
patterns of geometric shapes. Such patterns have been woven into fab
rics or carved and painted on the walls of temples and buildings since 
the dawn of civilization. In nature, the surface of the skin or the stalks 
of a plant reveal intricate patterns of geometric shapes. Artists and 
architects also work at subdividing space in ways that are pleasing to 
the eye. From the point of view of design, the possibilities for creating 
geometric patterns that cover the entire plane or a limited region of 
the plane are endless. In this chapter we will examine several of these 
patterns with an eye to understanding their underlying structures. 
Once a simple pattern is generated, it can serve as the source of count
less other patterns which are transformations of it and widen the rep
ertoire of interesting possibilities. 

In Chapter 4 the edges of a graph were shown to be completely 
amorphous and to have the function of indicating connections between 
pairs of vertices. The faces of a map were shown to be equally mallea
ble and were defined by cycles of vertices and edges. Now we consider 
the edges to be straight and of definite lengths and the cycles of edges 
and vertices to define polygons in the usual geometrical sense. The 
polygons are arranged to fill up the plane without gaps. Such tilings, 
also known as tesselations, pavings, or mosaics, have appeared in hu
man activities for millennia. 

The geometry of tiling played a central role in the art, science, and 
culture of Islam. The first mathematical investigations of tilings were 
carried out by Kepler three and a half centuries ago. Much of what is 
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presently known about this ever-growing subject can be found in B. 
Griinbaum and G. C. Shephard's Tilings and Patterns [1987]. In the 
tilings that we will study, two tiles will be disjoint, will share a single 
vertex, or will share an entire edge. These, so-called, edge-to-edge 
tilings eliminate many possibilities but enable us to consider tilings 
as extensions of the maps of Chapter 4. Try the following exercise be
fore reading further. 

Exercise 5.1 Get a piece of triangular graph paper like the kind shown in Fig
ure 4.44 and draw a few designs. The triangular grid is an extremely versatile 
design medium. Many of these designs have the appearance of patterns found in 
Islamic art (see Figure 5.1). 

Exercise 5.2 Get some marshmallows and toothpicks. Find as many patterns as 
you can with the restriction that all marshmallows are surrounded by identical 
patterns of polygons. 

In this chapter, we first focus on tilings in which the same number 
and order of a single kind of polygon surrounds each vertex of the til
ing. We refer to these as regular tilings. They are regular maps in the 
sense of Section 4.15. Generally the polygons we will consider will 
have equal angles and edges, although occasionally we will deviate 
from this restriction. We will refer to such polygons as regular poly
gons, which should not be confused with regular tiling. 

Next we look for tilings known as semiregular tilings, in which 
more than one kind of polygon surrounds each vertex. We then con
sider several ways in which tilings can be transformed to develop in
teresting designs based on regular and semiregular tilings including 
the parquet deformations of William Huff, the movable tilings of 
William Varney, and the shadow-and-light transformations of Janusz 

(a) (b) (c) 
Figure 5.1 The versatility of the triangular grid. These 
Eire created by shading a portion of the grid enclosed by 
the circle. 
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Kapusta. Some designs based on a special class of tilings with penta
gons are presented, as is a unified approach to origami based on 
tilings by modular units discovered by Peter Engel. The chapter con
cludes with a brief discussion of Islamic art. First let's find out a few 
things about polygons. 

5.2 Polygons 

5.2.1 Convex polygons 

The sum of the internal angles of a polygon with n sides is 

2 9 = 180 (n - 2) 
v 

An easy way to see this result is to recognize that any polygon can be 
triangulated—that is divided into triangles as shown in Figure 5.2. In 
each case the number of triangles is two less than the number of sides. 

< $ 
Figure 5.2 A pentagon divided by diagonals into 
three triangles. 

The average angle of a polygon is the sum of their angles divided by 
the number of angles, which equals n (the number of sides). That is 

For regular polygons (not to be confused with regular tilings) with n 
sides, denoted by {n}, the internal angles are all identical (and so are 
the edge lengths), and so each interior angle equals the average value. 
Some internal angles of regular polygons are listed in Table 5.1. These 
are the only polygons which arise in the tilings of this chapter and as 
the faces of the polyhedra of Chapters 7 through 10. 

5.2.2 Star polygons 

If the edges of a triangle are extended, they do not envelop any new 
regions of space as shown in Figure 5.3(a). The same goes for a square 
[see Figure 5.3(6)]. However, the sides of a pentagon intersect to pro
duce the star-shaped figure shown in Figure 5.3(c). Star polygons can 
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TABLE 5.1 

n 6 (degrees) 

3 60 
4 90 
5 108 
6 120 
8 135 

10 144 
12 150 

iK 
( a ) ( b ) ( c ) 

Figure 5.3 Star polygon formed as a convex polygon. 

serve both as tiles to tile the plane (see Section 5.9) and as the faces of 
polyhedra (see Section 7.14). They are also very interesting objects 
from a mathematical point of view. 

In general, a star polygon is obtained by drawing a circle with a 
compass [Davis and Chinn, 1969]. Readjust the opening of the com
pass but make sure that it is not greater than the diameter of the cir
cle. Place the compass point anywhere on the circle, say at point Plt 

and allow the pencil to intersect the circle at P2. Place the compass 
point at P2 and intersect the circumference at P3. Proceed in this man
ner always in one direction either clockwise or counterclockwise. This 
yields a sequence of points, Pv P2, P3> • •. and chords PiP2, ^Vs>- • • • The 
question is, will the points ever come back and fall on the first point? 
Or, said another way, will the polygons ever close? The answer de
pends on the ratio of the circumference of the circle to the length of arc 
marked out by the compass setting. If this ratio is an integer n, the 
points return after one revolution and result in the regular ra-gon, {n}. 
If the ratio is a rational number, m/n, the points return after m revo
lutions and result in a star polygon, {n/m}. If the ratio is irrational, the 
points never return but become dense on the circumference of the cir
cle, as we saw in Section 3.7.2, when laying down stalks around the 
periphery of a plant at irrational angles based on the golden mean. 

In this way, several species of n-gons can be obtained by placing n 
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evenly spaced points on a circle and by connecting every third point on 
the circumference or every fourth point, etc. If this is done for a seven-
sided figure, three distinct species of heptagon are obtained, as shown 
in Figure 5.4. One is a regular heptagon, {7}. One closes after two 
turns, {7/2}. The other closes after three cycles, {7/3}. Contrast this 
with the polygons arising from circles with eight points shown in Fig
ure 5.5. There are only two species, the regular octagon, {8}, and the 
star octagon, {8/3}. Instead of {8/2} the octagon breaks into two 
squares, and in place of {8/4}, the polygon degenerates to an intersect
ing set of line segments. In general, a polygon or star polygon {n/m} 
with n sides is obtained by connecting every mth. point on the circum
ference of a circle whenever n and m have no common factors, i.e., 
they are relatively prime (see Appendix l.A). 

The preceding relationship between the geometry of star polygons 
and the theory of numbers was discovered by Louis Poinsot, a French 
mathematician [Davis and Chinn, 1969]. Gauss discovered that poly
gons with a prime number of sides could be constructed using only a 
compass and straightedge if and only if the number of sides was fig
ured by the formula 

N = 22" + 1 

Since n = 0,1, 2, 3, 4 leads to the primes 3, 5, 17, 257, 65,537, these 
polygons can be constructed with compass and straightedge. However, 
n = 5 leads to a composite number (not prime) and so it cannot be con
structed, showing a close relationship between geometry and the the
ory of numbers. 

One note of caution about star polygons. There is sometimes confu
sion between star polygons and polygons with the shape of stars (see 
Section 5.9). For star polygons, the points at which the edges intersect 
are not vertices, whereas these points are vertices of the star-shaped 
polygons. These latter polygons are examples of nonconvex curves. 
Convex curves such as the one shown in Figure 5.6(a) are curves that 

Figure 5.4 Three star heptagons. 
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o 
( a ) ( b ) ( c ) ( d ) 

Figure 5.5 Four star octagons (one is not connected and another is degenerate). 

( a ) ( b ) 

Figure 5.6 (a) A convex curve; (b) a. nonconvex curve. 

have no indentations while nonconvex curves have bulges or depres
sions such the one in Figure 5.6(6). A closed convex curve is defined to 
be one such that any two points placed within it can be connected by a 
straight line also lying within the curve as shown in Figure 5.6(a). If 
part of the connecting line lies outside of the curve for some pair of 
internal points, as shown in Figure 5.6(6), the curve is nonconvex. 

Star polygons have also been used as mystical symbols, and they have 
been incorporated in mandalas such as the sacred Sri Yantra diagram 
shown in Figure 5.7. According to John Michell [1988], the star heptagon 
makes a surprise appearance in the New Jerusalem pattern shown in 
Figure 1.3. As Figure 5.8. illustrates, four star heptagons fit exactly into 
the pattern of 12 spheres, marking off 28 equal intervals of the lunar 
month. In this way the solar and lunar cycles are combined in a single 
geometric construction. Michell also feels that this unusual coherence of 
an irregular 12-gon with a star 7-gon is at the very foundation of the 
New Jerusalem as it is described in Revelation 21: 

Then one of the seven angels that held the seven bowls full of the seven 
plagues came and spoke to me and said, "Come, and I will show you the 
bride, the wife of the Lamb." So in the spirit he carried me away to a high 
mountain, and showed me the holy city of Jerusalem coming down out of 
heaven from God—It had a great high wall, with twelve gates, at which 
were twelve angels; and on the gates were inscribed the twelve tribes of 
Israel. There were three gates to the east, three to the north, three to the 
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Figure 5.7 The Sri Yantra is drawn from 9 triangles, 4 pointed 
downward and 5 pointed upward, thus forming 42 triangular frag
ments around a central triangle. 

south, and three to the west. The city wall had twelve foundation-stones, 
and on them were the names of the twelve apostles of the Lamb. 

5.3 Regular Tilings of the Plane 

Buried in the triangular grid of Figures 4.44 and 5.1 are three regular 
tilings of the plane by congruent polygons: a tiling with triangles, six 
surrounding each vertex, or {3,6}; parallelograms, four surrounding 
each vertex, or {4,4}; and hexagons, three surrounding each vertex, or 
{6,3}, pictured in the top row of Figure 5.12. Here we use the Schlafli 
notation \p,q) where p is the face valence and q is the vertex valence of 
the map. 

Each of these tilings is a regular map in the sense of Section 4.7 
with the property that each vertex is surrounded identically by con
gruent faces. If we restrict ourselves to regular tilings with regular 
polygons, we can prove one of the oldest results from the theory of 
tilings. 
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Figure 5.8 References throughout the chapters of Revelation to the geometry 
of the New Jerusalem repeatedly demand that the number 12 be combined 
with the number 7 to symbolize the union of body and spirit. This union is 
achieved through the New Jerusalem ring of 12 lunar circles. Accommo
dated by this ring is a figure made up of four star heptagrams having 28 
horns, the number of phases in the lunar cycle. The regularly spaced horns 
fit neatly between the circles, touching their sides, or terminate at their cen
ters. 

Theorem 5.1 The only regular tilings on the plane are {3,6}, {4,4}, and {6,3}. 

proof for the case of tilings by regular polygons Consider ap-sided regular poly
gon, {p}. From Equation (5.1) each internal angle of a regular polygon is 

9 = ——— - degrees 
P 

Surround a typical vertex of the tiling by q regular p-sided polygons. The sum 
of the internal angles around the vertex is 

180<7 (p - 2) 
— = 360 degrees 

P 

After a little algebra we can rewrite this equation as 
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(p - 2)(9 - 2) = 4 

This has positive integer solutions: {q,p} = {3,6}, {4,4}, {6,3}. 

We shall make several remarks about this result. 

Remark 1. Tilings with regular pentagons are impossible, although 
Kepler obtained some very interesting tilings with pentagons as a re
sult of trying to tile the plane regularly with pentagons. More will be 
said about such tilings in Section 5.11. For now, try the following ex
ercise. 

Exercise 5.3 Cut a regular pentagon with edges of about % inch out of card
board and see what kind of tilings you can get by replicating the pentagon on a 
sheet of 8 by 10 paper. Try to arrange your pattern so that the leftover space 
assumes interesting shapes. 

Remark 2. Although it is harder to prove, these are the only regular 
edge-to-edge tilings possible with congruent (not necessarily regular) 
polygons of any sort. In fact it is easy to see that: 

Any triangle can tile the plane as {3,6}. Just rotate the triangle 
around the midpoint of one of its sides to form a parallelogram. 

Any four-sided polygon tiles the plane as {4,4} [see Figure 5.9(a)]. 
Here, each quadrilateral is rotated about the midpoint of its side to 
form the adjacent quadrilateral. The quadrilaterals need not be con
vex as Figure 5.9(6) shows. 

Any hexagon with opposite sides parallel and equal tiles the plane 
as {6,3}. 

(a) (b) 

Figure 5.9 Tiling the plane with (a) convex quadrilaterals; 
(6) nonconvex quadrilaterals. 
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Remark 3. We mentioned in Section 4.15 that regular maps on the 
torus can be interpreted as tilings on the plane. Since a tiling on the 
period rectangle (or parallelogram) diagram of a torus must match at 
the opposite edges of the rectangle (or parallelogram), the period rect
angle (or parallelogram) can be replicated in the directions of its edges 
to fill up the plane with a regular tiling. The three regular maps on 
the torus derived in Section 4.15 are in fact the three regular tilings of 
the plane in a topological sense. 

The regular maps on a plane unwrapped from a torus satisfy (p 
- 2)(q - 2) = 4, while the five regular maps on a plane derived from 
a punctured sphere (see Section 4.7) satisfy (p - 2)(q - 2) < 4. An
other class of regular maps on what is known as the hyperbolic plane 
are discussed in Section 12.10 and Appendix 2.B. They satisfy, (p 
- 2)(q - 2) > 4. One such mapping of {7,3} onto the euclidean plane is 
shown in Figure 5.10. Such regular tilings of the plane can be elimi
nated from consideration if we impose the restriction that all tiles of a 
tiling enclose circles with diameters no smaller than a preassigned di-

Figure 5.10 Tiling the plane with noncongruent heptagons with three 
heptagons surrounding each vertex, i.e., {7,3}. 
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ameter and can be enclosed by circles of diameters no larger than a 
preassigned diameter. 

5.4 Duality 

Each of the regular tilings by regular polygons has another tiling as
sociated with it. Place a dot at the centroid of each polygon of the til
ing and connect dots with a straight line if the polygons share an edge. 
What emerge are the following dual tilings in the sense of Section 4.9: 

{3,6} ** {6,3} 

{4,4} ** {4,4} 

{6,3} ** {3,6} 

Thus the dual tilings to the regular tilings with congruent tiles re
main within the family of regular tilings. The duality of hexagons and 
triangles is illustrated in Figure 5.11. 

5.5 Semiregular Tilings 

Now that we have found the three regular tilings of the plane with 
regular polygons, let's relax the condition that only one kind of poly
gon be used but still require that each vertex be surrounded identi
cally (see Exercise 5.2). We will start focusing on triangles grouped 
around a single vertex and successively remove polygons from around 
this vertex and replace them by regular polygons that fit evenly into 

Figure 5.11 The regular tiling 
{3,6} is dual to {6,3}. 
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the gap using Table 5.1 as an aid. For example, if two triangles of {3,6} 
are removed, this leaves an angle of 120 degrees, just large enough to 
fit a hexagon according to Table 5.1. The resulting sequence of four 
triangles and one hexagon surrounding the vertex is referred to by the 
Schlafli symbol, 3.3.3.3.6, or 34.6 for short. If three triangles are re
moved, this leaves room for two squares. The resulting sequence of 
polygons surrounding the vertex now has two distinct possibilities, 
33.42 or 32.4.3.4. 

Problem 5.1 There are 21 ways to arrange regular polygons around a vertex. 
See how many of the 18 possible kinds of vertices with more than one kind of 
polygon you can find by successively removing regular polygons from the regu
lar tilings and replacing them with different species of polygons. 

Once all 18 possible ways are found to surround a vertex by regular 
polygons, the question arises as to whether the tiling near the vertex 
can be extended to a tiling of the entire plane. The end result of the 
search for tilings with two or more regular polygons surrounding each 
vertex leads to the 8 possibilities shown in Figure 5.12 known as 
archimedean, or semiregular, tilings. The other 10 tilings cannot be 
extended from around the single vertex to a tiling of the entire plane. 
The nature of space prevents them from tiling the plane, each for its 
own reason. For example, Figure 5.13 shows that any sequence of 
polygons surrounding a vertex of the form 3.x.y can tile the plane only 
if x = y. As a result a number of possibilities that fit locally such as 
3.9.18, 3.10.15, 3.7.42, and 3.8.24 cannot be continued to tile the en
tire plane whereas 3.12.12 can. 

We should be clear at this point that in each of the semiregular 
tilings not only does the same species of regular polygon surround 
each vertex, but also all vertices are surrounded by polygons in the 
same cyclic order. If order is not a requirement, there are an infinite 
number of different ways to tile the plane. For example, in Figure 5.14 
a zigzag strip of tiles from the 32.4.3.4 tiling are shifted to a new rel
ative position to get a nonregular tiling with two squares and three 
triangles around each vertex [Grtinbaum and Shephard, 1977]. In a 
similar way, an unlimited number of tilings can be gotten by altering 
other rows. 

Another way to picture the regular and semiregular tilings is shown 
in Figure 5.15 where each vertex is replaced by identical circles of ar
bitrary radius. 

5.6 Symmetry 

What makes these archimedean tilings so aesthetically pleasing is 
their high degree of symmetry. By the symmetry of a pattern, we 
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(b) 

Figure 5.12 The three regular tilings and eight semiregular tilings of the plane. The 
tiling 34 6 exists in two mirror-symmetric (enantiomorphic) forms. 

Figure 5.13 Tilings of the form 3 jc/y require that 
x = y. 
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Figure 5.14 Many distinct tilings that have only vertices of species 
32.4.3.4 may be obtained by changing the relative positions of horizon
tal zigzag strips in the tiling at the left. 

Figure 5.15 Regular and semiregular tilings drawn with circles. 
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mean that the pattern possesses organized repetitions of some motif. 
As you progress through this book, this notion will be made more pre
cise. First of all, with the exception of 34.6, each tiling has lines of 
symmetry. By a line of symmetry we mean that the entire tiling is ob
tained by reflecting half of it in a mirror placed along the line. This 
also means that if a tiling has a line of symmetry, it looks the same 
when viewed in a mirror. Only 34.6 has a distinct mirror image, or 
enantiomorphic form. Each tiling also has centers of symmetry. This 
means that to each point of the tiling there corresponds another point 
diametrically opposite it with respect to the center (the entire tiling is 
reproduced by rotating it by a half-turn about this center). Not only 
does each tiling look alike at the local level of a single vertex, but if 
the tiling is reproduced on tracing paper, any vertex of the traced til
ing can be superimposed on an arbitrary vertex of the original tiling 
in such a way that the two tilings coincide after a possible mirror re
flection. Such tilings are called uniform by mathematicians. These 
tilings also have the property that if they are translated in suitable 
directions a certain distance, they once again match up. Such tilings 
are called periodic. 

5.7 Duality of Semiregular Tilings 

Again, duality offers alternative images of the semiregular tilings. 
Place a vertex at the center of symmetry of each of the tiles of a 
semiregular tiling and form a dual tiling by connecting two of these 
vertices if their corresponding faces share an edge of the original til
ing. Since all vertices of the original are surrounded identically, all 
tiles of this dual must be congruent. An example is shown of 32.4.3.4 
and its dual in Figure 5.16. Notice that the dual tiles the plane with 
congruent pentagons. However, this does not contradict the impossi
bility of regular pentagonal tilings since it is apparent that some of 
the vertices have three incident edges while others have four. 

(a) (b) 

Figure 5.16 The archimedean tiling 32.4.3.4 and its dual. 
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The concept of a dual tiling is generally problematic except for sym
metric tilings like the regular and semiregular ones [Griinbaum and
Shephard, 1988]. For graphs, any point on a face can be taken as the
vertex of the corresponding dual, and its dual is truly reciprocal in
that the dual of the dual is isomorphic to the original. On the other
hand, to define a dual tiling we must specify a particular point on each
face of the tiling to serve as a vertex of the dual, for example, the cen
ter of symmetry. The problem is that, in general, no point distin
guishes itself. However, the archimedean tilings can be recovered
from their duals by placing a vertex at the meeting point of the angle
bisectors of each tile of the dual.

5.8 The Module of a Semiregular Tiling

A manufacturer wishing to produce a set of tiles that cover the plane
in a semiregular fashion does not have to create all the tiles individ
ually. Each tiling has a basic module which can be rigidly moved to
stamp out the entire tiling. Let's determine this module for a typical
tiling, 3.6.3.6. Several elements of this tiling are shown in Figure
5.17(a) along with the dual tiling. As you can see, a typical tile of the
dual is made up of V6 of each of two of the original's hexagons and Va of
each of two of the original's triangles. Thus, since all tiles of the dual
are congruent, the tiling must have hexagons and triangles in the
ratio

2 h 2. I6" exagon: 3" triang e or 1 hexagon: 2 triangles

Figure 5.17(b) shows two such modules. You may check to see that
this module can be translated to generate the entire 3.6.3.6 tiling.

(a) (b)

Figure 5.17 (a) A portion of 3.6.3.6 with its dual superimposed; (b) two
modules of the 3.6.3.6 tiling.
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Problem 5.2 Find another module for 3.6.3.6. By similar construction, deter
mine a module for each of the other semiregular tilings. 

5.9 Other Tilings with Regular Polygons 

Griinbaum and Shephard have catalogued many interesting classes of 
tilings [1987]. For example, more than one kind of vertex may be per
mitted. O. Krotenheerdt has discovered that there are exactly 135 n-
uniform tilings where n takes values no greater than 7. A 7-uniform 
tiling is shown in Figure 5.18. Figure 5.19 shows two of the seven fam
ilies of semiregular tilings that are not edge to edge while Figure 5.20 
shows one of the four semiregular tilings that include star-shaped 
polygons. 

5.10 Transformations of Regular Tiling 

Starting with a tiling of the plane and applying a set of rules of trans
formation to the tiles, there are several ways in which new tilings can 
be generated. Tilings as ordinary as the regular tilings can then serve 
as the starting point of tilings that are quite complex and interesting. 
In this section and the following ones we consider four kinds of trans-

Figure 5.18 A 7-uniform tiling. 
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•_ TL 

0 < a < 1 0 < a < 1 

Figure 5.19 Two of the seven families of uniform tilings that are not edge 
to edge. 

(6.3* 3;*) 

Figure 5.20 One of the four 1-uniform tilings of star 
polygons. 

formations: vertex motion, distortions, augmentation-deletion, and 
one-dimensional parquet deformations. 

5.10.1 Vertex motion 

The regular tilings inherent in the triangular grid shown in Figure 
4.44 can be made dynamic by considering the tiling by rhombuses 
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{4,4} formed by joining adjacent triangles. A bunch of rhombuses are 
cut out of cardboard. Pairs of rhombuses are attached by hinging them 
according to the pattern shown in Figure 5.21. This has the effect of 
splitting apart the vertices in the tiling and making the tiling mov
able. If the dual tiling to the tr iangular grid is drawn on the opposite 
side of the rhombuses, movement of the tiling gives rise to a trans
formable tiling of irregular hexagons which are completed in the open 
portion of the tiling. 

Varney, an architectural designer, used this idea to create the geo
metric design of panels for a 68-foot radar dome built by ESSCO, Inc. 
of Concord, MA. In addition to regular hexagons, he used three kinds 
of irregularly shaped hexagon panels to construct his dome in order to 
prevent interference with the incoming signals [Varney, 1988]. The 
structural design for this radome was made by William Ahern. The 
geometric design for the radome is shown in Figure 5.22. The fact that 
12 pentagons appear along with the hexagons is a necessary conse
quence of the tiling of a sphere by hexagons and pentagons and will be 

Figure 5.21 The movable triangular grid of William 
Varney. 
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Figure 5.22 Geometric design for a 68-foot radome. 

discussed in Section 9.8. Ron Resch has illustrated the act of creating 
movable tilings in his fascinating film, Paper and Sticks [1989]. 

5.10.2 The K-dron 

Kapusta is a Polish architect and designer with an interest in philos
ophy. He discovered a way to make the regular tilings with squares 
{4,4} dynamic by lifting each square into the third dimension as an 
11-faced polyhedron which he patented in 1987 and calls the K-dron 
(see Figure 5.23) [Kapusta, 1989]. The existence of so many facets 

Figure 5.23 The K-dron. (a) Top 
view is a tiling with squares; 
(6) the squares are lifted from 
the plane to form the 11-faced 
K-dron. 

(a) (b) 
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causes entirely new patterns to be created by the interplay of light 
and shadow as it impinges on the K-dron from different directions. In 
Figure 5.24, three entirely different patterns are created as a tiling 
with K-drons reflect morning, noon, and late afternoon light. 

The K-dron itself has a remarkably simple structure. It is created 
by lifting one panel of the square tiling, shown in Figure 5.23(6), into 
the third dimension by raising point A to A' [see Figure 5.28(6)] an 
arbitrary perpendicular height h from the base plane and points B, C, 
E3 F, Gs H a distance half this height or h/2 to points B'f C\ E', F't G'$ 

H\ Point D remains anchored to the base plane. This results in a 
sphinx-like structure in which half of a pyramid sits upon a rectangu
lar parallelepiped base. The top surface of the K-dron is a diamond 
with outwardly folding triangles reflected from each quarter of the di
amond as shown in Figure 5.25(a). The five faces that make up this 
diamond configuration are essential to the K-dron since they reflect 
the light. The other six faces make up the base and are shown in Fig
ure 5.25(6). Figure 5.25(c) shows how the faces of a K-dron tile a rect
angle. 

If the half-pyramid is properly hinged along B'C [as in Figure 
5.23(6)], it collapses into the base to form a parallelopiped of height 
h/2. Also two congruent K-drons fit together to form a rectangular 
parallelopiped of height h. The dimensions of the diamond depend on 
the height h. When h equals the width of the base, it has its diagonals 
in the proportion V2:l . In this case the two K-drons form a cube. With 
small values of h, the resulting shallow K-drons can be used for dy
namically changing wall decorations or acoustical tiles. For larger 
values of h, the resulting polyhedra have a great deal of versatility 
and can be used for packaging, modular furniture, artistic sculptures, 

Figure 5.24 The effect of light on a tiling with K-drons. (a) Morning; (b) noon; (c) after
noon. 
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(a) 

2 

4 

6 

1 

5 

3 

(b) 

Figure 5.25 Folding-up the K-
dron based on a cube from the 
plane, (a) The sectors of a dia
mond with diagonals V^2:l re
flect outward; (b) the K-dron 
base; (c) the 11 faces of the K-
dron tile a rectangle. 

or toys. The structure of the K-dron is closely related to the symmetry 
of a cube. We will have more to say about this in Section 7.13.4. 

5.10.3 Distortions 

The distortion operation consists of expanding, contracting, twisting, 
flattening, and stretching polygons either in isolation or in aggrega
tion. One special type of distortion operation involves n-zonogons 
[Baracs et al., 1979], [Williams, 1972]. An n-zonogon is a 2n-sided 
polygon where pairs of opposite sides are parallel and equal. For ex
ample, the parallelograms and hexagons that combine to tile the 
plane regularly are 2-zonogons and 3-zonogons. Adjacent tiles are re
lated by being translations of each other. 

An rc-zonogon can be constructed by specifying a star of n directed 
line segments (vectors) representing the direction and length of its 
sides all emanating from a common origin. This is referred to as an 
/i-vector star. The vectors are numbered according to the sequence of 
edges in the resulting polygon. For example, a star of three vectors 
and the resulting 3-zonogon is shown in the cartesian coordinate sys
tem in Figure 5.26(a). The vectors are named by the points in the grid 
that the tips of the vectors intercept when the vectors are anchored at 
the origin, e.g., the three vectors (5,2), (2,5), (-2,2). Figure 5.26(6) 
shows a convex zonogon defined by these vectors while Figure 5.26(c) 
illustrates another nonconvex zonogon defined by the same vectors in 
a different order. 
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(2,5) fS l*'1 < h 
/ (5,2) / 7 A r l^i 

(0,0) > M ^ ' V ' 

(a) (b) (c) 

Figure 5.26 Zonogons. (a) A three-vector star; (6) 3-
zonogon with a sequence of vectors 1-2-3; (c) 3-zonogon 
with the sequence 1-3-2. 

All zonogons have a center of symmetry. In addition, an n-zonogon 
can always be decomposed into n(n - l)/2 parallelograms (the number 
of ways in which two vectors can be chosen from a set of n vectors) in 
a number of ways N that increases rapidly with n. For a 3-zonogon, 
N = 2, and Figure 5.26(6) shows the 3-zonogon subdivided into two 
sets of three parallelograms. An exact formula for N is given in Sec
tion 10.13 where the notion of zonogon is generalized to three-
dimensional space. 

In a practical construction, it is easy to lengthen or contract linear 
elements; however, it is difficult, to modify the complex joining mech
anism where two edges meet. What is important about zonogons is 
that they can be contracted or expanded in a direction parallel to any 
pair of opposite sides, as shown in Figure 5.27, without altering the 
angles between adjacent sides (the internal angles). This is done by 
merely lengthening or contracting one of the vectors in the vector star 
without changing its direction. In this way, if the angles surrounding 
a vertex sum to 360 degrees before a transformation, they continue to 
do so after the deformation. Thus any space-filling aggregate of 
zonogons will remain space filling after distorting an individual 
zonogon in this way and then adjusting adjacent zonogons of the tiling 
accordingly as shown in Figure 5.28. 

( Q ) <b) 

( d ) 

Figure 5.27 Examples of stretching an individual zonogon. 
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Figure 5.28 Examples of stretching aggregated zonogons. 

Construction 5.1 Construct an interesting aggregate of 3-zonogons starting 
with a 3-vector star of your choosing. Your aggregate should illustrate the ca
pability of 3-zonogons to fit together in distorted forms. 

5.10.4 Augmentation-deletion 

We are all familiar with how dramatically the scene changes in the fall 
when leaves fall off of the trees or in the spring when nature blossoms 
forth again. The augmentation-deletion operation of a tiling can also 
result in profound changes in appearances. This method of transfor
mation involves either the addition or subtraction of vertices, edges, 
and faces on existing entities [Williams, 1972]. This may be done ei
ther symmetrically or randomly. For example, Figure 5.29(a) shows 
two transformations of {4,4} with certain edges removed, while Figure 
5.29(6) shows 32.4.3.4 with augmented and deleted edges and vertices. 

5.10.5 One-dimensional parquet 
deformations 

Perhaps the most interesting and versatile family of deformed tilings 
is the one-dimensional parquet deformations developed by Huff, a pro
fessor of architecture at the State University of New York at Buffalo. 
I first learned about Huffs work by reading an article in Scientific 
American by Douglas Hofstadter [1983]. This section is, in large part, 
excerpted from that article. One-dimensional parquet deformations 
produce tilings that deform in a single direction, for example, from left 
to right. Thus it produces a visual effect akin to what music does to 
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n 
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TT 

( a ) 

( b ) 

Figure 5.29 (a) Tesselations derived by deletion of certain edges and vertices in the {4,4} 
tiling; (6) the 32.4.3.4 tiling with augmented and deleted edges and vertices to generate 
new tilings. 

the ear. While music transforms sound through the single dimension 
of time, parquet deformations vary along a single spatial dimension. 
The tilings that Professor Huffs students have made are reminiscent 
of M. C. Escher's famous woodcut, Liberation, shown in Figure 5.30 
and of D'Arcy Thompson's continuous deformations [1966]. 

In "Consternation," shown in Figure 5.31, the regular triangular 
tiling {3,6} falls apart at first chaotically, then it reforms into a tiling 
in which hexagons and cubes vie for perceptual supremacy. Once 
again, the triangles group together to form hexagons that maintain 
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X*^^4*^ 

Figure 5.30 Liberation by M. C. Escher. (© M. C. Escher 
Heirs/Cordon Art - Baarn - Holland) 
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Figure 5.31 Consternation. 

their integrity throughout the transformation. The vertices of these 
hexagons maintain their relative positions while three of the six in
ternal partitions are continuously rearranged in an orderly fashion 
and the other three remain fixed. 

What are the basic elements of a parquet deformation? First of all 
Huff begins with a single tile. According to Hofstadter, 

Typical devices in his repertoire of transformations are lengthening or 
shortening a line; rotating a line; introducing a "hinge" somewhere in
side a line segment so that it can "flex"; introducing a "bump" or "pim
ple" or "tooth" (a small protrusion or extrusion having a simple shape) in 
the middle of a line or at a vertex; shifting, rotating, expanding, or con
tracting a group of lines that form a natural subunit; and variations on 
these themes. To understand these tilings you must realize that a refer
ence to "a line" or "a vertex" actually refers to a line or a vertex inside 
the smallest repeating element, or unit cell (the hexagon unit in "Con
sternation"), and therefore when one such line or vertex is altered, all the 
corresponding lines or vertices that play the same role in the copies of 
that cell undergo the same change. Since some of those copies may be at 
90 degrees (or some other angle) with respect to the master cell, one lo
cally innocent-looking change may induce changes at corresponding 
spots resulting in unexpected interactions whose visual consequences can 
be quite exciting. After a line is deformed and all the other lines so re
spond, the tiles in the new zone of figures remain congruent with one an
other. Huff feels that it is this congruence of tiles that makes them ap
pealing both from the standpoint of-design and mathematics. 
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Many unexpected patterns emerge in parquet tilings. It is a useful 
intellectual exercise to attempt to read the spatial patterns and try to 
understand the intricate and subtle transformations that take place. 
It is also fun to try your hand a t constructing one of Huffs tilings. 

5.11 Nonperiodic Tilings 

Although regular pentagons cannot tile the plane, two geometric fig
ures called a kite and a dart, which can be formed by dissecting a reg
ular pentagon and reassembling its parts, can be used to tile the plane 
in strikingly beautiful ways [Gardner, 19786; 1989], [Penrose, 1979]. 
These so-called nonperiodic tilings provide a simple mathematical 
model for describing a new class of quasicrystals (to be discussed in 
Section 6.10) whose approximate pentagonal symmetry defy the tra
ditional tenets of crystallography which require crystals to be periodic 
and forbid pentagonal symmetry. 

A periodic tiling is one in which the entire configuration can be 
translated (without rotation) to a new position which reproduces the 
original tiling. We say tha t such a tiling is invariant under transla
tion. Both regular and semiregular tilings are periodic. Until recently 
it was thought that any set of forms that tile the plane nonperiodically 
can tile periodically as well. For example, the polygonal forms called 
enneagons shown in Figure 5.32(a) tile the plane both periodically and 
nonperiodically. On the one hand, the enneagons stack to fill space; on 
the other hand, the spiral form in Figure 5.32(6) cannot be translated 
without also moving its center. 

Therefore great interest met Robert Berger's discovery in 1964 that 
there is a set of tiles that tiles nonperiodically but for which there is 
no way of tiling periodically. To carry out this tiling Berger needed 
more than 20,000 kinds of tiles. Sometime later Raphael Robinson re
duced the required set of tiles to six. This enables us to better appre
ciate Roger Penrose's discovery of two tiles, the kite and dart shown in 
Figure 5.33, which are guaranteed to tile the plane nonperiodically if 
certain rules are followed stating how the pieces are to be combined. 
(Note that each tile separately or both together tile periodically if no 
other restriction is imposed.) The kite is constructed from two of one 
type of golden triangle while the dart is constructed from two of the 
other kind of golden triangle (see Section 3.5). During the tiling pro
cess, the blue curve drawn on the kite and dart is allowed to meet only 
the blue curve of another kite or dart to form a continuous curve that 
winds through the tiling. The same holds for matching the tiles so as 
to ensure a continuous red curve wafting through the tiling. One such 
tiling is shown in Figure 5.34. 



(a) 

Spiral Tiling 

(b) 
Figure 5.32 (a) A pair of enneagons forming an octagon that tiles 
periodically; (b) a nonperidic tiling with congruent shapes: a spiral 
tiling by Heinz Voderberg. 

(a) 

Red 
line 

Blue line 

(b) 

Blue line 

Red 
line 

(c) 

Figure 5.33 (a) Construction of a kite and a dart; (6), (c) a coloring of kite and dart to 
force periodicity. 
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Figure 5.34 A cartwheel pattern 
.with kites and darts. 

Most noteworthy about these tilings is their either exact or approx
imate pentagonal symmetry. As a matter of fact, regular decagons ap
pear throughout the tilings. This is not so surprising once we realize 
that the tiles were constructed' by dissecting a regular pentagon and 
reassembling its parts. Try to find a kite and dart in the star pentagon 
shown in Figure 3.18(a). The relation of these tiles to a pentagon also 
accounts for their golden mean measurements (see Section 3.6). 
Penrose first came upon his discovery by attempting to tile the plane 
with regular pentagons, an impossible task as we saw in Exercise 5.3. 
However, in the process he discovered that when certain arrange
ments of the tiles are disallowed, the gaps left over from the pentagon 
tilings coalesced into four tiles which could be further reduced to two 
by using rules of combination. Penrose also constructed other tiles 
that were equivalent to the kites -and darts, including a pair of chick
ens. In Section 6.10, we will show how a pair of Penrose rhombuses 
lead to nonperiodic tilings and suggest a model for the phenomenon of 
quasicrystals. All Penrose tilings can be obtained by specific markings 
on the pair of Penrose rhombuses [Penrose, 1979]. These markings de
fine a special grid. In Section 12.18 a similar concept will be illus
trated for generating Islamic patterns. 

Although these tilings have no region that replicates itself by trans
lation, they always seem to be striving to do so but never quite suc
ceeding. Wherever we look, we see a configuration that looks familiar 
in the sense that we have seen something just like it at one. or another 
point of the tilings. We can make this statement more precise by stat
ing a remarkable theorem developed by Conway. In colloquial lan
guage, the theorem can be described as follows: Let's say that you are 
residing in a finite region of a Penrose tiling (or universe) of diameter 
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d. Call this region your town. If you are suddenly transported to an
other universe (a different tiling) and there are as many of such 
tilings as there are real numbers in the number system, how far must 
you wander to find an exact replica of your town? Conway proved that 
you need not wander more than a distance of 2d from your new posi
tion, although the exact distance is unpredictable. 

Many of the interesting properties of Penrose tilings come about 
from the property that any one of the tilings can be reconfigured so 
that a new tiling is obtained with kites and darts scaled up in size, or 
inflated. This is done by splitting each of the darts along their lines of 
symmetry and attaching all short edges of the original tiling to each 
other, leaving the long edges as the boundaries of the new tiling as 
shown in Figure 5.35. 

Construction 5.2 [Gardner, 1978b] Construct a pattern of at least 60 kites and 
100 darts. In any nonperiodic tiling, you will need exactly 1.618... times as 
many kites as darts. A Penrose tiling can be made by starting with darts and 
kites and expanding around one vertex. Each time that you add a piece to an 
edge, you must choose between a kite and a dart. Sometimes the move is forced; 
sometimes it is not. Sometimes either piece fits, but later you may encounter a 
contradiction and you will have to go back and make the other choice. The more 
that you play with the pieces, the more you will become aware of the forcing 
rules. The discussion by Martin Gardner goes into more details about the prac
tical aspects of construction. 

Figure 5.35 A new tiling is obtained by inflating the tiles 
of the old one. 
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5.12 Origami Patterns 

The Chinese invented the paper folding art of origami over 1000 years 
ago, and they endowed it with the aesthetic principles that are at the 
heart of their culture. As Peter Engel, an American master of the art, 
says, "the success of a completed figure depends on the creator's eye for 
form—is it a mere likeness of the original, or does it delve deeper into 
the form's essential character? [Engel, 1988]" Engel points out that 
origami has been taken up in this country by mathematicians rather 
than artists. He says: "To the mathematician, the beauty of origami is 
its simple geometry. Latent in every pristine piece of paper are undis
closed geometric patterns, combinations of angles, and ratios that per
mit the paper to assume interesting and symmetrical shapes." 

An origami figure always begins with a single square piece of paper. 
Only folding, with no cutting or pasting, is permitted. Traditional 
origami uses four basic folded bases: the kite, fish, bird, and frog 
shown in Figure 5.36(a). Engel's contribution to this craft has been to 
show that when these bases are unfolded, as they are in Figure 
5.36(6), they reveal a sequence of geometric patterns based on a single 
module. The basic module is represented in the kite pattern by the 
shaded region. It is reflected about the diagonal of the square to pro
duce the entire pattern. When the same pattern is replicated four 
times, it results in the fish base. Eight replicas makes the bird base 
while 16 repeats give rise to the frog base. 

The kite base is constructed by folding the square on its diagonal to 
form a right triangle. Two additional folds produce the kite pattern. On 
the other hand, the fish base is constructed by folding the right triangle 
in half to form two right triangles. If each of these right triangles is 
folded into a kite base, the fish base pattern appears when the paper is 
opened up. Repeating this procedure by folding the triangle into four and 

Kite base Fish base Bird base Frog base 

Figure 5.36 (a) The fundamental bases of traditional origami: kite; fish; bird; frog; (6) 
patterns formed by unfolding the bases. 
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Figure §.37 Grafting four frog bases onto four bird bases produces the folding pattern 
for an octopus. 

eight right triangles produces the bird and frog base patterns. Once the 
patterns are obtained, the base easily folds up into itself. 

Engel looks at the basic module as being a self-similar component, 
or fractal, of the entire pattern. He was able to break out of the re
strictive four-base mold of Japanese origami by extending these fun
damental patterns to additional stages of development and by grafting 
one base upon another. For example, Figure 5.37 shows that grafting 
four frog bases onto four bird bases produces a complex folding pattern 
which the author used to make the octopus shown in Figure 5.38. 

One word of caution. Production of the underlying pattern is only 
the first step in creating the final work of art, which requires much 
work, ingenuity, and patience. I refer the reader to Engel's book on 
origami [1989]. 

FIgyr® 5.38 An origami octopus by Engel. 
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5.13 Islamic Art 

5.13.1 The Temple of Ka'ba and the Dome 
of the Rock 

Islamic culture succeeded in creating art, architecture, science, and 
mathematics entirely integrated within a spiritual realm. Although 
we have only a sketchy record of the nature of the traditional Islamic 
consciousness, we can piece together some idea of how and why this 
integration was achieved by studying modern commentators. Most no
table of these is Titus Burckhardt, a well-known scholar of the art and 
culture of Islam, but we must be aware that much of Burckhardt's dis
cussion of Islamic art is based on his own understanding of its culture 
and history and not on commentary by the Islamic artisans or artists 
themselves. Burckhardt [1976, 1987] and other authors [Chorbachi, 
1988] disagree about the spiritual interpretations. 

Burckhardt feels that in the structure of the sacred Ka'ba in Mecca 
lie the philosophical underpinnings of Islamic religion and art. This 
temple, which claims its origin to the time of Abraham, is approxi
mately cubic (actually 10 by 12 by 16 meters). The four corners of the 
base point approximately to the four cardinal directions of the earth, 
with the vertical axis of the zenith defined by the top and bottom 
faces. The Ka'ba itself is considered the "navel" of the earth, toward 
which all Muslims must direct their prayers. 

By nature, the Islamic religion is both static and dynamic. The 
static is symbolized by the fact that all locations of prayer are consid
ered equivalent with respect to the unity of the center (at Ka'ba) while 
the dynamic is manifested by the requirement that all Muslims carry 
out a pilgrimage once in their lifetimes to the Ka'ba where they must 
circumambulate the temple in a symbolic circle. The cube or square 
symbolizes the earthly with its dualities of hot and cold, moist and dry, 
and axes of spatial orientation. The circle symbolizes the realm of the 
celestial surrounding the source of all being and dominated by the el
ement of time in the form of the zodiac (see Section 1.2). 

One of the oldest surviving Muslim monuments is the Dome of the 
Rock in Jerusalem which encloses the rock forming the summit of Mt. 
Moriah. This mountain is the supposed location of the Great Temple of 
Solomon, the site at which Abraham is said to have performed the sac
rifice of his son and the place where Mohammed is said to have as
cended into heaven. This structure was built in 688 by Abn Al Malik 
to serve as a substitute for the Ka'ba at a time when Mecca had fallen 
into the hands of a rival caliph. The Dome of the Rock is designed to 
shelter this sacred site beneath a central cupola and an octagonal 
deambulatory [shown in Figure 5.39(a)] in a style that can be traced 
back to the architecture of Byzantine times and is found in many of 
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(b ) ( c ) 

Figure 5.39 The Dome of the Rock, (a) Perspective view; (b) plan view; 
(c) geometric scheme. 

the sanctuaries of that period. The dome is supported by 12 columns 
and 4 pillars shown by the central area of Figure 5.39(6). The 12 col
umns are arranged with 3 each to the north, south, east, and west as 
in the New Jerusalem diagram (see Figure 1.3). Surrounding this cir
cle is a second series of 8 pillars and 16 columns arranged octagonally. 
The columns of the second set are spaced with relation to the inner 
ones in such a way that they radiate into the center through the in
tersection points of two squares inscribed in the inner circle that form 
the star octagon {8/2} shown in Figure 5.39(c). The octagonal columns 
themselves form another star octagon {8/3}. The complete set of 12 col
umns connects to form a grid of rectangles and squares. The circular 
cupola again represents the celestial domain contrasted with the 
earthly crystal of the octagon. Burckhardt explains that the 40 sup-
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porting columns and pillars correspond to the number of saints who, 
according to Mohammed, constitute the spiritual pillars of the world 
in every age. 

5.13.2 Islamic tiling 

Unlike Christian sacred art, the art of Islam contains no graven im
ages. Islamic art is best known for its arabesque and polygonal forms 
bordered by undulating woven strips as shown in Figure 5.1. Here is 
how Burckhardt [1976] describes the spirit behind Islamic art: 

A sacred art is not necessarily made of images... it may be no more than 
the quite silent exteriorization of a contemplative state.... It reflects no 
ideas but transforms the surroundings by having them share an equilib
rium whose center of gravity is unseen.... Ornamentation with abstract 
forms enhances contemplation through its unbroken rhythm and endless 
interweaving.... Continuity of interlacement invites the eye to follow it, 
and vision is transformed into rhythmic experience accompanied by the 
intellectual satisfaction given by the geometric regularity of the 
whole.... Study of Islamic art, or any other sacred art, can lead to a pro
found understanding of the spiritual realities that lie at the root of a 
whole cosmic and human world. 

J. Bourgoin published an extensive collection of Islamic patterns in 
1879 [1973]. Underlying each pattern, Bourgoin shows a grid from 
which the pattern is developed. Many of these grids, such as the one 
shown in Figure 5.40, are regular tilings by triangles; others are devel
oped from regular tilings by squares (not shown). Unlike Burckhardt, 
Bourgoin lists his tilings with no commentary. Keith Critchlow feels 
that the triangular tilings were used because of their platonic symbol
ism through the form of the tetraktys (see Section 1.2), and tilings 
based on square patterns may have been suggested by hidden symme
tries in the number relations of magic squares (see Section 4.13). Fig
ure 5.41, from Critchlow's book, Islamic Patterns [1976], shows the in
terest of Islamic artists in pentagonal tilings, which Critchlow feels 
can be traced to the sacred properties exhibited by the golden mean. 
There may even be some foreshadowing of the nonperiodic Penrose 
tilings, discussed in Section 5.11, in ancient Islamic tilings 
[Chorbachi, 1988]. In Section 12.18, we will describe these patterns by 
a more refined method developed by H. Lalvani based on their sym
metry [1982], [1990]. 

A. K. Dewdney recently described a practical method of creating 
homemade Islamic tilings [1988]. A set of intersecting and self-
intersecting lines weave through the tilings, as shown in Figure 5.42. 
These lines are unrestricted except for the fact that each must origi
nate and end at the boundary. If each crossing is alternately desig
nated as either an overpass or an underpass, whenever one arrives at 
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Figure 5.40 An Islamic pattern by J. Bourgoin with underlying 
triangular grid. 

a previously designated crossing, it has the required structure. Why is 
this? This series of crossing lines is exactly the class of lines that we 
encountered in the two-colored map of Figure 4.41. That the assign
ments are always correctly made follows from a two-coloring of the re
gions in Figure 5.42 (see Section 4.14). Say one travels along the road 
bordered on the right by a region of some color. After the crossing, the 
color on the right changes. Thus one can say that an overpass always 
leads to, say, the color red (on the right) while an underpass leads to, 
say, blue. It follows that the road crossings must be assigned correctly 
after a cycle. 

5.13.3 Islamic art and mathematics 

Although one can read spiritual meanings into the art of Islam, we are 
still left with a profound silence on the matter by the artisans and art-



204 Chapter Five 

Figure 5.41 An Islamic pattern with tenfold symmetry. 

Figure 5.42 Dewdney's "over-under" rule for the construction of Islamic 
tilings. 
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ists themselves. Wasma Chorbachi, a specialist in Islamic art, states 
in a recent article that not once in the hundreds of manuscripts and 
folios she has examined in libraries throughout the world is there a 
practitioner's comment on the spiritual meaning behind the art 
[1988]. In fact, quite to the contrary, she has unearthed volumes from 
the thirteenth and fourteenth centuries that are totally preoccupied 
with practical and geometrical concerns, as exemplified by one book 
with the title What the Artisan Needs of Geometric Problems. 

Figure 5.43(a) shows one panel that Chorbachi has studied (disre
gard the dotted lines and surrounding dodecagon). If the kite shapes 
are divided into right triangles with sides a, b, c as in Figure 5.43(&), 
an ancient proof of the pythagorean theorem attributed to Bhaskara 
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Figure 5.43 An Islamic design based on Bhaskara's proof of the pythagoren the
orem. (a) The design as given by Critchlow; (6), (c) Bhaskara's proof as given by 
Chorbachi. 
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follows from the fact that the inner square has side b - a and the area 
of the square made up of the inner square and triangles 1, 2, 3, 4 is 

c2 = ( 6 - a ) ! + 4 y = b2 + a2 

Also, as Figure 5.43(c) shows, the very outer square has side a + b and 
illustrates the relation 

(a + bf = a2 + b2 + 4 ^ 

Another object of Chorbachi's research is the tiling shown in Figure 
5.44. The square is divided into four congruent sectors by two perpen
dicular lines and each sector is divided, in turn, into polygons of three 
kinds including a symmetric kite shape as shown in Figure 5.44(a). 

3 + / 7 

(b) ( c ) 

Figure 5.44 Chorbachi's analysis of an Islamic pattern with fourfold symmetry 
based on a geometric problem. 
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The entire tiling has a fourfold symmetry, which means that a quarter 
turn about the center brings all the tiles of one sector onto the tiles of 
another. The key to understanding this tiling is an asymmetric quad
rilateral ABDG with proportions 1:2:2:V7 inscribed in a circle as 
shown in Figure 5.44(6). The sector of the square is obtained by add
ing two gnomons of unit widths to two sides of the quadrilateral as 
shown in Figure 5.44(a). Figure 5.44(c) shows that similar kites at 
three different scales can also be found within the tiling. Just as we 
saw in the last section for origami, in Section 5.11 for Penrose tilings, 
in Section 1.7 for the Modulor, and in Section 2.12 for fractals, this 
gives another example of how good design is the result of the repeti
tion of a limited number of congruent modules along with the repro
duction of these elements at varying scales. In her article, Chorbachi 
has generated many of her own tilings based on this asymmetric 
quadrilateral and its geometric properties. 

Exercise 5.4 Subdivide a square into four congruent sectors as in Figure 
5.44(a). It makes a good puzzle, for persons not aware of the origin of the sectors, 
to put the pieces together to re-form the square. It makes an even better puzzle 
to put the pieces together to form two squares such as in Figure 5.43(a). This can 
always be done. 

It is interesting that the same panel that Chorbachi sees in strictly 
geometric terms, Critchlow prefers to think of in spiritual terms. For 
example, the solid dodecagon and dotted square in Figure 5.43(a) is 
Critchlow's doing. His interpretation is 

The coincidence of twelve and four suggests the zodiacal symbolism con
trolling or embracing the fourfold axial kite shapes which can be taken to 
symbolize the four seasons, the four elements, and the four qualities of 
hot and cold, moist and dry. 

So we have been thrown back to the sacred architecture of the Ka'ba 
and the Dome of the Rock. Perhaps future research will be able to 
show these two visions of Islamic art to be of one cloth. 
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Chapter 

6 
Two-Dimensional Networks 

and Lattices 

Everything that we can see, everything that 
we can understand is related to 
structure—perception is in patterns not 
fragments. CYRIL S. SMITH 

6.1 Introduction 

Tilings of the plane arise naturally in both the artificial and natural 
worlds. Whether we observe the structure of soap films, the structure 
of cellular elements of living organisms, the growth of plants, the 
structure of crystals, the organization of rural markets, the optimal 
layout of cities, the equilibrium of forces within frameworks of cables, 
or the geometrical possibilities in a design, we find that a simple ge
ometry of networks and lattices lies beneath the surface. Beyond the 
physical, biological, and sociological mechanisms involved in these 
complex systems, much can be learned about them from studying 
their geometry. In this chapter we shall study some of the geometric 
constraints that underlie some of these phenomena. 

6.2 Planar Soap Films 

Have you ever watched a drop form on the faucet over your sink? Look 
at it more carefully. Notice how the drop forms, grows slowly, and sud
denly falls. Every time this happens the drop is always the same size 
and shape at the time of its plunge [Boys, 1959]. Why does the drop 
remain clinging to the faucet instead of immediately falling under the 
force of gravity? 

From these observations it is reasonable to conjecture that water de
velops a surface skin that responds to the weight contained within by 
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stretching. The tensile force developed by this skin is known as sur
face tension. The surface tension comes about from forces between the 
molecules of liquid. The forces on the molecules within the interior are 
balanced by those on their neighbors. Those molecules at the surface, 
however, have unbalanced forces acting on them. In response to the 
forces exerted by the molecules below the surface, the surface mole
cules are continually pulled under the surface. In this way the surface 
tends to be a shape with minimal area. If there were no competing 
nonmolecular forces such as gravity, the surface area would be the ex
act minimum possible within its geometric constraints. This is borne 
out by the shape of the water surface in very narrow capillary tubes or 
in small droplets of mist and also in minute organisms or small cellu
lar elements of larger organisms [Thompson, 1966]. 

In Sections 8.9 and 10.11 we will examine some geometric con
straints imposed on three-dimensional soap films by the requirement 
of minimal surface area. Here, we consider the simpler case of soap 
films constrained to grow along minimal networks in the plane. 

Exercise 6.1 Place three thumbtacks between two sheets of glass as shown in 
Figure 6.1. Submerge this sandwich of glass and thumbtacks in a soap solution 
and observe the soap films that cling to the tacks. Can you predict how the films 
will lie across the tacks, without carrying out the experiment? Problem 6.1, 
posed by Jakob Steiner [Courant and Robbins, 1941], [Bern and Graham, 1989], 
[Stevens, 1974], answers this question. Try to solve it before reading on. 

Problem 6.1 (Steiner's Problem) Three villages, A, B, and C are to be joined by 
a system of roads of minimal total length. Mathematically, three points A, B, C 
are given in the plane and a fourth point P in the plane is sought so that 
AP + BP + CP is a minimum. In other words, connect points A, B, C with the 
shortest set of line segments. 

Two possible solutions to Problem 6.1 are shown in Figure 6.2: 

1. Measure the sum of the network of lengths in Figure 6.2(a) and 
compare it with the result of Figure 6.2(b) where P is taken to be 

Figure 6.1 A soap film solution 
to Steiner's problem. 
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( a ) ( b ) 

Figure 6.2 Minimal networks for three points. 
(o)Minimal network; (b) a nonminimal network. 

point B. Steiner proved that the configuration of Figure 6.2(a) is 
the shortest possible linkage of points A, B, C if these points form a 
triangle with no angle greater than 120 degrees. The three angles 
surrounding P are 120 degrees. 

2. For three arbitrary points A, B, C forming a triangle with no angle 
greater than 120 degrees, locate point P with compass and straight
edge. Hint: Construct an equilateral triangle on each edge of trian
gle ABC. Construct a circle circumscribing each of these equilat
eral triangles (a method for doing this is described in Section 6.5) 
and use Theorem 1.3 (that the central angle of a circle is twice the 
inscribed angle that intercepts the same arc) to construct angles of 
120 degrees, at the point of intersection of these three circles. 

3. Where is point P if the triangle has an angle greater than or equal 
to 120 degrees? Hint: Note in Figure 6.3 how the films transform as 
$ ABC is moved along the line between its original position and the 

junction point, P when 4ABC = 120 degrees. 

It is clear from Steiner's problem that if the thumbtacks are placed 
at A, B, C, three soap films will join at point P. The angle between the 
planar faces of the films, known as the dihedral angle (see Section 
7.10), or angle at which the planar surfaces intersect in edge view, is 
120 degrees. If an angle of triangle ABC is greater than or equal to 
120 degrees, point P must coincide with the vertex incident to that an
gle. Soap films have the property that the tensile forces they exert 
within the surface of the film are the same in all directions and at all 
points. For this reason a soap bubble never has regions of concen
trated stress, but rather distributes stress evenly across its entire sur
face. Move the tack to a new position and the whole configuration ad
justs itself almost instantaneously so that once again the tension in 
the bubble is the same at every point. This supplies another justifica
tion for the configuration of films given by Steiner's problem since, as 
shown in Figure 6.4, three forces of the same magnitude are in equi
librium if they are symmetrically placed around a point. In three di-
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Figure 6.3 Arrangement of 
films when one vertex is 120 de
grees. 

Figure 6.4 A soap film exerts equal tensions in 
three symmetric directions around the center of 
a soap film. 

mensions, as we will see in Section 10.11, four edges meet at each ver
tex, each pulling with equal force symmetrically around the vertex. 

What happens if we add a fourth thumbtack? How does the config
uration of Steiner's problem generalize? First consider four points lo
cated as in Figure 6.5. Notice that Figure 6.5(c) and (d) yields line seg
ments whose total lengths are less than those in Figure 6.5(a) and (6). 
Again, we find that soap films spanning four thumbtacks assume the 
positions of either Figure 6.5(c) or (d) but cannot remain for long in 
the configuration of Figure 6.5(a) or (b). 

How can we connect the four points of Figure 6.5 to form a stable 
network of soap bubbles? We find that the films drawn in Figure 6.5(c) 
and (d) are the only stable configurations. However, the configuration 
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axhx 
( a ) ( b ) ( c ) ( d ) 

Figure 6.5 Possible networks formed by four points. Networks (a) and 
(6) are unstable while networks (c) and (d) are stable. 

in Figure 6.5 (d) is shorter than the one in Figure 6.5( c). Doesn't this 
contradict our restriction to minimal surfaces? Why do soap bubbles 
sometimes make the "mistake" of choosing a nonminimal arrange
ment? This error in judgment can be explained by considering the 
analogy of a ball rolling down a mountain (shown in Figure 6.6) seek
ing the lowest position A at which to come to rest. However, it may 
come to rest in a mountain valley located still up in the mountains at 
point B. Points A and B are both local minima of potential energy and 
stable resting positions for the ball. However, if the ball is displaced 
from position B by rolling it uphill a bit, it may move down to position 
A. In the same way, the soap film in Figure 6.5(c) may be transformed 
to the arrangement shown in Figure 6.5(d) by gently blowing on it. 

Thus we see how Steiner's problem generalizes. N points are, in 
general, connected by a tree graph (see Section 4.5) in which three 
soap films surround each junction point with angles of 120 degrees. 
Furthermore, a theorem of topology developed by Leonhard Euler 
states that there are at most N - 2 vertices with three incident edges 
[q = 3) in any polygonal linking up of N points. For example, three 
different ways to connect the six points lying at the vertices of the reg
ular hexagon are shown in Figure 6.7 where one of the incident edges 
degenerates in Figure 6.7(c). 

Although this problem is easy to state and it is easy to construct so
lutions for small N, there is no practical algorithm to solve the prob
lem for large N, say N - 100. All known algorithms require an expo
nential number of operations as N grows large, or, as it is said, they 

A 

Figure 6.6 Point B is a metastable point; it is a 
local minimum of potential energy. Point A is a 
stable point; it is an absolute minimum. 
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( c ) 

Figure 6.7 Three stable networks with six vertices. 

can be solved only in exponential time. Problems of the Steiner type 
have been used to construct telephone, pipeline, and roadway net
works and, most recently, to design electronic integrated circuits in 
which the networks are rectilinear. An unusual application, developed 
by David Sankoff, uses Steiner trees to determine plausible 
phylogenetic trees in which edges correspond to a relation between or
ganism and ancestor that assumes the fewest mutations [Bern and 
Graham, 1989]. 

6.3 Random Cellular Networks 

Random soap bubble froths are representative of cellular patterns of 
all kinds in two- and three-dimensional space. The random soap bub
ble pattern of cells with three edges incident to each vertex occurs in 
many diverse contexts: the granular patterns on the surface of metals 
[Rivier and Weaire, 1984], [Smith, 1965], the structure of biological 
tissues [Dormer, 1980], the cracking patterns of dried mud (see Figure 
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4.2); and the organization of rural market patterns of agricultural so
cieties discussed in the next section. 

The irregular shapes of the disordered boundaries of these froths re
veal nothing of the inner order of the structure within. The shape of 
the boundaries results from the vicissitudes of time, but the internal 
order is immutable. This situation arises in crystalline materials 
where nucleation of a crystal occurs at some local inhomogeneity of 
the medium. Thereafter, the crystal grows in strict accordance with 
the geometry of lattice structures (see Section 6.7). Grain boundaries 
are produced when regions of crystal growth of different origins im
pinge upon each other. As Cyril S. Smith, a metallurgist, says 
[1965], 

In the space-filling aggregate, the individuals limit each other. They may 
be arranged randomly or regularly, but however undetermined the shape 
of an individual, the conditions of joining at the points where three or 
more meet are defined. Structure on one level, by its imperfections or 
variations, always gives rise to a new kind of structure on a larger scale. 
A local configuration will always have some connection to neighboring 
ones. In ever-decreasing degree, every part is dependent on the whole 
and vice versa. 

In the frontispiece of his book (not shown), Fundamental Tissue Ge
ometry for Biologists, K. J. Dormer illustrates the geometrical similar
ity of the inner tissue from the shaft of a bird feather and the fruit 
flesh of a crab apple. Although these cells differ both biologically and 
chemically, considered as geometric patterns they are almost inter
changeable. How is it that physical and biological systems that are in
fluenced by such different external forces, nevertheless end up with 
similar patterns? Smith feels that at the scale of these phenomena, it 
is the geometric constraints on space that are the controlling factor 
rather than external forces that determines form [1954], [Dormer, 
1980]. One such geometric constraint is given by Theorem 6.1. 

Theorem 6.1 For an infinite tiling in which vertex valence q = 3 at each vertex 
and each face of the tiling contains or is surrounded by a sphere no smaller or 
larger than some preset diameter, (p) = 6, where (p) is the average number of 
edges per face, i.e., 

where summation is over all the faces. 

proof For tilings on the infinite plane, 

F + V - E = 2 (6.2) 
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3V= 2E (6.3) 

PiFi 
^PiFi = 2E or F ^ 2E (6.4) 

Replacing Equations (6.1), (6.3), and (6.4) in (6.2) yields 

(tlY 
It follows that (p) = 6 when E -> os. 

Dormer has studied the geometry of cellular structures in very gen
eral terms [1980]. He has isolated three primary transformations that 
cell structures can undergo. They are shown in Figure 6.8. In T1 the 
edges are merely rearranged as we saw in Figure 6.5 for soap bubbles. 
In T2 a three-sided cell disappears eliminating one face and six edges 
from itself and the surrounding cells. In T3 a cell undergoes mitosis in 
which one cell splits in two. Notice that an n-gon parent cell gives rise 
to two daughter cells having a total of n + 4 edges. This enables us to 
deduce that the dividing cells must be 7-gons in order for all the cells 
of the network to have an average of six edges per cell. The calculation 
goes like this: if the parent cells have an average of m edges per cell, 
the average of parents and daughters must be six edges per cell, or 

V3[m + (m + 4)] = 6 or m = 1 

(a) 

(b) 

(c) 

Figure6.8 Elementarycelltrans-
formations. (a) Tlt or neighbor 
exchange; (b) T2t or cell disap
pearance; (c) T3 or mitosis. 
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Figure 6.8(c) shows that each dividing cell releases two edges into 
the nondividing population. Unless there is some mechanism to elim
inate the excess edges, these edges will build up, destroying the hex
agonal equilibrium. In fact Dormer shows how this results in an elab
orate bookkeeping system that enables the ensemble of cells to 
maintain its equilibrium. A hexagon borrows an edge from another 
cell, depleting its edges; the division of the new 7-gon releases two 
edges to the surrounding cells; one of these edges is used to repay the 
donor while the other is loaned to yet another cell in order to prepare 
it for mitosis. Dormer extends this analysis to cells in bounded do
mains and to three-dimensional froths of cells (see Section 10.11). 

6.4 Rural Market Networks 

If one views the patterns of random soap froths described in the last 
two subsections anthropomorphically, they betray a kind of social 
ethos. As Smith says, 

The freedom of a structural unit inflicts and suffers constraints whenever 
its closer interaction with some neighbors makes cooperation with others 
less easy. Social order intensifies the interfacial tension against a differ
ently ordered group. 

It is this tension between marketing requirements of population set
tlements which results in the patterns observed in rural market net
works of agricultural societies [Plattner, 1975]. 

Central-place theory was developed in the 1930s by the German ge
ographer Walter Cristaller and elaborated by another German eco
nomic geographer August Losch to describe the organization of rural 
markets. Although this theory is highly idealized, it has been ex
tremely successful in describing the dynamics of the marketing prac
tices of these societies. 

Christaller's model is predicated on the existence of a featureless 
landscape with population settlements spread equidistantly from each 
other and interconnected by a grid of pathways that can be traveled 
with equal ease. Population settlements are represented by a triangu
lar grid, as shown in Figure 6.9(a). Markets for high-value goods, e.g., 
clothing or medical or legal services, called A markets are established 
at another triangular grid, a subset of the first, marked with open 
dots, as shown in Figure 6.9(6). Surrounding these grid points are cir
cular boundaries demarcating the maximum distance an individual 
must travel to purchase an A market product. Overlap between circles 
is replaced by a line segment in Figure 6.9(c) to obtain hexagonal A 
market domains. 

Markets for low-valued products, e.g., fresh vegetables or incidental 



218 Chapter Six 

• •' —-V -)» *—-X"—H'-

• « .-.#----V----X'-----V'----''*-----) 
. .'...X—.-)(—.^'—.^'.—V 

. . —V;'-----V—X—-V—;j*—-) 
• • —x M"""'X""""X'—-')(' 

• • -•'* x'— -'x'-—-'X—-X-—-) 
. . — !y~. -'#-—-X-—;X'-—X" 

• • --.y.-.-.w-—x )t----.y---''j 

• • -~')i X""'X"""X X 
y—•-)(—••»;'—--'y-—*'-—.') 

. . . . . .v.-.*—-V—-V—--

» ---Tr w. XT 

ir"X""•'K"""'•'*'""••X""",';, 

X"—V;'-—W—--V--—) 
•X—-X—--X—-X '*-

- X - - X-—-X—•->'-—X'----. 
-¥,—-?.;—•'*— ""X'" •"¥"• 

- - -+-- ~x—-x--~X-----5 
•'X"—X— -X—-X---X'--

—X >(— -x—-X—-V----'•> 
^ •• '•'*.—-X— •->!—--X-—X' 

Figure 6.9 Christaller's model for the placement of rural markets based on a featureless 
landscape. (From "Rural Market Networks" by Stuart Plattner. Copyright © 1975 by Sci
entific American, Inc. All rights reserved.) 
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household items, called B markets, are established at each A market 
grid point. These are indicated in Figure 6.9(d) by solid dots. The re
gions of demand for these products also lie within circles surrounding 
the grid points, but these circles are naturally of smaller radius than 
the A market circles since a person will travel a smaller distance to 
obtain a commonplace item than for something of great value. But, as 
you can see from Figure 6.9(d), this leaves large regions of unmet de
mand on the part of most of the settlements for the lower-valued prod
ucts. This demand is met by establishing B markets at the six settle
ments surrounding the A markets as shown in Figure 6.9(e). Points of 
tangency between adjacent B markets are replaced by line segments 
to form hexagonal B market domains. 

The entire pattern is illustrated in Figure 6.9(/) in which each B 
market lies at a vertex of one of the space-filling A market hexagonal 
domains and equidistant from three A markets. An A market hexagon 
is composed of one entire B market and six Ya sectors of the surround
ing B market hinterlands, or the equivalent of three B market re
gions. In the same spirit, a series of different-valued markets sets up 
an elaborated market hierarchy with self-similar structure, so that a 
single A market gives rise to 3 B markets, 9 C markets, 81 D markets, 
etc. Figure 6.10 shows how this elaborated hierarchy works for three 
different-valued markets. The highest order A markets are repre
sented by large open dots, the B markets by smaller open dots at the 
vertices of the A market hexagons in addition to the A market sites, 
while C markets are established at the vertices of the B market hexa
gons in addition to all the A and B market sites represented by solid 
dots. 

The actual networks have highly irregular market domains with 
boundaries more like the irregular shapes of random soap froths since 
these domains are determined by many social and geographical 
idiosyncracies in both time and space. Nevertheless, as Stuart 
Plattner reports, the anthropologist G. William Skinner has found 
that the dynamics of the market systems of the Chinese province of 
Szechwan are governed quite well by Christaller's model. The model 
can also be modified to take into consideration other geometrical and 
social circumstances such as a nonhomogeneous landscape in which 
communication in certain directions is hampered by such constraints 
as a mountain range while in other directions it is enhanced by such 
advantages as a navigable river. 

Another example of the interaction between the geometry of cellu
lar patterns and social context is Bill Hillier's analysis of the arrange
ments of building clusters and roads within towns and villages by a 
geometrical language that he calls space syntax [Hillier and Hanson, 
1984], He has developed this geometrical language to study the way in 
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Figure 6.10 Elaborated market hierarchy. {Copyright © 1975 by Sci
entific American, Inc. All rights reserved.) 

which the plan of a community addresses the tensions between the needs 
of neighborhood residents for security and social intercourse and the 
need to allow outsiders to obtain access to portions of the community. 
Hillier has been able to use his geometry to study why some communi
ties have been successful in their planning while others have not. 

6.5 Dirichlet Domains 

A map of Cambridge, MA, school districts is shown in Figure 6.11. The 
black markers represent the schools. The map is drawn so that each 
point of a school district is nearer to the school in that district than to 
any other school. Check to see that this criterion holds. The school dis
tricts are called the Dirichlet domains of the set of points represented 
by the schools, where a Dirichlet domain of a point from a set of points 
is defined to be the points of space nearer to that point than to any of 
the other points of the set [Loeb, 1976]. The points whose Dirichlet do
mains border the Dirichlet domain of another point are said to be its 
neighbors. You will notice that all but one vertex of the map is the 
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DOMAiwi o r 
RANDOM pBiNTi 

Figure 6.11 D domains of Cambridge, MA, schools. 

meeting point of three districts (Dirichlet domains). Thus each of the 
three schools from these districts is equidistant from a common vertex. 
Why does it usually occur that a vertex of the map is surrounded by ex
actly three Dirichlet domains? The one exception to this rule is the ver
tex surrounded by four domains. We shall see why in a moment. 

We would like to find a way to construct the Dirichlet domains, or D 
domains as we will call them, of any set of points, and thus be able to 
draw a map similar to Figure 6.11. Let's first consider the D domains 
corresponding to two points A and B shown in Figure 6.12. The bound
ary of the D domains is clearly the perpendicular bisector of line seg
ment AB. 

Now let's consider three points A, B, and C shown in Figure 6.13. 
Clearly points on the perpendicular bisectors of BC, CA, and AB are 

A 

Figure 6.12 D domains for two points. 
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Figure 6.13 D domains for three points. 

equidistant from B and C, C and A, and A and B, respectively. Also, it 
is well-known that the perpendicular bisector of the sides of any tri
angle meet at a common point O. In fact, this point O is the center of 
the unique circle, the circumscribed circle, tha t passes through A, B, 
and C. (Prove this!) Therefore A, B, and C each lies in a region formed 
by the perpendicular bisectors of the line segments incident to that 
point from the other two points as indicated in Figure 6.13 by domains 
DA, DB, and Dc. 

Also, since three points uniquely determine a circle, the points of a 
complicated situation such as that of the Cambridge school districts 
can be expected to form groups of three points on a circle about a com
mon boundary point of the D domains. Four or more points can also be 
found around a common boundary point, but this is an exception since 
three points determine the circle while the fourth point is unlikely to 
lie on that circle. In a physical manifestation of D domains, boundary 
points with four incident edges are not structurally stable. A small 
perturbation causes the domains to lapse into a pattern with trivalent 
edges just as for the soap bubble patterns in Section 6.2. 

Problem 6.2 Although the triangle is one of the simplest of geometric shapes, it 
is a rich source of mathematical ideas. In fact, any triangle determines many 
unique points, including the following five, all of which can be constructed with 
compass and straightedge: (1) the meeting points of the perpendicular bisectors 
of the sides—the center of the circumscribed circle, (2) the meeting point of the 
angle bisectors—the center of the inscribed circle, (3) the meeting point of the 
medians (lines drawn from a vertex to the midpoint of the opposite side)—the 
centroid or balance point of the triangle, (4) the meeting point of the altitudes 
drawn to each side from the opposite vertex, and (5) the center of a remarkable 
circle known as the nine-point circle. On the circumference of this circle lie nine 
special points; they are the three intersection points of the altitudes with the 
opposite sides, the midpoints of each side, and three additional points which are 
identified in [Coxeter, 1961]. Choose a triangle, and construct these five points 
with compass and straightedge. 

Problem 6.3 Prove that any point lying in one of the D domains defined above 
for the case of three points is nearer to its corresponding point than to the other 
two points. 
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If we can extend the method of constructing Dirichlet domains 
from two and three points to the case of four points, we can use the 
same procedure to find the D domains of any number of points, e.g., 
the Cambridge school districts. Consider four points A, B, C, and D 
in Figure 6.14. If the D domain of A borders on the D domains of 
either B, C, or D, the boundary of DA must include a segment of the 
perpendicular bisector of AB, AC, or AD. However, the perpendic
ular bisector of AD lies outside of the domain defined by the per
pendicular bisectors of AS and AC. Thus, the D domains of A andD 
do not border on each other. The D domain of A is then seen to be 
the innermost envelope formed by the perpendicular bisectors of the 
line segments joining A to each of the other points. The D domains 
of B, C, and D are determined in the same manner and are illus
trated in Figure 6.14. This procedure can just as well be applied to 
find the D domains of any number of points. 

Given a regular tiling of the plane by congruent polygons, we can 
ask whether the tiles are D domains of some set of points, one of 
which lies within each tile. Although this question has no simple 
answer, we can show that regular tilings with triangular faces, 
such as the one in Figure 6.15, are also D domains if all angles are 
less than 90 degrees. The restriction on the angles ensures that the 
meeting point of the perpendicular bisectors lies within each trian
gle. However, if the triangles have angles greater than 90 degrees, 
they may also be D domains [Griinbaum, 1989]. Furthermore, the 
centers of the triangular D domains in Figure 6.15 are the vertices 
of a dual tiling to the triangular domains, i.e., a tiling with hexa
gons. These hexagons can be observed to have opposite edges equal 
and parallel, i.e., they are zonogons, with vertices that lie on a com
mon circle whose center is the center of the domain. These partic-

\ 

r^-~ . 

\ 
\ 

D 
Figure 6.14 D domains for four 
points. 
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Figure 6.15 The D domains of a tiling with triangles constitute 
another tiling with hexagons. 

u lar hexagons are themselves D domains of the set of points a t the 
vertices of the tr iangles. 

Problem 6.4 Prove that the tiles of an infinite tiling by directly congruent 
quadrilaterals are D domains if the vertices of each quadrilateral lie on a circle. 

6.6 Spider Webs, Dirichlet Domains, and Rigidity 

A group of architects and mathematicians including Janos Baracs, 
Henry Crapo, Ethan Bolker, Walter Whiteley, and others based at the 
University of Montreal have revived work done by nineteenth-century 
mathematicians and engineers to determine the conditions under 
which frameworks built of iron bars and pins are rigid [Crapo, 1978]. 
Their studies led them to the work of James Clerk Maxwell, a physi
cist who, in 1864, discovered a geometric tool for studying the static 
equilibrium of forces on a plane framework: a planar graph called the 
reciprocal figure. As stated in Ash et al. [1988]: 

This figure was a kind of dual graph to the original framework with the 
dual edges perpendicular to the original edges and forces. Maxwell built 
his reciprocal by piecing together the polygons of forces expressing the 
vector equilibrium at each joint. He then observed that this construction 
yields a polyhedron in space which projects onto the framework. These 
results belong to the field of graphical statics, which withered around the 
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turn of the century, along with much of projective geometry. [See Appen
dix 6.A for a brief discussion of projective geometry.] 

Recent work on the statics of frameworks grows from these roots. 
Perhaps the best way to understand these ideas is to examine a struc
ture known as a spider web: a framework with no crossing edges and 
some edges going to infinity which has an internal static equilibrium 
formed entirely with tension in the members (an internal equilibrium 
of forces in a framework is a set of tensions and compressions in its 
members in the absence of external loads). Figure 6.16(a) shows such 
a spider web. Those edges not attached to other members are taken to 
be the ones going to infinity, and these are considered to be pinned to 
the ground. Figure 6.16(6) shows the reciprocal diagram of this spider 
web, which will be explained below. Figure 6.17(a) shows another sim
ple spider web. According to Ash et al. [1988]: 

A tiling of the plane is called a spider web if it supports a spider web 
stress: a set of nonzero tensions which leads to mechanical equilibrium at 
each vertex. More specifically, a spider web stress is a nonzero force Fy^ 
in each edge E at a vertex V, directed from V along the edge, such that: 

1. For a finite edge E joining V and V , the forces at the two ends are 
equal in size and in opposite directions: Fy^ = -FVE. 

2. For each vertex V, the vector sum of forces on the edges leaving V is 
zero. 

Spider webs are interesting and important. If they are built with cables, 
and pinned to the ground on the infinite edges [as in Figure 6.16(a)], they 
are rigid in the plane. At the other extreme, if a plane bar-and-joint 
framework has the minimum number of bars needed to restrain V joints 

(a) (b) 
Figure 6.16 A plane spider web (a) has an internal static equilibrium with tension 
in all members and (6) a convex reciprocal figure derived from this equilibrium. 
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^ 
(b) (c) 

Figure 6.17 The arrows in (a) show the tensions of a 
spider web stress on a cell decomposition. The poly
gons of forces for the equilibria at the vertices (6) are 
pieced together and rotated 90 degrees to form a con
vex reciprocal figure (c). 

[we will show this to be E = 2V - 3 in Section 7.8], the appearance of a 
spider web signals that it is shaky. 

The three cycles of vectors in Figure 6.17(6) represent an equilib
rium of forces at the three vertices of Figure 6.17(a). In Figure 6.17(c) 
these cycles are joined together and rotated by 90 degrees to form the 
reciprocal diagram of the spider web. 

In general, any edge-to-edge tiling, or cell decomposition as [Ash et 
al., 1988] refers to it, of the plane has a reciprocal diagram associated 
with it. To each edge of the cell decomposition, for example, the light 
lines in Figure 6.18, there is an edge of the reciprocal diagram at right 
angles to it, for example, the dark lines in this figure. The reciprocal 
diagram will also have as many vertices as the cell decomposition has 
faces. It is a kind of "dual tiling"; however, unlike an actual dual, the 
edges of the reciprocal need not intersect the corresponding edges of 
the parent tiling, and vertices of the reciprocal need not lie within the 
faces of the original. If the reciprocal has only convex cells as in Fig
ure 6.18(a) and (c), it is called a convex reciprocal. However, a decom
position may also have a reciprocal with nonconvex cells as in Figure 
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(a) 

Figure 6.18 Some cell decompositions (light lines) with recipro
cal figures (heavy lines). The cell decomposition in (a) has only 
convex reciprocals, that in (6) has only noncovex reciprocals. A 
single cell decomposition may have both convex (c) and 
nonconvex {d) reciprocals. 

6.18(d) or with cells that are not well defined as in Figure 6.18(6). The 
D domains of a set of points form a cell decomposition, and the set of 
interconnections between the centers of the D domains always forms a 
reciprocal as shown in Figure 6.19. However, we must be careful here 
since not every cell decomposition comprises the D domains of some 
set of points. 

We make three important remarks about the relationship of recip
rocals to spider webs: 

1. Spider webs always have convex reciprocals because of their 
polygons of force, and conversely, any cell decomposition with a con
vex reciprocal can be realized as a spider web. 

2. Reciprocals are, in general, not unique since the tension in the 
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Figure 6.19 Some cell decompo
sitions are the D domains of the 
vertices that make up its recip
rocals. 

cables of a spider web is not uniquely determined. When reciprocals 
are not unique, the structure is said by structural engineers to be stat
ically indeterminate. 

3. It was discovered by Whiteley, Ash, and Bolker [Ash et al., 1988] 
that any spider web is the plane section of the D domains of a set of 
points in three-dimensional space (three-dimensional D domains, 
which are natural generalizations of two-dimensional ones, will be 
discussed in Section 10.6). The reciprocal diagram is also obtained by 
orthogonally projecting the centers of the D domains cut by the plane 
onto the cutting plane (see Appendix 6.A). (An orthogonal projection is 
one in which an object is projected by parallel lines perpendicular to 
an image plane from a point at infinity, e.g., like the projection of an 
object to its shadow on the ground by the sun shining directly over
head.) It is a little difficult to draw a picture of this for three dimen
sions, so we illustrate it for the case of two-dimensional D domains 
sectioned by a line (see Figure 6.20). The black dots represent the 
boundaries of the sectioned D domains while the open circles repre
sent the vertices of the reciprocal. 

Figure 6.20 Any section of a 
plane Dirichlet tessellation cre
ates a sectional Dirichlet tessel
lation on the line (the black dots 
on the heavy line), with a con
vex reciprocal (the circles) given 
by the orthogonal projection of 
the plane centers. 
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Some of the most interesting work of the Montreal group has to do 
with the relation between the rigidity of two- and three-dimensional 
frameworks and the projection of polyhedra. Although we are antici
pating a bit by talking about polyhedra at this point (see Chapter 7), 
nevertheless, the connection of spider webs and reciprocal diagrams to 
projected polyhedra is easy to see. Consider a set of connected plane 
faces in the form of a bowl with no top, called & polyhedral bowl. Two 
adjacent faces of this bowl always join at an edge (see Figure 6.21). A 
cell decomposition is obtained by orthogonally projecting the edges 
onto a plane. The reciprocal tiling is obtained by piercing the plane by 
normal lines to the plane faces of the bowl from a point within the 
bowl. The piercing points are the vertices of the reciprocal tiling, 
while the lines connecting the points corresponding to two adjacent 
faces of the bowl, which intersect the projection of their common edge 
at right angles, must be an edge of the reciprocal. 

The point of projection of both the edges and the normals can be 
taken to be on the top face to the bowl (or, for that matter, on any face 
of a convex polyhedron parallel to the plane of projection). This is il
lustrated in Figure 6.22 for the case of a two-dimensional polygonal 
bowl. The polygonal bowl projects to a cell decomposition of a line 
(given by the black dots), and the normals to the edges produce a con
vex reciprocal represented by the open circles. 

It has also been proven by K. Q. Brown that each finite Dirichlet 

Figure 6.21 A cell decomposition is obtained by orthogonally project
ing a polygonal bowl and its normals onto a plane. 
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( 0 , 2 ) 

Figure 6.22 The cell decomposition is the projection of a 
closed polygon from a point on the edge. 

( 0 , - 2 ) 

Figure 6.23 Each Dirichlet tessellation on the line is the projection of 
a convex polygon with an inscribed circle, from the point of contact of 
one edge. The centers are the projections of the other points of contact. 

tiling of the plane is the projection of a polyhedron all of whose faces 
touch a common sphere from a point on one of its faces onto a plane 
parallel to this face. This is illustrated in Figure 6.23 for the case of 
the Dirichlet tesselation of a line projected from a convex polygon with 
an inscribed circle touching each edge. Some of these ideas will be dis
cussed further in Section 7.8 with regard to the rigidity of polyhedral 
frameworks (also see Appendix 6.A). 

6.7 Lattices 

If the lines of the tr iangular graph paper in Figure 4.44 are removed, 
leaving only the vertices of the triangles, an orderly set of points 
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called a triangular lattice remains. Lattices provide models for under
standing the structure of crystals where atoms of the crystal lie at 
points of the lattice. In general, lattices, and therefore crystals, pos
sess two kinds of long-range order: orientational and translational 
[Nelson, 1987]. These can be seen in the triangular lattice where the 
lattice points assume the configuration of billiard balls when they are 
racked up at the start of the game. 

In this two-dimensional lattice, the atoms sit in hexagonal cages, 
the D domains of the lattice points. Neighbors of a lattice point are 
defined as the centers of the bordering D domains to that point. Thus, 
each lattice point of the triangular lattice has six neighbors. The crys
tal can be broken down into a repeating pattern of hexagons, as shown 
in Figure 6.24. Because all the hexagons have the same orientation— 
that is, because the sides of each hexagon are parallel to the sides of 
all the others—the crystal is said to exhibit long-range orientational 
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Figure 6.24 A periodic lattice illustrates two kinds of order that are inherent in 
conventional crystals. Long-range translational order is demonstrated by the two 
families of parallel lines. Long-range orientational order is demonstrated by the 
two kinds of unit cells, hexagons and parallelograms, that tile the lattice without 
change in orientation. 
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order. The hexagons are called unit cells, where a unit cell of a lattice 
is the smallest unit of the lattice that replicates the whole by transla
tion. 

The other kind of long-range order present in a lattice or crystal can 
be demonstrated by drawing a family of parallel lines on the lattice, as 
shown in Figure 6.24. When the lines are drawn so that every atom 
lies on one line or another and every line contains more than one 
point, the lines will be spaced exactly evenly across the crystal. If the 
lattice points and the family of parallel lines are drawn on an overlay 
and this overlay is moved by translation without rotation in a direc
tion perpendicular to the lines, there is some new location, shown by 
the arrow in Figure 6.24, at which the lattice points and lines of the 
overlay coincide; the lattice is invariant under translation. 

In a lattice or a conventional crystal there are many families of par
allel lines (another set is shown across the top of Figure 6.24); thus 
there are many different directions in which the lattice is invariant 
under translation. However, it can be shown that any two nonparallel 
directions, such as the ones specified by the two vectors in Figure 6.24, 
are sufficient to translate the lattice to a new position so that any 
point is made to coincide with any other point. Thus the environment 
of any one point of a lattice or crystal is identical to any other point. 

Everything that has been said for the triangular lattice continues to 
hold for more general so-called skew lattices, as is shown in Figure 
6.25. They have translational invariance in two nonparallel directions 
perpendicular to parallel sets of lattice lines. The unit cells are 3-
zonogons (hexagons with opposite sides parallel and equal), which are 
also D domains of each lattice point. Thus, each lattice point can be 
said to have six neighbors corresponding to the points of the bordering 
domains. For the special case where two of the directions of transla
tion are at right angles, the two points A and B coincide, and the hex
agonal cells degenerate to rectangles having only four neighbors. 

'ALA: \: V 
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Figure 6.25 D domains of a lat
tice. 
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The unit cell of a lattice can also be defined as the parallelogram 
formed by two nonparallel line segments with lattice points at the ver
tices but with no lattice point within it, as shown in Figure 6.24. 
These two nonparallel line segments define two vectors that charac
terize the lattice. The entire lattice is obtained by making a rubber 
stamp in the form of a unit cell and stamping it out successively in 
each of the two nonparallel directions. 

Problem 6.5 Find areas of the polygons shown in Figure 6.26 by counting unit 
squares. Check your results against the general formula given by Pick's law 
[Coxeter, 1961], 

A = f + 7 - l 

where C denotes the number of lattice points lying on the boundary and I refers 
to the number of lattice points inside the boundary. 

Three-dimensional lattices serve as models for three-dimensional 
crystals. The family of parallel lines for two-dimensional lattices be
come planes known as lattice planes in the three-dimensional case. 
When beams of x-rays are directed at a crystal, they are reflected and 
scattered by the lattice planes. By studying the directions in which 
the beams are scattered and the intensity of each scattered beam, in-

o o 

square 
unit 

Figure 6.26 Use Pick's law to find the areas of these lattice polygons. Note 
that parallelograms with no lattice points within them are unit cells. 
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vestigators can determine which families of lattice planes must exist 
in the crystal; often they can deduce the location of the atoms. 

We will discuss three-dimensional crystals in a l i t t le more detail 
in Chapter 10. In the last section of this chapter, we introduce a 
new class of quasicrystals tha t appear to have fivefold symmetry. 
The inability of conventional crystals to have fivefold symmetry is 
related to the fact tha t uni t cells or D domains of lattices cannot be 
pentagons, i.e., there are no regular tilings of the plane with regu
lar pentagons. 

6.8 Pattern Generation with Lattices 

Pat terns tha t tile the plane by t ranslat ion in two nonparallel direc
tions are said to have the symmetry of a lattice. Of the regular 
tilings of the plane, only the hexagon and parallelogram, both 
zonogons, can tile with lattice symmetry. The t i l ing by a t r iangle or 
a general quadri la teral requires the tile to be rotated by 180 de
grees about the midpoint of its edges in the case of directly congru
ent tiles or by some other combination of rotation or reflection when 
the tiles are not all directly congruent (see Figure 5.9) to obtain an 
adjacent tile. In Section 10.13, we shall see tha t the only tilings of 
three-dimensional space with lattice symmetry are by polyhedra, 
which are generalizations of the zonogon. Can we generate more in
terest ing two-dimensional pa t terns with lattice symmetry than 
these regular ones? 

Consider the tile shown in Figure 6.27. It tiles the plane since it is 
merely a rectangle that has been transformed by adding a triangle 
and a semicircle to it while removing an identical triangle and semi
circle from it. The new tile has the same area as the original rectangle 
from which it was derived, and its tiling of the plane is simply a real
location of space from the old tiling with rectangles. This transformed 
tile is called the fundamental pattern, or motif, of its tiling. The fun
damental pattern is the smallest element of the total pattern that , 

Figure 6.27 This modification of 
a rectangle is a space filler. > 
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when acted upon by all of the symmetries of the tiling (in this case 
lattice symmetry), succeeds in tiling the plane. Any tiling with lattice 
symmetry can be transformed in this way to give new tilings. Escher 
has used variations on this theme to produce many fanciful tilings 
such as the one shown in Figure 6.28. 

Mathematician William J. Gilbert from the University of Waterloo 
has come up with an easy way to create attractive tilings of the plane 
with lattice symmetry [1983]. His procedure is described as follows: 

1. Place the origin of a cartesian coordinate system at a point of the 
lattice, and let neighboring points of the lattice be displaced from the 
origin at the points {k,0) and (h,l) for integer values of h, k, and I as 
shown in Figure 6.29. In other words the two nonparallel directions 
that characterize the lattice are the vectors (k,0) and (h,l). Also, the 
unit cell of the lattice is the parallelogram formed by these two vectors 
and has area kl. Unless h = 0, the lattice is said to be skew, i.e., the 
lattice points are not arranged in a rectangular pattern. All the points 
of the lattice lie at the grid points (ak + bh, bl) for all integer values of 

Figure 6.28 Black and White Knights by M. C. Escher. 
(© M. C. Escher Heirs/Cordon Art-Baarn-Holland.) 
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Figure 6.29 Two vectors determine the size and shape of the lat
tice. 

a and b. The location of these points is determined from a linear com
bination of the lattice vectors in the sense that 

a(k,0) + b(h,l) = (ak + bh, bl) 
2. The rectangles of area kl = n which are k units long and / units 

wide, and whose lower left-hand corner lies at one of the lattice points, 
fill the plane as shown in Figure 6.30. Each of these rectangular 
bricks encloses n grid squares which are numbered from 1 to n. 

3. A fundamental pattern is formed by selecting the numbers from 
1 to re with no repeats from one or more bricks. Of course if all num
bers are chosen from the same brick, the resulting pattern will be the 
bricks themselves. However, more interesting patterns can be formed 
by allocating the numbers to several bricks as is done in Figure 
6.31(a) for a 4 by 3 rectangle. This pattern must have the same sym
metry as the skew lattice from which it was derived, i.e., it is invari
ant in the two nonparallel directions of specified vectors. To distin
guish one pattern in a tiling from another you can add color or 
shading or use some other distinguishing design idea. One such pat
tern is shown in Figure 6.31(6) and a more interesting design is shown 
in Figure 6.33(a). 

k*1 

I! 

kl 
2k 

Figure 6.30 The lattice is 
"squared off' and all squares are 
labeled. 
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Figure 6.31 (a) The shape of the fundamental pattern is determined; (6) the funda
mental pattern is replicated. 
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Figure 6.32 A tiling of the plane with fourfold rota
tional symmetry. 

4. The method can be extended to include 90-degree rotations as 
well as translations. Here, the unit cell of the lattice is a square which 
is subdivided into four subsquares each containing n2 grid squares as 
shown in Figure 6.32. The subsquare is called the fundamental do
main of the tiling since it is the smallest element of the plane in which 
we are permitted to create a pattern. The grid squares in one of these 
fundamental domains are numbered from 1 to 9. These numbers are 
then recopied in the other rotated squares in the appropriate rotated 
positions. We are then free to choose any pattern made up of the num
bers from 1 to 9, with no repeats from one or more subsquares, to form 
a fundamental pattern. The entire pattern can be formed by rotating 
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the fundamental pattern to the other subsquares and, once again, 
stamping out the unit cell successively in the two nonparallel direc
tions of the lattice. 

If we place a pin at the center of the unit cell, perpendicular to its 
plane, rotation of the pattern through 90 degrees around the pin rep
licates the entire pattern. Four successive rotations around the pin re
produce the same pattern four times; the pin is therefore called an 
axis of fourfold rotational symmetry. An example is shown in Figure 
6.33(6). Notice that the midpoints of the edges of the large square that 
make up the unit cell are the sites of twofold rotations (i.e., the pat
tern matches up after a half turn). The constraints on space that force 
these additional symmetries will be discussed in Section 12.14. 

Problem 6.6 Create a lattice design with mirror symmetry by subdividing a 
square into two half-squares by perpendicular mirror lines, or lines of symmetry 
as they are called. Grid squares in the right half-square (the fundamental do
main) are reflected in the mirror to the left half-square. The fundamental pat
tern is formed as above. Gilbert's method can also be used to create lattice de
signs in three dimensions [1983]. 

6.9 Dirichlet Domains of Lattices and Their 
Relation to Plant Growth 

In Section 3.7 we showed how the stalks of a plant are placed succes
sively around its periphery beginning with some initial stalk. We can 
follow the lead of the geometer H. Coxeter [1953] and model the pro
cess of laying down stalks by picturing it to take place on the surface 
of a semiinfinite cylinder with a 1-unit radius that has been cut open 
along a line on the surface parallel to its axis as shown in Figure 6.34 
for the case of a pineapple. Thus the cylinder now looks like a rectan
gular strip 2-rr units wide pictured on an x,y cartesian coordinate sys
tem stretching from x = 0 to x = 2TT. In this figure, the first stalk is 
laid down at the origin of the coordinate system. Successive stalks are 
displaced from their predecessors by the divergence angle, 2ir/<|>2 radi
ans, or 137.6 degrees, in the example shown in Figure 6.34. In addi
tion, the stalks rise along the surface of the cylinder by h units for 
each new stalk laid down. This rise is called the pitch. The stalks are 
represented by the hexagonal D domains of the lattice points. 
Sunflower-like plants can be represented by tiling a polar coordinate 
system with D domains. 

Notice in Figure 6.34 that the numbers of the F series alternate on 
opposite sides of the y axis. For example, stalk 5 occurs to the right 
after two turns around the cylinder, 8 occurs to the left after three 
turns about the cylinder, while 13 occurs to the right again after five 
turns. Marzec and Kappraff [1983] showed that this is related to the 
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(a) 
Rgure 8.33 Two patterns illustrating Gilbert's method. 
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Figure 6.33 (Continued) 

(a) (b) 

Figure 6.34 Relation of pineapple phyllotaxis to a period lattice. 

fact that the continued fraction expansion (see Section 1.6.8) of the di
vergence angle mod 2TT, or l/<j>2, has convergents 

%, %, 5 / l 3 , . . . 

In this model of a pineapple, the initial stalk is adjacent to the fifth, 
eighth, and thirteenth stalks, and these stalks line up with the initial 
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stalk along a series of 5, 8, and 13 diagonal lines of hexagons which 
represent the numbers of clockwise and counterclockwise spirals evi
dent on the surface of the plant, i.e., 5, 8, 13 phyllotaxis. However, if 
the pitch h were a smaller value, later stalks—for example, the thir
teenth and twenty-first stalks—would be nearest neighbors of the ini
tial one and would correspond to higher phyllotaxis numbers. Also, 
there is some transition value of h at which the pattern of growth 
changes from 8,13 to 13,21 phyllotaxis, and at this transition point the 
D domains become rectangles. 

Other models lead to roughly similar conclusions. For example, 
R. 0 . Erickson presents a model in which the stalks are circles which 
pack together to fill the lattice. A careful analysis shows how the 
phyllotaxis number, pitch, and divergence angles are related [1983]. 

N. Rivier et al. [1984] have also developed a crystallography on a 
circular disc. They define the stalks as the D domains of a sequence of 
computer-generated growth centers given by the algorithm 

r(€) = aVl 

&{€) = 2TTX€ 

where r and 0 are the polar coordinates of the disc, I labels individual 
cells, X. is the divergence angle, and a is the typical cell's linear dimen
sion. By representing stalks on the computer as D domains and study
ing the constraints on space imposed by Euler's theorem, they have 
simulated the growth of plants and shown that golden mean growth (X 
related to <J)) results in a homogeneous and self-similar pattern of 
nearly isotropic (identical) cells. For example, when X = 1/<J>, the 
daisy-like structure shown in Figure 6.35 results, whereas when 
X = 13/2i, the result is a rational approximation to 1/<|>—the spider web 
with highly nonisotropic cells shown in Figure 6.36. 

The D domains for the golden mean growth patterns are regular 
tilings with hexagons except for a few pentagonal and heptagonal 
cells which are defects in the regular tilings (see Section 6.3). In a reg
ular tiling with hexagons all cells have the same orientation; the pen
tagons and heptagons are sources of positive and negative curvature, 
respectively, in the growth pattern. Their geometry is based on the 
following consequence of Euler's theorem for the tiling of a disc (F + V 
- E = 1) in which each vertex has exactly three incident edges (any 
other vertex valence is structurally unstable for reasons mentioned in 
Section 6.5): 

2 Fn (6 - n) = 6 (6.5) 
n = 1 
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DAISY4 
8-JUNE83 
R5-10 /2 
PENT 9 . 8 % 
HEX A 8 2 . 6 % 
HEPT 7 .6% 
NTOT 1874 

Figure 6.35 Daisy structures. Notice the self-similarity and the glide circles. 

where Fn is the number of cells with n sides. Thus it is consistent with 
this equation that any finite set of cells that tile a finite domain are 
hexagonal except for an unlimited number of pairs of pentagonal and 
heptagonal cells in addition to six isolated cells of positive curvature 
(pentagons) as shown in Figure 6.37. This is also consistent with the 
description of the cell structure of the infinite random soap bubble 
patterns given by Theorem 6.1. Of course, Equation 6.5 does not forbid 
octagonal or other shaped tiles. 

In Rivier's model of plant growth, pentagon-heptagon pairs of dislo
cations in an otherwise homogeneous pattern of hexagonal cells are 
located on concentric fault circles, and they screen the strain energy 
caused by the isolated pentagonal faults which are forced by the geo
metric constraints. The dislocations also prevent the hexagonal cells 
from gliding over themselves because of shearing forces. It turns out 
that concentric circles of dislocations, forming boundaries between 
defect-free (hexagonal) grains which can glide on each other, are seen 
in large daisies and sunflowers as shown in Figure 6.35. What is even 
more interesting about Rivier's simulation is that it appears to model 
the growth of cellular patterns that occur in Benard-Marangoni con
vection (see Figure 6.37), whereby a fluid heated from below exhibits 
convective motion above a certain temperature threshhold. It is be-
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Figure 6.36 The spider web constructed with X = 13/2i rational. 

lieved that solar granulation and other patterns in nature are the re
sult of this convective behavior. 

6.10 Quasicrystals and Penrose Tiles 

According to Nelson [1987], 

In 1984 investigators working at the National Bureau of Standards found 
that a rapidly cooled sample of an aluminum-manganese alloy, named 
Schechtmanite after one of its discoverers, seemed to violate one of the 
oldest and most fundamental theorems of crystallography. Although the 
material appeared to have the same kind of order that is inherent in a 
crystal, it also appeared to be symmetrical in ways that are physically 
impossible for any crystalline substance [Schechtman et al., 1984]. 

Beams of x-rays directed at the material scattered as if the sub
stance were a crystal with fivefold symmetry, whereas the conven
tional wisdom of crystallography says that only two-, three-, four-, and 
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Figure 6.37 Computer-generated reconstruction of the cellular 
structure in a standard Benard-Marangoni experiment. 
o = pentagon, + = heptagon, x = octagon, o + = dislocation. 

sixfold symmetry can occur in crystals. (The reasons for this will be 
made clear in Section 12.13.) 

Further investigations into the microstructure of this material have 
shown that it embodies a new kind of order, neither crystalline nor 
completely amorphous. Materials structured around this new kind of 
order seem to forge a link between conventional crystals and the ma
terials called metallic glasses, which are solids formed when molten 
metals are frozen so rapidly that their constituent atoms have no time 
to form a crystalline lattice. The new materials have therefore been 
called quasicrystals. 

The nonperiodic Penrose tilings with kites and darts introduced in 
Section 5.11 provide an excellent two-dimensional model of how pen
tagonal symmetry can arise in x-ray patterns. Actually, quasicrystal 
structure is illustrated more clearly by an alternative to the kites-
and-darts tiling. This new tiling employs the two rhombic shapes 
shown in Figure 6.38 [Penrose, 1979], and the tiles are combined by 
matching the arrows on their edges. Although Penrose tilings are not 
crystalline in a conventional sense, they do have many crystalline 
properties. For example, in a Penrose tiling it is possible to pick out 
many regular 10-sided polygons (decagons), several of which are evi-
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Figure 6.38 Two Penrose rhombuses. They are fitted together so that the arrows 
superposed on their edges match. 

dent in Figure 6.39. Like hexagons, which are the unit cells of a two-
dimensional lattice (see Section 6.7), all the decagons have precisely 
the same orientation. Like Schechtmanite, the Penrose tiling has the 
long-range orientational order that is usually associated with conven
tional crystal lattices. 

In a subtler way Penrose tilings also have a kind of translational 
order as well. One way to see this is to shade all the rhombuses that 
have sides parallel to a given direction. The shaded rhombuses form a 
series of jagged irregular lines each of which, on the average, approx
imates a straight line as shown in Figure 6.40. All the lines are par
allel and, approximately, evenly spaced. Therefore, in a statistical 

Figure 6.39 Decagons are found throughout the pattern; 
all have the same orientation demonstrating long-range 
orientational order. 
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Figure 6.40 One of the five families of parallel and evenly spaced lat
tice planes formed by jagged lines demonstrating the long-range 
translational order of the lattice. 

sense, a Penrose tiling has long-range translational order as well as 
orientational order. We also note that the line in Figure 6.40 is tilted 
at the same angle, 72 degrees, as the ladder in Diirer's Melancholia 
(see Figure 3.17). 

Penrose tilings also have a kind of fivefold symmetry. In a Penrose 
tiling, the shaded rhombuses fall into five families of parallel lines, 
one of which is shown in Figure 6.40. The lines run in directions that 
are parallel to the edges of a regular pentagon. They intersect at an
gles that are multiples of 72 degrees, or one-fifth of a full circle. It can 
be shown that the lines, like the lattice planes of an ordinary crystal, 
will scatter beams of x-ray radiation. Beams reflected from a Penrose 
tiling would have fivefold rotational symmetry no matter where in the 
pattern they were aimed. The disorderly appearance of the lattice 
planes is similar to that found in a conventional crystal at tempera
tures above absolute zero, when the atoms are disordered because of 
thermal vibrations. In Penrose tilings, of course, the disorder would be 
present even at a temperature of absolute zero. 

H. Lalvani has shown how the two Penrose rhombuses that result in 
either exact or approximate pentagonal symmetry can be generalized 
to a wider class of nonperiodic tiles (although nonperiodicity has not 



Two-Dimensional Networks and Lattices 247 

yet been proven) [1990]. The rhombuses in Figure 6.38 are derived 
from the central angle A of a 10-gon, {10}, or A = TT/5 radian. The two 
rhombuses are the only ones possible with angles that are integral 
multiples of A; one has angles 1 and 4 times A while the other has 
angles 2 and 3 times A. Lalvani has discovered that patterns with ap
proximate or exact sevenfold symmetry can be derived from the three 
rhombuses shown in Figure 6.41. These are the only rhombuses whose 
angles are integral multiples of the central angle of a 14-gon, {14}, i.e., 
1 and 6 times A, 2 and 5 times A, and 3 and 4 times A, where A = ir/7 
radian. Notice that the numbers 1 and 6, 2 and 5, and 3 and 4 are the 
only distinct pairs of integers whose sum is 7, just as the pairs 1 and 4, 
and 2 and 3 are the only ones whose sum is 5, the condition for 
Penrose tilings. The patterns derived from these three rhombuses look 
like standard Penrose tilings (see Figure 6.39) except that {14}-gons, 
instead of decagons, appear throughout, and their edges are oriented 
in the seven different directions of the edges of a {14}-gon instead of a 
pentagon. Figure 6.42 illustrates a distorted image of a standard 
Penrose tiling that is derived from the tiles of a {14}-gon. Notice that 
the edges are oriented in the direction of only six of the seven possible 
directions. Of course, Penrose tilings with eightfold, ninefold, and 

Figure 6.41 The three Penrose rhombuses of the {14}-gon. 
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Figure 6.42 Detail from a distorted image of a standard Penrose tiling 
using tiles derived from a {14}-gon. 

higher-fold symmetries can also be created in a similar fashion. In 
Section 10.14, we will describe a pair of three-dimensional rhom-
bohedrons that are a three-dimensional analogue of the Penrose tiles 
and serve as an even better model for Shechtmanite. 

Lalvani has also noticed that the Penrose tiling with fivefold sym
metry shown in Figure 6.43. can be viewed as an increasing sequence 
of whirling golden triangles (see Section 3.5) where the line segments 
of the whirling triangles serve as local mirror lines [1989]. Notice how 
each line segment reflects a portion of the Penrose tiling and that each 
of these mirror lines is oriented along one of the five families of scat
tering lines described above. Escher, in his print Reptiles, shown in 
Figure 6.44, also chose a golden triangle as a platform upon which his 
frogs ascend from a hexagonal tiling of the plane to a polyhedral struc
ture (pentagonal dodecahedron) in three-dimensional space. This 
brings us to our own study of polyhedra in the next four chapters. 

Appendix 6.A. Projective Geometry 

The Renaissance artists were the best practicing mathematicians of 
the fifteenth century. Through the system of perspectivity, they not 
only developed a more realistic way to represent physical space but 
also provided the basis for a new area of mathematics, projective ge
ometry, which was developed later. Renaissance artists, such as 
Alberti, considered themselves to be the most learned and theoretical 
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Figure 6.43 A pattern of whirling triangles with lo
cal mirror symmetry formed by Penrose rhombuses. 

mathematicians of their time. Alberti, in the first written account of 
the system of perspectivity, which he published in 1435, stated that it 
was the first requirement of the painter to study geometry [Slawsky, 
1977], [Cole, 1976]. 

The subject of perspective was developed by the fifteenth century 
artists Alberti, Leonardo da Vinci, and Albrecht Diirer. The system 
they devised for representing space was fairly simple. The artist imag
ined that the canvas was a glass screen to be painted as if he were 
looking through a window at a scene outside. From one eye, which is 
held fixed, lines of light are imagined to go to each point of the scene. 
Where each of these lines intersects the glass screen, a point is 
marked on the screen. The set of lines of light is called a projection, 
and the corresponding set of points is called a section. If carried out 
correctly and when viewed from an appropriate point, the section 
should create the same impression on the eye as the scene itself does. 
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Flgyr® 6,44 Reptiles by M. C. Escher. (© M. C. Escher Heira/Cordon Art-Boom-
Holland.) 

For example, in Figure 6.A.1, a road on the ground plane is trans
formed to a canvas from a projection point O located at the artist's eye 
to render a scene as the artist sees it. The road, which recedes in par
allel lines I to infinity, converges on the artist's canvas to a single 
point on the horizon line h. It is also clear from this figure that -all 
paths leading toward the infinite distance on the flat landscape plane 
will map on the artist's canvas to a 'Vanishing point" on the horizon 
line. 

What the Greeks were unable to accomplish through rigor, the Re
naissance artists accomplished through the imagination. The artists 
adhered to the following rules in their system of perspective; 

1. All horizontal lines in the scene perpendicular to the plane of the 
canvas must be drawn to meet at the principal vanishing point. 
This is the way our eyes see parallel lines receding in the distance. 

2. Any set of parallel horizontal lines that are not perpendicular to 
the plane of the canvas but meet it at some angle must be drawn to 
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3̂ 
Figure 6.A.1 Projection of a scene onto a viewing 
plane. 

converge at a point that lies somewhere on the horizon, depending 
on the angle these lines make with the plane of the canvas. Parallel 
lines that rise or fall as they recede from the viewer must also meet 
at one point. This point would be the one at which a line from the 
viewer's eye parallel to the lines described above intersects the can
vas. 

3. Parallel horizontal lines of the scene are drawn as horizontal and par
allel lines. Vertical lines are drawn as vertical and parallel lines. 

Figure 6.A.2 is an example of the work of Vredeman de Vries, who very 
clearly used this technique of having all the vanishing points be collinear 
on the horizon line. It also shows the effect of exaggerated perspective. 

3.A.1 An example of a projected 
three-dimensional framework 

We shall not attempt to give a thorough discussion of projective geom
etry in this brief space, particularly since there are several books and 

Figure 6.A.2 A work of Vredeman de Vries illustrating vanishing points. 
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Figure 6.A.3 A framework formed 
by truncating a tetradedron. 

references that can provide such a background [Edwards, 1985], 
[Kappraff, 1990], [Young, 1930]. Instead we leave the reader with the 
intuitive notion of a perspective transformation presented above and 
present an example of the projection of a three-dimensional frame
work onto a plane. 

Consider the framework that is embedded in a tetrahedron shown in 
Figure 6.A.3. This is a diagram of a tetrahedron PVSU truncated by 
seven planes (QRT, abj, cdk, efl, hmg, jkl, and mjl). After a series of 
projections (not shown), the framework is projected in Figure 6.A.4 

Figure 6.A.4 A nonrigid frame
work obtained as the end result 
of a series of projections of the 
framework in Figure 6.A.3. 



Two-Dimensional Networks and Lattices 253 

onto the base plane of the tetrahedron in such a way that T and U 
coincide and V is mapped to infinity. This projection is uniquely de
termined. In Section 7.8 it will be shown that as a consequence of this 
projection, the projected framework shown in Figure 6.A.4 must not be 
rigid [Baracs, 1989]. 
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Chapter 

7 
Polyhedra: 

Platonic Solids 

On the Platonic solids: We must assume that 
the God duly adjusted proportions between 
their numbers, their movements, and other 
qualities and brought them to the exactest 
perfection. PLATO 

Timaeus 

7.1 Introduction 

Beneath the outer covering of a three-dimensional structure lies a 
skeletal frame that absorbs or transmits the external forces that act 
upon it. The inner structure of a bridge is evident for all to behold. 
Strip away the brick and mortar from a building and what remains 
are posts and beams. The metal shell around an airplane masks the 
delicate arches which are designed to distribute the dynamic loads ex
perienced in flight just as our own skin is a membrane that surrounds 
a structure made up of muscles, tendons, and bones. 

On a microscopic level, chemical and biological structures of all 
sorts are made up of chains of atoms and molecules linked together in 
complex spatially oriented frameworks. In this chapter and the next 
two we will study structures that have their basis in complexes of 
points linked together by line segments. In this chapter and the next, 
the emphasis is on closed structures known as polyhedra. Chapter 10 
studies open structures consisting of lattices and more general com
plexes of points. 

By defining a polyhedron, we necessarily limit the discourse about 
them. Although what we mean by a polyhedron has changed through 
the years [Senechal and Fleck, 1988], most authors use a definition 
that would have been familiar to Plato. A polyhedron is considered to 
be a surface made up of a set of plane polygons, called its faces, tha t 
bounds a region of space. The cube and pyramid are the most familiar 
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examples of polyhedra. The Csaszar and Szilassi polyhedra described 
in Section 4.16 are two other examples. Since, in this definition, a 
polyhedron is thought of as a surface, its polygonal faces are spanned 
by membranes. 

The region of space enclosed by a polyhedron can be either convex or 
nonconvex, in which case the polyhedron is called convex or nonconvex. 
Convex surfaces are natural generalizations of the convex curves in
troduced in Section 5.2.2. A closed convex surface is defined to be one 
such that any two points placed within the region bounded by it can be 
connected by a straight line also lying within that region. If part of 
the connecting line lies outside of the region bounded by the surface 
for some pair of internal points, the surface is nonconvex. By this def
inition, the sphere is convex but the torus (or doughnut) is nonconvex. 

This definition of a polyhedron, however, is problematic in that it 
excludes some important structures that are generally thought of as 
polyhedra. In fact, experience in constructing models of polyhedra 
leads us to conclude that the membranes spanning the faces are not 
only superfluous but actually hide the rich set of inner relationships 
between the framework of edges and vertices that surround the faces. 
Nevertheless, this approach applies well to most of the polyhedra dis
cussed in this chapter. 

A more modern approach to polyhedra dispenses with the need to 
consider polyhedra as surfaces and focuses instead on their skeletal 
structures [Grunbaum, 1977]. A polyhedron is defined as a three-
dimensional map consisting of edges, faces, and vertices. The faces are 
cycles of edges and vertices called polygons, and they no longer have 
to be planar. Each edge links together exactly two faces in a connected 
way so that any two edges can be joined by a sequence of faces. For 
example, two pyramids joined together only at their apexes are not 
polyhedra by this definition. By contrast with the graphs in Chapter 
4, edges are considered to be straight lines of definite length, and two 
edges meet at vertices with prescribed angles. This definition is more 
general than the first one, and some of the things that we say about 
polyhedra will refer to this definition rather than the first. 

Let's first become acquainted with polyhedra by building some out 
of miniature marshmallows, which serve as the vertices, and tooth
picks, which play the role of edges of equal length. This activity brings 
up some sticky problems. We have found Kraft brand marshmallows 
to be of superior quality at least for constructing polyhedra. Try the 
following exercises. 

Exercise 7.1 Create two equilateral triangles from six marshmallows and six 
toothpicks. Now rearrange the six toothpicks to form four triangles each the 
same size as the original. 
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Exercise 7.2 Construct a square and test it to see that it is not rigid, i.e., the 
vertices can be moved relative to each other. By adding additional toothpicks 
and marshmallows, surround the square by the least number of toothpicks and 
marshmallows to make it rigid. 

Exercise 7.3 Construct a cube and notice how it droops, being unable to hold up 
even its own weight. Now brace each of its faces with a toothpick, letting the 
squares deform to rhombuses, and notice how the resulting distorted box is quite 
rigid. 

Exercise 7.4 Surround a vertex with six equilateral triangles and notice how 
the triangles lie in a plane. Now surround a vertex with five equilateral trian
gles and notice how the central vertex is forced out of the plane to form a cap. 
Next form triangles on each of the outer edges of the original triangles and con
nect the unattached vertices of these triangles to form a belt of triangles as 
shown in Figure 7.1. Finally, complete this figure to a dome with another cap 
identical to the original. 

Exercise 7.5 Construct as many polyhedra as you can that satisfy the following 
constaints: 

1. All faces are identical ordinary planar polygons, e.g., equilateral triangles, 
rhombuses, hexagons, etc. 

2. Each vertex has the same number of incident edges as any other. 
3. If the edges were flexible, they could be deformed to a map on a sphere. 

For each polyhedron, record in a table the number of faces F, vertices V, edges 
E, edges incident to each vertex q, edges incident to each facep, the Euler num
ber F + V - E, and whether or not the structure is rigid (stands tall or droops 
after you build it). 

7.2 The Platonic Solids 

There are five kinds of polyhedra that satisfy the conditions of Exer
cise 7.5 (including the constraint imposed by the use of toothpicks that 

Figure 7.1 Pattern for constructing an icosahedron dome with marshmal
lows and toothpicks. 
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all edges have the same length): the tetrahedron (constructed in Exer
cise 7.1) with 4 triangular faces and 4 vertices, the hexahedron (or 
cube if the faces are squares) with 6 parallelogram faces and 8 verti
ces, the octahedron (the solution to Exercise 7.2) with 8 triangular 
faces and 6 vertices, the pentagonal dodecahedron with 12 pentagonal 
faces and 20 vertices, and the icosahedron (constructed in Exercise 
7.4) with 20 triangular faces and 12 vertices. Some of the properties of 
these polyhedra are listed in Table 7.1. 

The three polyhedra with equilateral triangle faces {3}, the tetrahe
dron, the octahedron, and the icosahedron, are rigid. Once they are 
constructed, their vertices cannot move relative to each other; there
fore, they can assume only one form. The other two kinds of polyhedra, 
the hexahedron and the dodecahedron, are not rigid; once they are 
constructed they collapse into a continuum of deformed shapes. Some 
of these shapes do not have planar faces. However, if the faces of the 
hexahedron are squares {4} and the faces of the dodecahedron are reg
ular pentagons {5} (see Figure 7.2), we get a unique family of five poly
hedra known as the platonic solids in honor of Plato who commemo
rated them in Timaeus [1977]. The platonic polyhedra are shown in 
Figure 7.2 along with their net diagrams which show how to fold them 
up from the plane. 

Platonic polyhedra have been studied since the age of ancient 
Greece [Malkevitch, 1988]. They have sparked the imaginations of 
creative individuals from Euclid to Kepler to Buckminster Fuller. 
These polyhedra are rich in connections to the worlds of art, architec
ture, chemistry, biology, and mathematics. In Timaeus four of the sol
ids were related to the four elements: earth, air, fire, and water. The 
fifth solid, the dodecahedron, represented the cosmos [see Figure 
7.3(a)]. In the natural world, the platonic solids present themselves in 
the form of microscopic organisms known as radiolaria [see Figure 
7.3(6)]. In this chapter and the next two we will study some of the con
nections between platonic solids and the natural world along with ex-

TABLE 7.1 

Polyhedron 

Tetrahedron 
Cube 
Octahedron 
Dodecahedron 
Icosahedron 

No. of 
faces F 

4 
6 
8 

12 
20 

No. of 
ver

tices V 

4 
8 
6 

20 
12 

No. of 
edges 

E 

6 
12 
12 
30 
30 

q edges 
per 

vertice 

3 
3 
4 
3 
5 

p edges 
per 
face 

3 
4 
3 
5 
3 

Rigid 

Yes 
No 
Yes 
No 
Yes 
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Tetrahedron 

f"s 

;S 

Figure 7.2 (a) The five platonic solids; (b) net dia
grams to fold them up from the plane along with in
dications of the angular deficit, 5. 

amples of how the platonic polyhedra lead to interesting three-
dimensional designs. 

It is difficult to understand the nature of three-dimensional objects 
through verbal descriptions of them or even by looking at two-
dimensional images of them. What is needed is an actual model which 
can be manipulated and viewed from different angles. We strongly 
recommend that you construct a set of platonic polyhedra as an aid to 
understanding the material of this chapter. They can be constructed 
out of sticks and connectors or stiff paper, and methods of construction 
can be found in Shapes, Space, and Symmetry by Alan Holden [1971], 
Polyhedra: A Visual Approach by Anthony Pugh [1976], Mathematical 
Models by H. M. Cundy and A. P. Rollett [1961], and Polyhedron Mod
els by M. J. Wenninger [1971]. 

7.3 The Platonic Solids as Regular Polyhedra 

The platonic solids can be considered to be polyhedra at the limit of 
perfection. Throughout this chapter we will see a good deal of evi-

A ^ 

Dodecahedron 

Octahedron 



Octahedron 
Air 

Cube 
Earth 

Dodecahedron 
the Universe 

Tetrahedron 
Fire 

(b) 

Figure 7.3 (a) The platonic solids depicted by Johannes Kepler in 
Harmonices Mundi, Book II (1619); (b) the platonic solids in the form of 
radiolaria. 
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dence of this perfection. By their very construction, they possess the 
same kind of perfect symmetry exhibited in Section 4.7 by the reg
ular maps. In fact, the first two conditions of Exercise 7.5 are pre
cisely the defining properties of the regular maps on the sphere (or 
plane): all faces and vertices are surrounded by an identical num
ber of edges. Any convex polyhedron tha t can be constructed from 
regular polygons with these two properties is called a regular poly
hedron [Coxeter, 1973]. 

The five regular maps on a sphere listed in Table 4.1 are isomorphic 
to the five kinds of regular polyhedra constructed in Exercise 7.5 and 
listed in Table 7.1. For example, the cube has three squares surround
ing each vertex, denoted by the Schlafli symbol {4,3}, in which the first 
number refers to the face valence p (number of edges per face) while 
the second number refers to the vertex valence q (number of edges per 
vertex). Likewise, the tetrahedron surrounds each vertex by three tri
angles {3,3}, the octahedron surrounds each vertex by four triangles, 
{3,4}, and the dodecahedron and icosahedron are {5,3} and {3,5}, re
spectively. 

There can be no more than five kinds of regular polyhedra that sat
isfy condition 3 of Exercise 7.5 that the edges be deformable to a map 
on the sphere. If there were another one, there would be another reg
ular map, in violation of Theorem 4.3. 

7.4 Maps of Regular Polyhedra on a 
Circumscribed Sphere 

Besides possessing perfect symmetry in a graphical sense, the platonic 
solids also have a kind of perfect geometric symmetry in the sense that 
the vertices of each solid are equidistant from a common center and 
evenly distributed around this center. Thus, they lie upon an imagi
nary sphere called the circumscribed sphere, or circumsphere. This 
prompts us to ask the following question: Can you slice an orange into 
four congruent (identical) pieces in a way other than the breakfast 
way? This can be done by circumscribing a sphere about the vertices of 
a tetrahedron as shown in Figure 7.4(a). A source of light is placed at 
the center of the sphere and the edges are projected onto the sphere 
where they form a tiling of the sphere by a set of congruent tiles. The 
congruent slices are represented by the four solid angles obtained by 
cutting the sphere with planes that include an edge of the tetrahedron 
and the center of the sphere. Of course, the circumscribing spheres of 
the other platonic polyhedra divide the sphere into 6, 8, 12, and 20 
congruent segments as shown in Figure 7.4 for three of the platonic 
solids. Spherical stone sculptures of the platonic solids constructed a 
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(a ) (b) ( c ) 
Figure 7.4 Three platonic polyhedra projected onto a sphere as arcs 
of geodesic circles. 

millennium before Plato have been found in the British Isles 
[Critchlow, 1982]. 

In this projection, the edges of the platonic polyhedra project onto 
arcs of great circles (circles on the sphere whose plane includes the 
center of the sphere, e.g., longitude lines). An arc of a great circle is 
the path of shortest distance that a bug crawling on the surface would 
take to get from one point on the sphere to another. It is also the path 
of airline pilots going from point to point on the globe by the great 
circle route. In general, curves of minimum distance on any surface 
are called the geodesies of that surface, i.e., the geodesies of a sphere 
are great circles. 

Problem 7.1 A rectangular box of given dimensions is shown in Figure 7.5. A 
bug is to crawl on the surface of the box from a point A, 1 inch below the center 
of the top edge, to point B, 1 inch above the center of the bottom edge on the 
opposite side of the box. Find the shortest distance from A to B. (Hint: Cut open 
the box up in a suitable way and draw the shortest straight line.) [Blake, 1985] 

Figure 7.5 Rectangular box of 
Problem 7.1. 

4 
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7.5 Maps of the Regular Polyhedra on the 
Plane—Schlegel Diagrams 

In the last section, the platonic polyhedra were projected onto regular 
maps on the sphere with congruent faces. The platonic solids can also 
be projected onto the plane. In fact, the five regular maps on the plane, 
shown in Figure 7.6(6), are just such projections. These Schlegel dia
grams [Loeb, 1976], as they are called, are obtained by projecting the 
edges of a platonic polyhedron onto the plane from a point directly 
above the center of one of its faces as shown in Figure 7.6(a) for a cube. 
Visually, this amounts to holding one face of a polyhedron quite close 
to one's eyes, looking at the structure through that face, and drawing 
the projection of the structure as seen in this exaggerated perspective. 
Notice that one of the faces of the polyhedron frames all the others, 
and this face must be included when counting faces. 

Although the projected map has lost its congruent faces, the 
Schlegel diagram enables us to see a realistic two-dimensional repre-

Tetrohedron A 
Cube 

Dodecahedron 

Point o f project 

s 
s 

\-J> 

a) 

on 

\ Plane of 
projection 

Octahedron 

Icosahedron 

( b ) 

Figure 7.6 (a) A cube projected onto the plane of one of its faces as a 
Schlegel diagram; (b) Schlegel diagrams of the platonic polyhedra. 
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sentation of a three-dimensional object that preserves such important 
characteristics of the original as its connectivity of edges and vertices 
and some of its symmetry. In Section 9.9 we will see that the Schlegel 
diagram provides an excellent tool to help visualize the result of 
transforming the platonic solids by truncating vertices or edges. 

7.6 Duality 

7.6.1 The inscribed sphere 

At first glance, the platonic polyhedra appear quite different from 
each other. However, they are related in many ways and form a 
tightly woven family. In this section we look at perhaps the most basic 
of relationships between these polyhedra, namely duality. 

An important observation about the platonic polyhedra can be made 
by inspecting Table 7.1. There is a natural pairing of the cube with 
the octahedron, the dodecahedron with the icosahedron, and the tet
rahedron with itself. For each face of one of these pairs, there corre
sponds a vertex of the other reminiscent of the duality of maps de
scribed in Section 4.9. In fact, by placing pairs of platonic polyhedra 
one within the other (you can use marshmallow and toothpick models) 
you can see that if a vertex of one polyhedron of the pair is placed at 
the centroid of a face of the other and vertices are connected if their cor
responding faces share an edge, the other member of the pair results. 

For dual pairs of platonic polyhedra, certain statements that can be 
made about a polyhedron can also be made about its dual if the fol
lowing replacements are made: 

face *-> vertex 

edge «•» edge 

p+*q 

For example, if the Schlafli symbol of a polyhedron is {p,q}, its dual 
has the symbol {q,p\. 

Since the face centroids of each of the platonic polyhedra are also 
vertex points for their duals, they must lie equidistant from a common 
center. Thus another sphere, the inscribed sphere or insphere, can be 
placed within a platonic polyhedron tangent to each of its faces. The 
inscribed sphere of a platonic solid is then the circumscribed sphere of 
its dual scaled appropriately in size. Duality for the platonic polyhedra 
depends on their symmetry. Appendix 7.A is devoted to showing how the 
concept of duality can be defined for convex polyhedra in general. 

At first Kepler believed that the physical structure of the universe was 
closely connected with geometry. He alternately inscribed and circum
scribed spheres about dual pairs of the platonic solids and hypothesized 
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that these spheres represented the orbits of the five planets known in his 
time, Mercury, Venus, Mars, Jupiter, and Saturn as shown in Figure 7.7 
but could not fit his observations precisely to this scheme. 

Escher also used inscribed and circumscribed spheres to create the 
set of nested models of the platonic solids shown in Figure 7.8. He was 
so fascinated by his creation that when he moved from his home, he 
gave away most of his belongings, but he took his beloved model of the 
five solids to his new studio [1971]. 

a SI'HERE OF SATURN (3 CUBE y SPHERE OF JU1TIER 

5 TETRAHEDRON t SI'HERE OF MARS £ DODECAHEDRON 

Tl ORBIT OF EARTH 9 ICOSAHEDRON i SI'HERE OF VENUS 

X OCTAHEDRON X SI'HERE OF MERCURY /JL SUN 

Figure 7.7 The planetary system of Johannes Kepler. 
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Figure 7.8 M. C. Escher contem
plating a nested set of platonic 
polyhedra. 

Wenninger has shown how beautiful models of the duals may be 
constructed^ embedded in each other by paper folding [1983]. Lalvani 
has created many beautiful transpolyhedra which demonstrate a con
tinuous transformation from a polyhedron to its dual [1989], [Crapos 

1978]. 

7.6.2 Interpenetrating duals and the intersphere 

The dual pairs of platonic polyhedra can be visualized as interpene
trating each other so that the set of edges of one perpendicularly bisect 
the corresponding edges of the other. They will be discussed further in 
the next chapter and if you look ahead to Figure 8.9, you can see pic
tures of them. We recommend that you construct a set of them. 

Construction 7.1 Construct a set of the three interpenetrating pairs of dual pla
tonic polyhedra. This construction can be carried out by placing appropriately 
sized pyramids on each face of one polyhedron of the pair as shown in Figure 7.9 
for the case of interpenetrating tetrahedra. The vertices at the base of the pyr
amids lie at the midpoints of the sides of the platonic polyhedron. The lateral 
faces of the pyramids are equilateral triangles and each pyramid may be con
structed by folding the triangles up from the plane. 

These interpenetrating duals help to define a third sphere that is 
related to the platonic solids, the intermediate sphere or intersphere. 
This sphere intercepts the midpoint of each edge of a platonic polyhe
dron. An example is shown in Figure 7.10 of the intersphere of the 
cube and the octahedron combination. 
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Figure 7.10 Interpenetrating cube and octahedron framing their common intersphere. 

Escher was intrigued by the dramatic possibilities that interpene
trating duals offered to design, and he created many designs based on 
them, one of which is shown in Figure 7.11. 

7.6.3 Duals on a Schlegel diagram 

A polyhedron and its dual can be represented on the same Schlegel 
diagram, although this is a little tricky [Loeb, 1976]. We place a ver
tex inside each face and connect vertices by an edge if two faces of the 
original Schlegel diagram share an edge. The problem arises in plac
ing a vertex within the framing face. One way around this problem is 
to imagine that the framing face is the exterior of the Schlegel dia
gram and that the vertex of the dual on this face is located at infinity. 
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Figure 7.11 Stars, woodcut, 1948. Escher's fantasy based on the platonic 
solids and their duals. (© M. C. Escher Heirs/Cordon Art-Baarn-
Holland.) 

Then all vertices corresponding to faces bordering on the outside face 
are connected to the infinite vertex by drawing an edge crossing the 
boundary of the Schlegel diagram at right angles. This is illustrated 
in Figure 7.12 for the tetrahedron. 

This approach can be justified by imagining the Schlegel diagram 
drawn on a sphere. The framing face is the remainder of the sphere. 
The vertices of the dual are placed on each face and connected by the 
appropriate edges. The vertex in the outer face is punctured, reminis
cent of Section 4.4, and stretched to infinity. 

7.7 Combinatorial Properties 

Since the platonic polyhedra can be thought of as maps on a sphere, 
the combinatorial results discussed in Sections 4.6 and 4.7 continue to 
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Figure 7.12 Schlegel diagram of 
a tetrahedron dual. 

be valid. In fact, the vertices and edges of every 3-polytope (convex 
three-dimensional polyhedron) P determines a graph G(P), the graph 
of P. It is relatively easy to prove that G(P) is planar and 3-connected 
(see Section 4.5) for each 3-polytope P. The converse statement was 
first proved by Ernst Stenitz, the most important early twentieth cen
tury contributor to the theory of polyhedra, and it constitutes the 
nontrivial part of the result. 

Theorem 7.1 (Stelnltz's theorem) A graph C is isomorphic to the graph G(P) of 
some 3-polytope P if and only if C is planar and 3-connected. (C is also referred 
to as a polyhedral graph.) 

The proof is not presented here, but we refer the interested reader to 
[Barnette and Griinbaum, 1969], 

The combinatoric formulas of graphs continue to hold for polyhedra, 
i.e., 

5 > = 2# (7.1) 
v 

^P = 2E (7.2) 
F 

and 

F + V - E = 2 (7.3) 

where summation is taken over all vertices in the first formula and 
over all faces in the second, and p and q are the face and vertex va
lences, respectively. Table 7.1 shows that Euler's formula for the 
sphere (or plane) holds for the platonic solids. For regular polyhedra 
the first two formulas can be written as 

qV = 2E (7.4) 

pF = 2E (7.5) 

These simple formulas place severe restrictions on the plastic forms 
that are possible for two- and three-dimensional maps even before the 
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additional constraints of straight edges and face angles of polyhedra 
are taken into account. These formulas weave a kind of analytic 
thread through the subject of two- and three-dimensional design, and 
they lead to some interesting consequences that are worth exploring. 
For example, Equation (4.13) can be carried over from regular graphs 
to platonic polyhedra, i.e., 

F = - E=l- V=- (7.6) 
p 2 q 

where t = 4pq/(2p + 2q - pq) 

That is, the icosahedron {3,5}, has q = 5, p = 3, t = 60 Thus, 

F = f = 20 £ = f = 30 V = ^ = 1 2 
6 1 5 

and the number of faces, vertices, and edges have been determined 
from knowledge of p and q only. No metric properties (length and an
gle) are needed. In the next three sections, we will see the effect of 
introducing length and angle. In the next section we shall see how to 
interconnect a set of nodes or vertices of a structure by straight rods or 
edges in order to make it rigid. 

Problem 7.2 Apply Equation (7.6) to computing F, V, and E for the other pla
tonic solids. 

7.8 Rigidity 

When you built the platonic solids out of marshmallows and tooth
picks, you noticed that the tetrahedron, octahedron, and icosahedron 
stood up firmly and rigidly and were even able to support additional 
weight after their construction. On the other hand, the cube and the 
dodecahedron drooped over, unable to support even their own weight. 
How can one explain this behavior? What factors determine the rigid
ity of a three-dimensional structure? How can a polyhedron that is not 
rigid be stabilized? 

By a rigid framework, we mean a structure of vertices and edges 
whose vertices are not capable of moving relative to each other when 
its edges are connected to the vertices by swivel joints permitting ro
tation about the vertex in any direction. We have considered the ri
gidity of two-dimensional frameworks in Sections 4.18 and 6.6. Now 
we wish to determine the least number of edges required to make the 
structure rigid. A. L. Loeb explains that V disconnected vertices need 
3V coordinates to fix them in three-dimensional space, i.e., three co
ordinates x, y, z for each vertex [1976]. As a result, we say that Vver-
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tices have 3V degrees of freedom. Each time we add an edge, we con
strain the structure so that there is one less degree of freedom. Since a 
rigid object has no degrees of freedom, we might think that 3 V edges 
would be needed to make V vertices rigid. Actually, only 3V - 6 edges 
are required, although certain qualifications are mentioned below. 
For example, the tetrahedron with four vertices is rigid with E = 3(4) 
- 6 = 6 edges. 

Why does a rigid body have six fewer degrees of freedom than we 
would expect? Since a rigid body can be translated to a new location or 
rotated as a whole in space and still be rigid, all its vertices need not 
be fixed. Consider three vertices on the rigid structure not all on the 
same line, as in Figure 7.13. The three coordinates of point 1 account 
for the freedom of translation. Point 2 is free to rotate on a sphere 
about point 1, in which case two coordinates are needed to specify its 
location on this sphere. Finally, point 3 is free to rotate in a circle 
about the axis through points 1 and 2, and its location on this circle is 
specified by one more coordinate. Thus, six coordinates need not be 
fixed on the configuration for it to remain rigid, three for translation 
and three more for rotation. In general, the formula 

E > 3V - 6 (7.7) 

is a good predictor of rigidity, although this formula has its limita
tions as we shall see. 

While Equation (7.7) puts a lower bound on the number of edges 
needed to make a structure with V vertices rigid, no information is 
given about where these edges should be placed. If there are fewer 
edges, the structure is not rigid according to this argument. Once the 
3V - 6 degrees of freedom are removed, additional edges are redun
dant since they do not further constrain the structure. For example, if 
V = 12, 3V - 6, or 30, edges are needed for rigidity. This is certainly 
true for the icosahedron. However, a cube with 8 vertices requires 18 
edges to be rigid, six more than it has. A little experimentation shows 

P2 

Figure 7.13 Three noncollinear 
points on a rigid body. 
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that if an additional edge is added along one of the diagonals to each of 
the cube's six faces, the new structure is rigid, as Exercise 7.3 shows. 

Exercise 7.6 Equation (7.7) is a reliable predictor of rigidity of three-
dimensional structures. However, it does not guarantee rigidity, and a structure 
may be rigid even when it is violated. Construct several rigid and nonrigid poly-
hedra out of marshmallows and toothpicks to test this formula. Try to find 
nonrigid structures that, nevertheless, satisfy the formula and rigid structures 
that violate it. 

The problem with Equation (7.7) as a predictor of rigidity is that it 
can be violated, and yet the structure may still be rigid as shown in 
Figure 7.14 for an octahedron with a vertex and two edges connecting 
opposite vertices. Surely this structure is rigid since the octahedron is 
and segments that make up the diagonal cannot move without chang
ing length. A calculation shows that 3V - 6 = 15, but this rigid struc
ture has only 14 bars. Nevertheless, the violation of the rigidity con
dition does underscore a dangerous condition. Although this structure 
is rigid, it is infinitesimally nonrigid, which means that under stress 
certain vertices slightly alter their positions, and it is of cardinal im
portance for structural engineers to avoid such circumstances. 

In two dimensions, E > 2 V - 3 is a predictor of rigidity provided the 
edges are properly placed. Figure 7.15(a) shows a portion of the 
32.4.3.4 tiling (see Section 5.5) built out of marshmallows and tooth
picks that is not rigid even though E = 2V - 3. If certain edges are 
removed and reinserted at the positions represented by the dotted 
lines, the same configuration of vertices is rigid. Figure 7.15(6) shows 
how such a stable configuration can be constructed from marshmal
lows and toothpicks [Loeb, 1988]. 

In Section 6.6 we presented another approach to predicting, the ri
gidity of structures based on the projective properties of polyhedra. 
Henry Crapo and others have delved deeper into the subject of rigidity 
and have come up with the following general condition for the rigidity 
of a two-dimensional framework: 

/ / 
/ 
/ 
/ 

Figure 7.14 An octahedron with 
two edges along a diagonal. It 
forms a rigid but noninfinites-
mally rigid structure. 
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( a ) (b ) 

Figure 7.15 (a) A nonrigid two-dimensional framework that, never
theless, satisfies E = 2V - 3; (6) it can be made rigid by changing the 
locations of the indicated edges to the those of the dotted lines while 
maintaining the positions of the vertices. 

Theorem 7.2 A two-dimensional framework with the configuration of a polyhe
dral graph (3-connected and planar) is not rigid if and only if it is the projected 
image of a polyhedron and satisfies E = 2V - 3. 

For example, a slightly modified version (but still nonrigid) form of the 
nonrigid configuration in Figure 7.15(a) is shown in Figure 6.A.3. The 
polyhedron from which it was projected is shown in Figure 6.A.4. Theo
rem 7.2 implies that if the lengths of the toothpicks were slightly altered 
in Figure 7.15(a), the structure would be rigid since it is unlikely to be 
the projection of a polyhedron. Figures 6.A.3 and 6.A.4 illustrate that the 
end result of a series of projections of a polyhedral framework embedded 
in a truncated tetrahedron yields a nonrigid two-dimensional framework 
according to Theorem 7.2. If this two-dimensional framework is not rigid, 
it is easy to see that the closely related framework in Figure 7.15(a) is 
also not rigid. It is a little more difficult to predict the nonrigidity of 
three-dimensional structures, but Janos Baracs and Crapo have ex
tended Theorem 7.2 to partially cover this case [1989]. 

Theorem 7.3 A three-dimensional framework with the configuration of a 
polytopal graph is not rigid if it is the projection of a 4-polytope (four-
dimensional convex polyhedron; see Section 4.20) and satisfies E = 3V - 6. 

Theorems 7.2 and 7.3 place the study of the rigidity of structures 
squarely within projective geometry, a place that this study enjoyed a 
century ago. Further discussion in great depth can be found in Struc
tural Topology, a journal edited by Henry Crapo [1978]. 

Finally, it can be proven that any convex polyhedron is rigid if and 
only if each of its faces is a triangle. 

7.9 The Angular Deficit 

A total angle of 360 degrees surrounds a point in the plane. This is 
also t rue around a point on a sphere since the locality of any point on 
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a sphere can be approximated as closely as you wish by a tangent 
plane. How does the sum of angles around a vertex of a polyhedron 
compare with the 360-degree angle around a point on the plane or 
sphere? The angular deficit, or spherical deviation, at a vertex of a 
polyhedron is defined as the difference between the sum of the angles 
of the polygons surrounding the vertex and 360 degrees and given the 
symbol 8, i.e., 

8 = 360 - sum of angles around a vertex 

In other words, it is the gap which results if the vertex is opened out 
flat as in the net diagrams of Figure 7.2. The angular deficits of typ
ical vertices of the platonic polyhedra are shown on these net dia
grams. The smaller the angular deficit, the more sphere-like the poly
hedron. Of course, if the polyhedron degenerates to a plane or a 
sphere, the angular deficit at each vertex is zero. The summation of 
the angular deficits over all the vertices of a polyhedron is the total 
angular deficit. 

Rene Descartes made some important contributions to geometry in 
a treatise entitled De Solidorum Elementis [Frederico, 1982]. An im
portant formula is stated in this manuscript known as Descartes' for
mula. It states that the total angular deficit, or the sum of all the an
gular deficits, taken over each vertex of a convex polyhedron equals 
720 degrees, i.e., 

2 ) s = 720 or 8V = 720 for regular polyhedra (7.8) 
v 

where summation is over all the vertices of the polyhedron. 
Descartes' formula is a remarkable constraint on space. Only when 

it is satisfied can a set of vertex patterns close up to form a convex 
polyhedron. This formula deserves a proof, which is given in Appendix 
7.B where we show that it is equivalent to Euler's formula. 

The fact that the sum of the face angles around any vertex of a poly
hedron is less than 360 degrees leads to another proof that there are 
only five platonic polyhedra. 

proof For any regular polyhedron {p,q}, its faces are regular polygons of p 
sides. From Equation (5.1), the internal angle of a regular polygon is 

0 = 180 f2-1-^) degrees (7.9) 

Since q such regular polygons surround each vertex, and the sum of the face 
angles meeting at a vertex is less than 360 degrees, 

1 8 0 g ( p - 2 ) < 3 6 0 
P 
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Using algebra, it follows that 

(p - 2)(<7 - 2) < 4 

The only values of p and q (which must be integers) satisfying this inequality 
are 

{3,3}, {3,4}, {4,3}, {3,5}, and {5,3} 

where the bracketed numbers represent the Schlafli symbols for the platonic 
polyhedra. 

Descartes' formula can also be used to determine the number of 
faces, edges, and vertices of a polyhedron if the pattern of polygons 
surrounding each vertex is the same, as it is for regular polyhedra. 
Thus, for an icosahedron, it follows from Equations (7.3), (7.4), and 
(7.8) that: 

8 = 360 - (5)(60) = 60 degrees 

V = ^ = 1 2 
5 

E = Z^f = 30 since q = 5 

F = 2 + £ - y = 2 0 

which agrees with our expectations. 

7.10 From Maps to Polyhedra—The 
Dihedral Angle 

Most of what we have said about polyhedra in the last two sections 
takes into account only the connections of vertices by edges, i.e., its 
qualitative, not quantitative, properties such as length and angle. To 
determine whether or not a structure is rigid we must connect vertices 
by just the right number of rods of the appropriate length, but nothing 
has been said about what those lengths are. Even Descartes' formula 
holds equally well for all the drooping shapes of a nonrigid polyhedron 
and says more about the ability of the polyhedron to form a closed fig
ure than about the angles between its edges and faces. 

In an actual polyhedron with planar faces, each face is oriented in 
a particular direction. The direction of a line in space that is per
pendicular to every line in a given plane is called a normal vector to 
the plane (see Figure 7.16). All planes perpendicular to the direc
tion specified by a normal vector are said to have the same orien
tation. 
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Figure 7.16 The normal vector to a plane. 

The orientation in space of the plane faces of a polyhedron can be de
termined from information about the angle between pairs of its faces, the 
dihedral angle, QD. The angle between the pages of the open book shown 
in Figure 7.17(a) shows what we mean by the dihedral angle. The dihe
dral angle between two planes is the apparent angle between them when 
they are viewed in such a way that their line of intersection appears as a 
point (edge view or plane view) as shown in Figure 7.17(6). In other 
words, the dihedral angle is the angle between the traces of the planes on 
a cutting plane normal to their line of intersection. It is also the angle 
between the normal vectors to the planes if the vectors are threaded in 
the direction of the angle as Figure 7.17(c) shows. 

The symmetry of the platonic solids makes the dihedral angle between 
any pair of bordering faces the same. We would like to compute the di
hedral angles for the platonic solids. But first we will show that there is 
a relation between the dihedral angle, the angular deficit, and the vertex 
figure. The vertex figure of a given vertex is the polygon formed by all the 
vertices that are connected by an edge to the given vertex (see Figure 
7.10). All the vertex figures of a platonic polyhedron are identical. In 
fact, the vertex figures of a platonic polyhedron are the faces of its dual. 

A pattern of six equilateral triangles surrounds a vertex and lies 
flat in the plane. However, if we connect five equilateral triangles 
around a vertex, the pattern bulges out of the plane to form a three-
dimensional cap as shown in Exercise 7.4. In the first case, the angu
lar deficit of the vertex and the dihedral angle between the tr iangular 
faces are both zero. In the second case, the angular deficit equals 60 
degrees, but the dihedral angle is not fixed since the cap is not rigid 

(a) (b) (c) 

Figure 7.17 (a) The dihedral angle between two planes; (6), (c) edge view of the 
planes showing the dihedral angle. 
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(the vertices can be moved relative to each other). However, if we 
insist that the vertex figure be a planar regular pentagon, the cap is 
uniquely defined and is a typical segment of an icosahedron. 

More generally, let the vertex figure be a regular n-gon where 
n may be fractional in the case of star polygons. For example {5/2} 
represents a regular pentagram. Peter Messer [2000] has shown that, 

• Q° 180 « s i n — = cos sec— (7.10a) 
2 n 2 

where a is the angle of each face incident to the vertex measured 
in degrees. Given the regular polyhedron {p,q}, then n = q and 
a = 180 (1 - -p), and the regular case simplifies to, 

. eD 180 180 
s i n — = esc cos (7 106) 

The dihedral equations for the Platonic polyhedra are computed using 
Equation (7.106), and they are listed in Table 7.2. 

TABLE 7.2 Dihedral Angles of the Platonic Polyhedra 

Polyhedron ip,q) 

Tetrahedron 

Octahedron 

Cube 

Icosahedron 

Dodecahedron 

P 

3 

3 

4 

3 

5 

1 

3 

4 

3 

5 

3 

6D 

70.53 

109.47 

90 

138.19 

116.57 

7.11 Space-Filling Properties 

A polyhedron is more useful for creating models of biological, chemi
cal, or architectural forms if it can be combined with others to form a 
larger aggregate. For example, cubes stack to completely fill space. 
This explains why cubes or their close relatives, parallelopipeds, are 
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ideal structures with which to subdivide the space inside or outside of 
a building. 

Can other platonic polyhedra stack to fill space? Try as we may, 
only the cube among the platonic polyhedra can fill space by itself. In 
a space-filling array of polyhedra no gaps can remain and the edges 
and vertices of any polyhedron from the array must coincide with the 
edges and vertices of adjacent polyhedra, i.e., no vertex lies within an 
edge or face. Whether or not a set of polyhedra can fill space is deter
mined by the following self-evident necessary condition: 

The sum of the dihedral angles between all faces meeting at a com
mon edge is 360 degrees, i.e., 

2X = 360 (7.11) 
E 

where summation is over the set of edges. 

Problem 7.3 Check the dihedral angles in Table 7.2 to see that, of all the pla
tonic polyhedra, only an integral number of cubes are able to surround an edge 
to satisfy the criteria for space filling. 

Although tetrahedra cannot fill space by themselves, they can com
bine with octahedra in a ratio of two tetrahedra for each octahedron to 
fill space. In fact, as we saw in Exercise 7.3, bracing each face of a 
cube with an edge deforms the cube into a parallelopiped shown in 
Figure 7.18 made up of two tetrahedra and one octahedron, which can 
stack as well as cubes. From Table 7.2 we see that the dihedral angles 
for the tetrahedron and octahedron are 70.54 and 109.46 degrees, re
spectively. Thus, Equation (7.11) requires two tetrahedra and two oc
tahedra to surround each edge in a space-filling array. 

In Chapter 10 we will see how tetrahedral and octahedral arrange
ments form the underlying structure of metallic crystals. Buckminster 
Fuller used the stackability of tetrahedra and octahedra to create a 
structural module called the octet truss, which is the basis of very rigid 
structures known as spaceframes shown in Figure 7.19 and discussed 
further in Chapter 10 [1975], [Edmondson, 1987]. 

Figure 7.18 Two tetrahedra and one octahedron form 
a parallelopiped that fills space. 
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Figure 7.19 An octet truss. 

7.12 Juxtapositions 

There are three ways polyhedra can be joined one to another: vertex to 
vertex, edge to edge, and face to face (see Figure 7.20). If one polyhe
dron is held fixed in space, in the vertex-to-vertex arrangement the 
other is free to move in a sphere about the first; in the edge-to-edge 
juxtaposition the second polyhedron can move in a circle about the 
edge as axis; while in the face-to-face configuration no relative move
ment is possible. Fuller likened the freedom of the vertex-to-vertex 
configuration to the vapor state of molecules, edge to edge to the liquid 
state, and the most constrained face-to-face arrangement to the solid 
state. Although this analogy is metaphorical, many of the properties 
of actual molecules can be explained by these different kinds of bond
ing of molecules [Wells, 1956], [Pauling and Hayward, 1964]. 

Figure 7.21 shows a model of a compound with chemical formula of 
the type ABX3, known as aperovskite, a compound capable of storing 

(a) (b) (c) 
Figure 7.20 Three juxtapositions of polyhedra. (a) Vertex to vertex; (b) edge to edge; 
(c) face to face. 
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Figure 7.21 The basic structural 
unit of perovskites is a cube. 
One metallic atom A lies at the 
center, 8 smaller metallic atoms 
B occupy the corners, and 12 
nonmetallic atoms X are the 
midpoints of the edges; the 6 X 
anions that surround each B 
cation form an octahedron; the 
basic structural model becomes 
a group of 8 corner-linked octa-
hedra around an A cation. 

electric energy and possessing other remarkable electrical properties 
such as high-temperature superconductivity. The three species of 
perovskite ions are arranged in one cell of a cubic lattice in Figure 
7.21 with a large A ion at the cube centers, a smaller B ion at the ver
tices, and X ions in the center of the edges. It would appear at first 
that the formula for this compound should be AB8X12. However, since 
each vertex is shared by eight adjacent cubes and each edge is shared 
by four adjacent cubes, the actual formula must be ABX3. Each B ion 
at the corners of the cube is surrounded by an octahedral configura
tion of six X ions at the midpoints of the edges incident to each of 
these vertices. This collection of octahedra can be connected vertex to 
vertex and is responsible for many of the remarkable electrical prop
erties of perovskites [Hazen, 1988]. For example, if the A ion is 
slightly undersized, the octahedra respond to mechanical pressure by 
displacing themselves from their equilibrium positions, thus setting 
up an electric field capable of storing electric energy. Robert M. Hazen 
and his group at the Geophysical Laboratory of the Carnegie Institu
tion of Washington has shown that a class of high-temperature super
conducting materials is made up of structurally flawed perovskites. 
The structure of perovskite crystals will be discussed further in Sec
tion 10.7.3. 

Construction 7.2 [Pugh, 1976] The opposite edges of a regular tetrahedron are 
at right angles to each other. A ring of tetrahedra can be formed by joining the 
opposite edges of eight tetrahedra as shown in Figure 7.22. If the joints between 
the figures are flexible enough to allow each tetrahedron to rotate about its 
neighbors, the whole ring of tetrahedra can rotate as a smoke ring rotates in the 
air. A similar ring can be constructed from 16 octahedra joined edge to edge. 
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Construction 7.3 [Pugh, 1976] Tetrahedra can also be joined face to face to cre
ate a form which can be likened to a twisted column with triangular faces as 
shown in Figure 7.23(a). The edges of this arrangement follow helical lines, so 
the figure is referred to as a tetrahelix. 

Besides the tetrahelix, elongated structures called masts can be built 
out of octahedra or icosahedra as shown in Figure 7.23(6) and (c). A 
seven-frequency octetmast is shown in Figure 7.23(d). The frequency is 
the number of units that combine to form the length. If each rod of the 
octet truss in Figure 7.19 is replaced by an octetmast, a truss of lower 

( a ) ( b ) (c ) (d ) 

Figure 7.23 (a) Tetrahelix; (6) octamast; (c) icosamast; (d) octet
mast. 
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Figure 7.24 A design for a space platform constructed from octetmasts. 

mass-to-volume ratio is produced. If each rod of the new truss is again 
replaced by an octetmast, the density can be reduced even further. 
Russell Chu [1986] has proposed that this octet truss expansion system 
be used as the structure of a large lightweight space station in the form 
of an octahedron (see Figure 7.24). Although each rod of the structure 
measures only 5 feet in length and 3 inches in diameter, a 14-frequency 
expansion followed by a 12-frequency expansion produces an expanded 
mast that is 840 feet in length by 70 feet in diameter. 

7.13 Symmetry 

Up to now we have vaguely referred to the "perfect symmetry" of the 
platonic solids. Now we become a little more precise. When we look at 
a model of a polyhedron, what we are most likely to notice at first are 
physical aspects of the model such as the positions of its vertices, the 
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connectivity of its edges, and the shapes and orientations of its faces. 
But if we continue to examine the model for a while, turning it every 
which way, we note other more subtle attributes of the polyhedron 
known as its symmetries. When the model is oriented in special direc
tions, the jumble of edges and vertices coalesces into a highly ordered 
pattern. 

7.13.1 Rotational symmetry 

Most people have an intuitive notion of symmetry; generally we rec
ognize when a geometric pattern is or is not symmetric. However, we 
can formalize this concept to make it a little more precise. An object is 
said to have rotational symmetry if a rotation of the object about some 
axis results in precisely the same overall configuration of points, al
though these points may be in new positions. The polyhedron is said to 
be invariant under this rotation. 

The cube is invariant under rotation about an axis through the cen
ter of two opposite faces under four rotations of 90, 180, 270, and 360 
degrees. This is called a fourfold rotational symmetry of the cube and 
the axis is known as a fourfold axis of rotational symmetry and corre
sponds to a face-on view of the cube. Figure 7.25(a) shows the three 
fourfold axes of the cube which are responsible for a total of nine ro
tations in addition to the identity transformation which leaves the 
cube unchanged (or rotates it 360 degrees). The cube also has four 
threefold axes (responsible for eight rotations) through opposite verti
ces which result in a vertex-on view of the cube [see Figure 7.25(6)], 
and six twofold axes (responsible for six rotations) through the centers 
of opposite edges, as shown in Figure 7.25(c), resulting in an edge-on 
view. When all 13 rotational axes are placed in cube [see Figure 7.25 
(d)], the cube has a total of 24 rotations (including the identity trans
formation) that leave its configuration invariant. 

Because the cube possesses four-, three-, and twofold axes, it is said 
to have 4.3.2 symmetry. It turns out that all the platonic solids fall 

X 

/ 

1 
1 , J 

- - *'- -
,<• 1 

1 
1 

\ 

x 
* 

x 
( a ) 

X X 

/ 

\ 1 

<# 

\ 

x 
-̂  

X 

\ 11 

m 
< > v s , 

/ 1 \ ' i » 

<x 
?, 

>> 
/ * • . 

(b) (c) (d) 

Figure 7.25 (a) The three fourfold axes of rotational symmetry for a cube; (b) the four 
threefold axes; (c) the six twofold axes; (d) the combined 13 axes of rotational symmetry. 
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into three symmetry families 4.3.2, 5.3.2, and 3.3.2. Dual platonic 
polyhedra possess identical symmetries: the cube and octahedron 
are 4.3.2, the icosahedron and the dodecahedron are 5.3.2, and the tet
rahedron shares the twofold and threefold axes of the other two sys
tems. Table 7.3 lists all the rotational symmetries of the platonic poly
hedra. 

If a polyhedron has rotational symmetry with respect to some axis, 
its plane projection in the direction of this axis must have the same 
symmetry. Thus, by turning the polyhedron about and observing its 
planar profiles, rotational symmetries can be detected. For example, 
Figure 7.26 shows the profiles of a cube projected in the directions of 
its four-, three-, and twofold axes, i.e., the face, vertex, and edge views. 

Problem 7.4 Locate the axes of symmetry of all the platonic polyhedra in this 
way and draw their planar profiles. You will see that this amounts to drawing 
face-on, vertex-on, and edge-on views of the platonic solids. 

7.13.2 The principal directions of the cube 
and 4.3.2 symmetry 

The system of 4.3.2 rotational symmetry is characterized by the three 
principal directions of the cube, namely, the edge direction E, face di
agonal direction FD, and the body diagonal direction BD, shown in 

TABLE 7.3 

Polyhedron 

Tetrahedron 
Cube 
Octahedron 
Dodecahedron 
Icosahedron 

Twofold 

3 
6 
6 

15 
15 

Rotationa 

Threefold 

4 
4 
4 

10 
10 

axes 

Fourfold 

6 
3 
3 

Fivefold 

6 
6 

Planes of 
reflection 

9 
9 

15 
15 

<» 

(a) (b) (c) 
Figure 7.26 Projection of a cube onto the plane perpendicular 
to its axes of rotation, (a) Fourfold axis; (£>) threefold axis; (c) 
twofold axis. 
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bd 

\ f d 

e 

Figure 7.27 The principal directions of a cube. 

Figure 7.27. Thus, the fourfold axes of a cube are in the E direction, 
the threefold axes are in the BD direction, and the twofold axes are in 
the FD directions. If the cube is placed into a cartesian coordinate sys
tem, the principal directions can be abbreviated by the points that 
their tips intercept when they are anchored to the origin. Thus, 
according to Figure 7.27, E <-» [1,0,0], FD <-» [1,1,0], and BD ++ 

[1,1,11. 
Peter Pearce [1978] has designed a set of sticks and connectors, 

which he calls the universal node system, to exploit the relation
ship of 4.3.2 symmetry to the principal directions of a cube. In 
Pearce's system, edges are color- and shape-coded to match the 26 
protrusions on the connectors in the directions of the 13 axes of ro
tat ional symmetry. With the universal node system any polyhedron 
from the 4.3.2 system can be built quickly yielding a graphic dem
onstration of i ts s tructure. Thus, the cube uses only E directions, 
whereas the te t rahedron and octahedron are constructed from FD 
directions. The system is of par t icular importance to crystallogra-
phers and architects since all space-filling polyhedra with equal 
edge lengths, as we shall see in Chapters 8 and 9, are members of 
the 4.3.2 symmetry class. 

Steven Baer has designed a set of sticks and connectors to build 
polyhedra from the 5.3.2 system [1970], The connectors in Baer's sys
tem are spheres punctured by the 31 axes of rotational symmetry of 
the 5.3.2 system. This system is turning out to be useful for studying 
quasicrystals (see Sections 6.10, 10.13, and 10.14). 

Problem 7.5 Use the pythagorean theorem and trigonometry to find the angle 
between the following directions incident to a vertex of the cube: E and BD, E 
and FD, BD and FD, FD and FD, and BD and BD meeting at the center of the 
cube and called the Miraldi angle (see Section 8.9). 

7.13.3 Reflection symmetry 

An object is said to have reflection, or mirror, symmetry if half of the 
object reflects to the other half in a mirror which lies on the plane of 
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reflection. Likewise, if a two-way mirror is placed on a plane of reflec
tion symmetry, the points of the object on one side of the mirror reflect 
to the points on the other side, leaving the original configuration in
variant, although points are interchanged across the mirror. 

The cube has three planes of reflection symmetry each parallel to a 
pair of faces. In addition, six planes of reflection symmetry slice 
through opposite edges and are perpendicular to the two faces that do 
not contain these two edges. Find and determine the number of planes 
of reflection for the other platonic polyhedra (see Table 7.3). 

We saw that axes of rotational symmetry of an object can be found 
by physically manipulating the object. On the other hand, it is diffi
cult to detect planes of reflection symmetry physically since it is not 
easy to insert mirrors into an object and physically observe the reflec
tions; therefore reflection symmetry is sometimes called a nonper-
formable symmetry. However, the existence of at least one plane of re
flection symmetry can be detected by placing the object before a 
mirror so that its suspected mirror plane is perpendicular to the mir
ror. If the object could be physically moved behind the mirror and 
imagined to match up point for point with its image, the suspected 
plane is indeed a plane of reflection symmetry. For example, humans 
and other land animals have an approximate plane of mirror symme
try, on the exterior of their bodies, separating left from right (but not 
up from down). 

Problem 7.6 Place the following objects before a mirror and detect mirror sym
metry if it exists: a cube, cone, tetrahedron, spiral, and glove. 

Conversely, if an object does not possess reflection symmetry, its 
mirror image is distinctly different from the object and the two cannot 
be matched up through a movement of the object in three-dimensional 
space. We generally distinguish such objects as being left or right 
handed. For example, we talk of a left and right hand or a left- and 
right-handed spiral or molecular arrangement. The assignment of left 
and right, while arbitrary since it depends on the viewer's perspective, 
is generally established to everyone's agreement according to some 
convention. However, the arbitrariness of the convention means that 
there is no way to convey our meaning of left and right to someone 
located in a remote corner of the universe. More will be said about this 
in Section 11.9. 

7.13.4 Orthoschemes and the dihedral kaleidoscope 

Although rotation and reflection symmetry of platonic polyhedra ap
pear to be entirely different, there is a profound connection between 
them. This is demonstrated for a cube. 

Circumscribe a sphere around a cube and cut the sphere and cube by 
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k 

\ 

Figure 7.28 Great circles related 
to the symmetry group 4.3.2. 

)yy Drawn by Patrick Du Val for his 
- ' book Homographies, Quarter-

nions and Rotations. 

the nine planes of reflection symmetry of the cube [Coxeter, 1988]. 
This divides the surface of the sphere into 24 spherical triangles and 
their mirror images. Half of these triangles are colored grey in Figure 
7.28 to distinguish them from their mirror images which are colored 
white. Each of these triangles has one right angle. All the vertices at 
point P are 45 degrees, and P along with its antipode comprise a four
fold axis of rotation. The angles at Q are 60 degrees, and Q is one of 
the axes of threefold rotation. The twofold axes are at the position of 
the right angles and their antipodes. The six points equivalent to P 
comprise the vertices of an octahedron while the eight points equiva
lent to Q are the vertices of a cube. Each of the 24 rotational symme
tries of the cube transforms a grey triangle into one of the other 23 
grey triangles or to itself in the case of the identity. The same goes for 
the white triangles. A grey triangle can be transformed to a white tri
angle by either a single reflection or a rotation followed by a reflection 
and there are 24 of these transformations. We will return to this 
sphere in Section 9.9 to see how it can be used to generate other poly
hedra with cubic symmetry. 

A similar construction can be carried out for the other platonic poly
hedra \p,q). The planes of reflection decompose these polyhedra into 
oppositely congruent tetrahedra called orthoschemes, first conceived of 
by Ludwig Schlafli [Williams, 1972]. In this decomposition, the four 
faces of these tetrahedra are right triangles, and the lengths of the 
three edges meeting at the polyhedron center are radii of the 
circumsphere, insphere, and intersphere as illustrated for the cube in 
Figure 7.29. 

Schlafli showed that the angles and radii of this orthoscheme shown 
in Figure 7.29(6) can be expressed in terms of p and q as follows: 

, Oi03 XR n K _, . n n 
cos(p = —-—— = = cos—esc— 0R =e sin—esc — 

O0O3 0R p q q h 
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Figure 7.29 The orthoscheme for the cube. 
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where 0R represents the radius of the circumsphere, 2R is the radius 
of the insphere, and xR is the radius of the intersphere, e is the 
semiedge length of the Platonic polyhedron, and h is the number 
of lengths into which a great circle is divided by edges of the 
interpenetrating dual polyhedra (see Section 7.6.2) when projected 
onto a sphere from their common center in a manner to be discussed 
in Section 8.3. It will be shown that h = 4 for the tetrahedron, h = 6 
for the octahedron and cube, while h = 10 for the icosahedron and 
dodecahedron. 

In this decomposition, an orthoscheme and its mirror image border 
each edge of the polyhedron. Thus, the cube is decomposed into 24 
right- and 24 left-handed orthoschemes. A relationship between the 
central angle <|> subtending the semi-edge and the dihedral angle 9D of 
the corresponding dual is given in Appendix 7C. 

Construction 7.4 Construct a large tetrahedron of the same shape as the 
orthoscheme of a cube out of reflecting surfaces. Only the three faces of the 
orthoscheme that meet at the center of the Platonic polyhedron are needed; one 
side is open. In Figure 7.30 a small cardboard model of an orthoscheme has been 
placed into this tetrahedral chamber of mirrors called a dihedral kaleidoscope. 
Observe that the missing 47 orthoschemes appear in the mirror and reassemble 
the cube. 

The orthoscheme can also be used as a unit of structure. For 
example, Kapusta's K-dron (see Section 5.10.2) can be constructed 
from 12 left- and right-handed pairs of orthoschemes of a cube. This 
may account for the striking optical properties tha t the K-dron 
possesses and explain why K-dron structures exhibit such a strong 
relationship between form and function. 

7.14 Star Polyhedra 

In Section 5.2.2, the edges of a regular polygon were extended, and for 
a polygon with five or more sides, this extension enclosed additional 
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Figure 7.30 Dihedral kaleido
scope based on the symmetry of 
the cube. 

regions of the plane forming a star polygon. If we now try extending 
the face planes of a platonic solid, no new regions are defined for the 
tetrahedron and cube; however, the face planes of the octahedron en
close eight additional tetrahedra as we can see by looking again at 
Figure 7.9. The faces of this star polyhedron are the large equilateral 
triangles of the interpenetrating tetrahedra, one of which is labeled 
ABC. The vertices of this star polyhedron are the eight apexes of the 
tetrahedra. The points at which the eight large equilateral triangle 
faces self-intersect are not considered to be vertices of the star polyhe
dron. 

Extending the face planes of the dodecahedron leads to three dis
tinct types of cells inside the intersecting planes and three stellated 
forms, two of which were discovered by Kepler (1819) and the other by 
Poinsot (1809). These three star polyhedra and one additional one de
rived from the icosahedron and also discovered by Poinsot have all the 
properties of the platonic solids, namely, each face is a regular poly
gon (or star polygon) and each vertex is surrounded identically. They 
differ from the platonic solids in that their graphical structures cannot 
be deformed to a graph on a sphere (i.e., they are not convex). 

Wenninger gives details on how to construct beautiful models of 
star polyhedra [1971]. Models of two of the platonic star polyhedra, 
the small stellated dodecahedron {5/2,5} and the great dodecahedron 
{5,5/2}, are shown in Figures 7.31 and 7.82. The first number in the 
Schlafli symbol stands for the kind of polygon face ({5/2} is a star pen
tagon face as we saw in Section 5.2.2) while the second number stands 
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( b ) ( c ) 

Figure 7.31 The small stellated dodecahedron {5/2,5}. 

for the kind of polygon that makes up the vertex figure. From their 
Schlafli symbols, it is not surprising that these two polyhedra are du
als in the sense described in Section 7.6.1. 

Notice in Figure 7.31 that {5/2,5} can be assembled by gluing to
gether identical golden triangles of type 1 (see Section 3.5) derived 
from the shaded portion of the accompanying star pentagram. Five 
isosceles triangles are glued together to form a pentagonal pyramid, 
and 12 pyramids are then glued to the faces of a pentagonal 
dodecahedron to form the star polyhedron. In Figure 7.32, 20 trihedral 
dimples, constructed from golden triangles of type 2 shaded in the ac
companying star pentagram, are cemented together to create {5,5/2} 
whose faces are 12 interpenetrating pentagons with pentagonal stars 
embossed on them. 

Construction 7.6 It is a good exercise in visual thinking to construct models of 
the Kepler-Poinsot polyhedra and observe the variety of their appearances as 
they are viewed from different angles. 
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Appendix 7.A. Duals 

It is a bit surprising that the concept of duality, which is so well-
defined for maps and so natural for the platonic solids, proves to be 
elusive for polyhedra in general [Griinbaum and Shepherd, 1988]. 
However, if we restrict ourselves to convex polyhedra, there is a nat
ural way to define a dual. But first we must define what is meant by 
the pole and polar to a circle and a sphere. 

In Appendix 2.B we defined two points P and Q to be inverse with 
respect to a circle with center at O and radius r if they satisfy the re
lation 

OP-OQ = r2 

However, if we rewrite-this equation as 

OP _ r 
r OQ 
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Figure 7.A.1 Pole and polar of a circle. 

then by referring to Figure 7.A.1, we see that triangle OAQ ~ trian
gle OAP where AP is a tangent line to the circle from P. But, since 3 
OAP = 90 degrees (why?), it follows by similarity that < OQA = 90 
degrees and consequently AQ is perpendicular to OP. Line AQ is 
called the polar of pole P with respect to the circle. The polar to a 
sphere is defined analogously. It is the plane through Q perpendicular 
to the line connecting point P with the center of the sphere. 

We now define a polyhedron dual to a given convex polyhedron. 
Take any point within the polyhedron as the center of a sphere of 
arbitrary radius. Let the vertices of the polyhedron be poles with re
spect to this sphere. The dual is defined to be the envelope formed by 
the planes polar to the vertices. Note that the dual polyhedron is not 
uniquely defined in the euclidean sense of length and angle. If we re
strict ourselves to symmetric polyhedra that have circumscribing 
spheres, such as the platonic solids, the poles can be taken to be the 
vertices intercepted by the circumsphere while the polars are tangent 
planes to this sphere (the inscribed sphere of the dual). The envelope 
of these tangent planes constitutes the dual polyhedron. In Section 9.7 
duals are described with respect to yet another sphere, the inter-
sphere. 

Appendix 7.B A Proof of Descartes Formula 

The following proof of Descartes' formula is by Alan Stewart [1986]. 
For the polygons around a vertex of a two- or three-dimensional map, 
each polygon with face valence p shares p vertices. We may take the 
contribution of each polygon at a vertex as 1/p. That is, since when we 
count over all vertices we count the same face p times, we take 1/p of 
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it per vertex in order to get one face when all are added up. Summing 
over all faces per vertex and all vertices, 

where EF is the sum over each polygon face incident to vertex V and 
2V is the sum over all vertices. 

Using similar arguments, or swapping F <-» V, p <-» q (see Section 
7.6.1), gives 

V - y / y i U e r t i c e s ( 7 R 2 > = ?(£) 
Now assume that all polygons are regular, i.e., all internal angles 

are equal. (Descartes' formula can be proved without this restriction, 
but the proof is more technical.) 

For any polygon, the sum of the external angles equals 360 degrees. 
Therefore, if the polygon is regular and has p angles (and edges), the 
internal angle is, according to Equation (7.9), 

e = 1 8 Q _ 360 (7.B.3) 
P 

If there are q polygons surrounding a vertex V, 

8 = 360 - ^ 6 = 360 - y f l 8 0 - — ) 
F F\ P I 

5 = 360 - 180<7 + 3 6 0 ^ -
F P 

where, as before, 2F 1/p is the sum of 1/p for each of the faces incident 
to vertex V, or 

» - 360(! + 2 j " 1) 

The total angular deficit over all vertices is 

I> . 3602 (1 • X H ) 

(7.B.4) 

or 

2> = 36o[v+y/yi)l-i2<, 
V \ F 'P 

(7.B.5) 
2V 
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But using Equations (7.B.1) and (7.1), the last equation becomes 

^8 = 36<XV+F-E) 
v 

or 

X8 = 36°x 
v 

where % is Euler's number. On a sphere, % = 2; therefore ^ 5 = 720 
(sphere). On a torus, x = 0; therefore ^ 8 = 0 (torus). 

v 

Appendix 7.C 

Messer [2000S] has shown the following simple relationship for 
regular polyhedra, 

£{p,?) +6DI9,P) =TI radians or 180 degrees. (7.C.1) 

Here e = 2<|) where <|> is the central angle of the orthoscheme subtend
ing the semiedge of the regular polyhedron {p,q}, both Platonic 
and Kepler-Poinsot polyhedra, and 0D is the dihedral angle of the dual 
regular polyhedron {q,p). The angles ePi? and QDPtq are expressed 
as inverse trigonometric functions of simple rational numbers in 
Table 7.C.I. 

TABLE 7.C.1 

lp,q) 

(3,3) 

(3,4) 

(4,3) 

(3,5) 

{5,3} 

{5/2, 5) 

(5, 5/2) 

(5/2, 3) 

(3, 5/2) 

Ep,, (deg.) 

arccos(- 1/3) 

arcsin 1 

arccos 1/3 

arctan 2 

arcsin 2/3 

;r - arctan 2 

arctan 2 

n - arcsin 2/3 

7t - arctan 2 

109.47 

90 

70.53 

63.43 

41.81 

116.57 

63.43 

138.19 

116.57 

QDP,q (deg.) 

n - arccos(-l/3) 

n - arccos 1/3 

n - arcsin 1 

n - arcsin 2/3 

71 - arctan 2 

7t - arctan 2 

arctan 2 

arctan 2 

arcsin 2/3 

70.53 

109.47 

90 

138.19 

116.57 

116.57 

63.43 

63.43 

41.81 
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8 
Transformations 

of the 
Platonic Solids I 

On the platonic solids: Their combinations 
with themselves and with each other give rise 
to endless complexities, which anyone who is 
to give a likely account of reality must 
survey. PLATO 

Timaeus 

8.1 Introduction 

The platonic solids are fascinating structures in their own right. We 
can think of them as a group of primitive structures capable of gener
ating an unlimited variety of other shapes, much as the primary col
ors form the base of other colors. In this chapter we explore some of 
the ways that the platonic polyhedra relate to each other. The next 
chapter is devoted to the ways in which platonic solids can be trans
formed to other classes of polyhedra. To get a better sense of the 
transformability of the platonic solids try the following exercises 
[Laycock, 1989]: 

Exercise 8.1 From six 20-centimeter straws assemble a tetrahedron with hair
pins. Then connect the midpoints with twelve 10-centimeter straws (preferably 
of a different color) as shown in Figure 8.1. What did you create? 

Exercise 8.2 From twelve 20-centimeter straws assemble an octahedron. Con
nect the midpoints with twenty-four 10-centimeter straws (of a different color) 
as shown in Figure 8.2. Describe the new polyhedron that results. 

Exercise 8.3 From thirty 20-centimeter straws assemble an icosahedron. Con
nect the midpoints with sixty 10-centimeter straws as shown in Figure 8.3. De
scribe the new polyhedron that results. 
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Figure 8.1 The edge centers of a 
tetrahedron are joined to form 
an octahedron. 

Figure 8.2 The edge centers of 
an octahedron are joined to form 
a cuboctahedron. 

Figure 8.3 The edge centers of 
an icosahedron are joined to 
form an icosidodecahedron. 

8.2 Intermediate Polyhedra 

In the above exercises, the three rigid platonic solids—the tetrahe
dron, octahedron, and icosahedron—were used as frames to create 
new polyhedra. In the first exercise you discovered something of fun-
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damental importance about the tetrahedron: It can be subdivided into 
an octahedron surrounded by four tetrahedra whose edges are half the 
length of the parent. 

The second exercise resulted in a polyhedron with six square faces 
parallel (but with different orientations) to the six square faces of the 
cube and eight tr iangular faces parallel to the tr iangular faces of the 
octahedron. This amalgam of cube and octahedron, shown in Figure 
8.4, is called a cuboctahedron. It shares a property with the platonic 
solids, namely, each vertex is Surrounded by an identical collection of 
regular polygons; however, the polygons are not all the same. For the 
cuboctahedron, each vertex is surrounded by the sequence triangle, 
square, triangle, square, symbolized by the Schlafli notation, 3.4.3.4. 
Such polyhedra are called semiregular, or archimedean, in analogy to 
the semiregular tilings of the plane. (The next chapter will study the 
wider class of archimedean polyhedra.) The cuboctahedron is also re
ferred to as an intermediate polyhedron since it is midway between a 
cube and an octahedron as we shall soon see. Although cuboctahedra 
do not stack to fill space by themselves, since they are formed by re
moving Vs octahedra from the vertices of a cube, they leave octahedral 
gaps and therefore fill space in a 1:1 ratio along with octahedra as 
shown in the polyhedral sculpture of Figure 8.5 [Loeb, 1985]. The 
cuboctahedron was fundamental to the world system of Buckminster 
Fuller [1975], [Edmondson, 1987]. 

The result of the third exercise is another semiregular polyhedron 
called the icosidodecahedron, shown in Figure 8.6. This polyhedron 
has 12 pentagon faces parallel to the faces of the dodecahedron and 20 
triangle faces parallel to the faces of the icosahedron surrounding 
each vertex in the sequence, 3.5.3.5. It is another intermediate poly
hedron. 

•f-

-----r 

\ 
% 

, / 

/ 
/ 

. / 
X „ / \ 

\ 
\ 
\ 

Figure 8.4 A cuboctahedron. 
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Figure 8.5 A polyhedral sculp
ture with space filling octahedra 
and cuboctohedra. 

Figure 8.6 
hedron. 

(a) An icosidodeca-

Constructlon 8.1 William Varney has extended his movable tilings of the plane 
(see Section 5.10.1) to the creation of polyhedra with movable faces. For exam
ple, Figure 8.7(a) shows an icosidodecahedron with its triangle and pentagon 
faces hinged together in such a way that the faces can move apart. In their most 
extreme position an open space in the form of a square appears at each vertex to 
form a polyhedron called the small rhombicosidodecahedron, one of the 18 pos-

Flgyre 8.7 (a) An icosidodeca
hedron with movable hinged 
faces opened to its extreme posi
tion of the small rhombicosido-
decahedron (courtesy of William 
Varney). 
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sible semiregular polyhedra that will be discussed in Section 9.2. The trick to 
creating such a movable polyhedron lies in Dennis Dreher's hinge design. The 
hinge has the dihedral angle of the icosidodecahedron built into it. A similar 
movable polyhedron can be constructed for the cuboctahedron which produces a 
small rhombicuboctahedron (see Section 9.2) in its most extreme position. A 
construction kit is available from Tensegrity Systems [1990]. 

Exercise 8.4 To get a first-hand look at the internal structure of the 
cuboctahedron, construct one from marshmallows and toothpicks. Just keep surr 
rounding vertices by the 3.4.3.4 pattern until the polyhedron closes up. Place 
one additional marshmallow at the center and connect it to each of the 12 ver
tices by additional toothpicks [see Figure 8.8]. 

Notice how the 12 radial toothpicks form equilateral triangles with 
the edges of the cuboctahedron and divide the cuboctahedron into 
eight tetrahedra and six half-octahedra (corresponding to the triangle 
and square faces). 

Each radial toothpick is aligned with another in the opposite direc
tion; the radial toothpicks form four groups of six with each group ly
ing in one of four regular hexagons also defined by the edges shown in 
Figure 8.8. These four planes are parallel to the faces of a tetrahedron 
and the six pairs of radial toothpicks are parallel to the edges of a tet
rahedron. For this reason Fuller said that space is intrinsically re
lated to the tetrahedron. We shall say more about this in Section 10.3 
and in the next section. 

8.3 Interpenetrating Duals Revisited 

Let's examine the interpenetrating duals of Section 7.6.2 more closely. 
Understanding this section will be easier if you have constructed a set 
of these structures to illustrate the points we shall discuss. Besides be
ing visually attractive, they are wonderfully subtle. 

The two interpenetrating tetrahedra, shown in Figure 8.9, form a 
stellated polyhedron called the stella octangula. Its surface is made up 
of eight pyramids in the form of regular tetrahedra. If these pyramids 

Figure 8.8 The cuboctahedron 
with vertices joined to its center 
and made up of four intersecting 
hexagons. 
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are removed, the octahedron of Exercise 8.1 remains. Since eight 
vertices of the stella octangula lie above the faces of an octahedron, 
they must be vertices of its dual, a cube. In fact the six perpen
dicularly intersecting pairs of edges from these duals are diagonals of 
the faces of this cube. Finally, three square belts along the base of the 
pyramids envelop this polyhedron. These belts correspond to the three 
geodesies of the sphere upon which the octahedron projects [see 
Figure 8.10(a)]. Notice that the geodesic (great circle) is divided into 
four equal lengths, i.e., h = 4 in the orthoscheme Equation (7.12) for 
the tetrahedron. It should be noted that, as for the star polyhedra of 
Section 7.14, the faces of the stella octangula self-intersect and carry 
us beyond our strict definition of a polyhedron. 

In a similar fashion, the interpenetrating octahedron-cube pair, 
shown in Figure 8.9(6), forms another stellated polyhedron. Remove 
its eight t r iangular pyramids and six square pyramids and the 
cuboctahedron of Exercise 8.2 remains. From a model of the inter
penetrating pair it is evident that the cuboctahedron is made up of 
four belts of hexagons, seen in Exercise 8.4, that project to the four 
great circle geodesies on its circumscribing sphere [see Figure 8.10(6)]. 
Therefore h = 6 in the orthoscheme Equation 7.12 for the octahedron 
and the cube. Perpendicularly bisecting pairs of edges on the inter
penetrating duals are the diagonals of a set of rhombic-shaped faces. 
The diagonals of these rhombuses are proportioned as V2:l and are 
the faces of the polyhedron dual to the cuboctahedron (in a sense 
described in section 9.6) called the rhombic dodecahedron (RD), which 
can be seen by looking ahead to Figures 8.12 and 8.13. The rhombic 
dodecahedron is symbolized by V(3.4.3.4) since its faces are related to 
the vertex figures of 3.4.3.4 as we will show in Section 9.7. 

The third interpenetrating dual, shown in Figure 8.9(c), is formed 
by the icosahedron-dodecahedron pair. Remove its 20 t r iangular 
pyramids and 12 pentagonal pyramids and what remains is the 

( a ) (b ) <c1 
Figure 8.9 Interpenetrating duals, (a) Tetrahedra; (6) cube and octahedron; (c) icosahe-
dron and dodecahedron. 
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(a) (b) (c) 

Figure 8.10 Edges on the surface of the interpenetrating duals project to geo
desies on a sphere, (a) Octahedron; (o) cuhoctahedron; (c) icosidodecahedron. 

icosidodecahedron of Exercise 8.3. The icosidodecahedron is made up 
of six belts of decagons that project to six great circle geodesies on 
its circumscribing sphere, shown in Figure 8.10(c). Therefore h = 6 in 
the orthoscheme Equat ion (7.12) for the icosahedron and the 
dodecahedron. Perpendicularly bisecting edges are in the ratio of <)>: 1 
and are the diagonals of the set of rhombic-shaped faces that make up 
the rhombic triacontahedron V(3.5.3.5) dual to the icosidodecahedron 
which can be seen by looking ahead to Figures 10.29 and 10.33(6). 
H. F. Verheyen suggests t ha t this golden rhombus is the very 
rhombus formed by two triangular faces of the pyramid of Cheops (see 
Section 3.2). This is an interesting hypothesis since it relates the 
Great Pyramid directly to the icosahedral system [Verheyen, 1989]. 

Construction 8.2 [Edmondson, 1987] The four geodesies of the cuboctahedron 
can be constructed by an ingenious method of Fuller's. Rather than gluing four 
circles together directly (very difficult), Fuller constructs four bow-ties from each 
of four circles as follows: sharply fold a 6-inch diameter circle in half and then in 
thirds [see Figure 8.11(6)]. If the folds have been made properly, when the circle 
is unfolded [see Figure 8.11(D)] there will be one mountain fold toward you and 
two valley folds away from you. By bringing point a to point 6 you create the bow-
ties in Figure 8.11(c) which can then be connected with a hairpin to form the 
geodesies shown in Figure 8.11(d). Surprising spatial cooperation must take place 
between length and angle to enable this construction to work. 

Six circles folded in half with each half folded in fifths create the 
geodesies of the icosidodecahedron. The details of this construction 
are left to the curious reader by way of the above reference. This 
construction is basic to the "flow of energy" in Fuller's "world system" 
(see Section 8.11.3). 

8.4 The Rhombic Dodecahedron 

The rhombic dodecahedron is the dual of the cuboctahedron, and it 
fills space by itself (see Section 10.7). It is shown in Figure 8.12(6) to 
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be the augmentation of an octahedron by eight tr iangular pyramids, 
each of which is one of the. four congruent sectors of a tetrahedron as 
shown in Figure 8.11(a). The RD can also be obtained by stellating a 
cube with each of its six congruent sectors as shown in Figure 8.12. 
This stellation also shows why the RD is able to stack to fill space. As 
you can see, the RD reallocates the space within a space-filling stack 
of cubes [Loeb, 1976]. 

Figure 8.11 (a, b, c) Folding up a bowtie from a circle; (d) four bowties create the four 
great circles of the cuboctahedron. 

Figure 8.12 Eight quartants (1/4 sectors) of a tetrahedron added 
to the faces of an octahedron form a rhombic dodecahedron. 



Transformations of the Platonic Solids I 303 

Construction 8.3 Generate the RD by stellating an octahedron and a cube as 
follows: 

1. Construct six square pyramids hinged together in the manner shown in Fig
ure 8.14(a). When they are folded inward, they form a cube; when they are 
placed around a cube with square faces joined to square faces, an RD is 
formed. 

2. Construct eight triangular pyramids of the kind shown in Figure 8.12 and 
hinge four of them together as shown in Figure 8.14(6). When they are folded 
inward, they form a tetrahedron. When they are combined with four identical 
hinged triangular pyramids and placed around the sides of an octahedron, 
another RD is formed. 

Detailed instructions for sizing and hinging the pyramids can be 
found in an article by Arthur Loeb and Jack Gray that appears in 
Shaping Space [19886]. 

8.5 Embeddings Based on Symmetry 

The many family relationships between the platonic polyhedra come 
from their shared symmetries (see Section 7.13). Alan Holden, in 

Figure 8.13 Six sextants (1/6 sectors) of a cube added to the faces of 
a cube form a rhombic dodecahedron. 

(a) (b) 

Figure 8.14 Patterns for adding pyramids to a (a) cube and (b) octahedron to 
construct a rhombic dodecahedron. 
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Shapes, Space, and Symmetry [1971], shows lovely designs that result 
from taking advantage of these shared symmetries. We present two 
examples from his book: 

1. A tetrahedron can be placed in a cube so that the four threefold 
axes of the cube and tetrahedron coincide. The tetrahedron can be 
expanded until its corners fall on four of the cube's eight corners 
and its edges are embedded in the faces of the cube [see Figure 
8.15(a)]. The duality of cube and octahedron suggests how to in
scribe the tetrahedron correspondingly in an octahedron. The cor
ners of the tetrahedron now fall on the faces of the octahedron [see 
Figure 8.15(6)]. 

2. A tetrahedron can be inscribed in a dodecahedron by following the 
same principle: the four threefold axes of the tetrahedron can be 
aligned with 4 of the 10 threefold axes of the dodecahedron. The 
vertices of the tetrahedron are then expanded out until they fall on 
four vertices of the dodecahedron (see Figure 8.16). The three two
fold axes of the tetrahedron are then automatically aligned with 
three of the twofold axes of the dodecahedron. In this case the edges 
of the tetrahedron do not lie on the faces of the dodecahedron. 

There is another important difference between a tetrahedron in a 
cube and a tetrahedron in a dodecahedron. The six reflection planes of 
an inscribed tetrahedron coincide with six of the cube's reflection 
planes, but they do not coincide with any of the reflection planes of the 
inscribing dodecahedron. Hence the combination of tetrahedron and 
dodecahedron has no surviving reflection planes. Since the combina
tion lacks nonperformable symmetries, it can appear in two essen
tially different forms, right handed and left handed, each the mirror 

( a ) (b ) 

Figure 8.15 (a) A tetrahedron embedded in a cube; (b) a tet
rahedron embedded in an octahedron. 
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Figure 8.16 A tetrahedron 
bedded in a dodecahedron. 

image of the other. (Analogously, the principle of duality can be used 
to inscribe a tetrahedron in an icosahedron.) 

Construction 8.4 [Holden, 1971]. The inscription of a te t rahedron in a 
dodecahedron suggests a way of compounding five t e t r ahedra in a symmetr ical 
fashion. After a single t e t rahedron has been inscribed, four more appear when 
the assembly is tu rned about a fivefold rotat ion axis of the dodecahedron. The 
20 (5 t imes 4) corners of the t e t r ahed ra therefore occupy the 20 corners of t he 
dodecahedron. Since there a re two different ways to inscribe five t e t r a h e d r a in a 
dodecahedron, providing a left-handed and r ight -handed inscription, t u r n i n g 
the assembly genera tes e i ther a left-handed or r ight -handed compound [see Fig
ure 8.17(a)], each a mirror image of the other. Each of t he compounds has all t he 

(a) 

Figure 8.17 (a) Five tetrahedrons 
embedded in a dodecahedron lead 
to this figure. Since it has no plane 
of mirror symmetry, it has an 
enantiomorphic copy. (6) Paper-
folding pattern. 

(b) 
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rotational axes of a dodecahedron but none of its reflection planes. In Figure 
8.17(6) we give the fundamental pattern from which a model of this complex fig
ure can be constructed. 

8.6 Designs Based on Symmetry Breaking 

The cons t ruc t ions of t h e p rev ious sect ion w e r e based on t h e s y m m e 
t r i e s i n common to p a i r s of p l a ton ic po lyhedra . Des igns c a n a lso b e 
c rea ted by des t roy ing s y m m e t r y . A s Holden descr ibes , 

Truncating only one corner of a cube leaves one of its threefold axes of 
rotation unmolested but destroys the other threefold axes. All fourfold 
and all twofold axes disappear. Only three of the nine planes of reflection 
remain. Truncating the opposite corner as well restores the three twofold 
axes that are perpendicular to the surviving threefold axis [see Figure 
8.18]. 

When four nonadjacent corners of a cube are truncated, the remaining 
symmetry is that of a regular tetrahedron, and it is interesting to see 
how the truncation has degraded the cubic into the tetrahedral symme
try. The cube's three fourfold axes have degenerated into the tetrahe
dron's three twofold axes and the cube's twofold axes have disappeared. 
The four threefold axes are still untouched. The six reflection planes 

Figure 8.18 Symmetry breaking 
for a tetrahedron. 
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' through opposite edges of the cube remain, but the three planes parallel 
to the cube's faces have been destroyed. 

Problem 8.1 [Holden, 1971] Each of the solids pictured in Figure 8.19(a) can be 
made by trimming some of the edges of a cube. Can you visualize which edges 
have been truncated to produce each solid? The eight solids are symbolized in 

( a ) 
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( b ) 

Figure 8.19 (a) Nine edges of a cube (two are mirror images); (b) indications of the trun
cated edges. 
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Figure 8.19(6) by outlined cubes with heavy lines along the trimmed edges. 
When you have paired off the illustrated solids with these cubes, you can go on 
to specify the symmetry of each solid. Of course, if you were to build the solids, 
you would find that handling them is the best way to understand them. Notice 
that in two of these solids, which look much alike, all planes of reflection have 
been destroyed: they are mirror images of each other. 

8.7 Relation to the Golden Mean 

At this point in our study of polyhedra we should begin to wonder 
what lies at the basis of the platonic solids that enables them to unfold 
in such a variety of ways. We have already seen that symmetry plays 
a role. The golden mean has also made its entry at several key points. 
Perhaps the most striking example was given in Section 3.4 where 
three mutually perpendicular golden rectangles were shown to span 
the vertices of an icosahedron. The crucial role of the golden mean to 
the platonic solids was clear to Euclid, who devoted a good part of 
Book XIII of the Elements to describing it. 

The golden ratio of diagonal to side of a pentagon is shown in Figure 
8.20(a) where a cube is embedded in a dodecahedron. Another example 
is shown in Figure 8.20(&) where the edges of an octahedron are di
vided in the golden section. When division points are joined, an 
icosahedron results. Since these two embeddings are dual to each 
other, it is not surprising that while the icosahedron and the octahe
dron share common facial planes, the dodecahedron and the cube 
share common vertices. 

In Section 7.14 two of the Kepler-Poinsot star polyhedra were shown 
to be constructed from identical golden mean triangles (see Section 

Figure 8.20 (a) The edges of a cube are the diagonals of the pentagon 
faces of the dodechedron; (6) the vertices of an icosahedron are the 
golden section of the edges of an octahedron. 
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Figure 8.21 Dan Winter's star crystal with platonic solids embedded 
within each other. 

3.5). In fact if we extend the edges of a dodecahedron, they meet in 
the 12 vertices of an icosahedron above the center of each face. It 
turns out that, in this way, the dodecahedron is stellated to the small 
stellated dodecahedron {5/2,5} (see Figure 7.31) by 12 pentagonal 
pyramids. Each pyramid is made up of five golden triangles. Now take 
the resulting icosahedron and extend its edges until they meet at the 
20 vertices of another dodecahedron. Each of the resulting pyramids 
is again made up of three golden triangles and forms the great 
stellated dodecahedron {5/2,3}'(see Supplement S.2). The process can 
of course be repeated indefinitely. 

Figure 8.21 illustrates the construction of a model described by L. 
Gordon Plummer [1982S]. The golden mean stellation of dodecahedron 
to icosahedron to dodecahedron is evident in the figure. The central 
region is a nested sequence of Platonic polyhedra beginning with an 
octahedron aseedw surrounded in order by a tetrahedron, cube, and 
dodecahedron. 
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Figure 8,22 Easy Landing, a tensegrity structure by Kenneth Snelson. 

8.8 Tensegrlt ies 

Polyhedral forms have inspired those who have studied them to create 
an incredible variety of structures that capture various aspects of 
their forms in unusual ways. A good example of this are tensegrities, 
or structures of tensional integrity [Pugh, 1976], [Kenner, 1976], 
[Minke, 1971], which were first conceived of by the sculptor Kenneth 
Snelson and then popularized by Fuller, his teacher. They are struc
tures composed of a combination of struts under compression and ties 
under tension as Snelson's sculpture Easy Landing, which stands in 
Baltimore Harbor, shows (see Figure 8.22). They can be thought of as 
discrete analogues of balloons in which air, under pressure within the 
balloon, is balanced by the skin of the balloon under tension. The bal
ance between tension and compression results in light, airy structures 
like Snelson's Needle Tower, which adorns the garden of the 
Hirschorn Museum in Washington, D.C., and is shown in Figure 8.28, 
in contrast to the bulky structures that result when structural ele
ments are primarily under compression as they are in brick buildings. 

Perhaps the first tensegrity structures were Egyptian seagoing ves
sels dating from 2500 B.C., on which stout rope was passed over the top 
of a series of vertical struts, its two ends being looped under the ends 
of the ship so as to prevent them from drooping [Gordon, 1978]. To 
some extent, our own bodies can also be thought of as tensegrities in 
which the vertebrae are under compression balanced by the tendons 
[Thompson, 1966]. 

8.8.1 Tensegrity models 

A tensegrity model of an icosahedron is'constructed by making use of 
the golden mean property of the icosahedron (see Section 3.4). 
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Figure 8.23 
Snelson. 

Needk Tower, a tensegrity structure by Kenneth 

(a ) (b) (c) 

Figure 8.24 Icosahedron tensegrity. (a) Wooden dowels of golden mean 
length are placed on a unit cube; (6, c) the vertices are connected by 
24 strings to form diamond patterns. 

Constryctlon 8.5 Fasten a set of wooden dowels <|> units long to the sides of a 
unit cube as shown in Figure 8.24(a). Connect the 12 ends of the dowels with 
string (fishing line is good) to form the 20 faces of the icosahedron. Tighten the 
strings so that they are all under tension and then destroy the supporting cube 
as shown in Figure 8.24(6). You will find that some of the strings are redundant 
and can be removed without affecting the rigidity of the tensegrity. In fact only 
24 tendons are needed instead of the 30 edges that form the icosahedron. These 
24 tendons can be arranged to form nonplanar diamonds around each strut, with 
four tensions for each of the six struts as shown in Figure 8.24(6) and (c). 
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Figure 8.25 A tensegrity model 
of a cuboctahedron with the in
ner structure of four interpene
trating equilateral triangles. 

Tensegrities can also be made by connecting the compression mem
bers in the plane with strings and folding them into three-dimensional 
space. Patterns for assembling the rods and tendons are given in 
Tensegrity by Anthony Pugh [1976]. 

Construction 8.6 A fascinating tensegrity is shown in Figure 8.25, in which the 
vertices of four mutually interlocking but nontouching equilateral triangles co
incide with the vertices of a cuboctahedron. The. triangles serve as the struts 
while the tendons lie along the edges of the cuboctahedron. Since the vertices of 

Figure 8.26 An orderly tangle. 
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the cuboctahedron lie at the midpoints of a cube, this tensegrity can be con
structed by first erecting a cube as scaffolding. This tensegrity brings out the 
underlying structure of the cuboctahedron in which its 12 vertices lie at the cor
ners of four regular hexagons like the one shown in Figure 8.8. 

8.8.2 Orderly tangles 

Holden has created a class of polyhedra, which he calls orderly tan
gles, that are woven out of wooden dowels [1983]. Edges of the platonic 
or archimedean polyhedra interlock in an under-over pattern as 
shown in Figure 8.26 for the small rhombic cuboctahedron 3.43 (see 
Section 9.2). When the ratio of length to diameter of the dowels is just 
right, the orderly tangle is rigid and the cycles of edges hold each 
other up by leaning on each other. Removing even a single edge 
causes the whole structure to collapse. 

8.9 The Tetrahedron—Methane Molecule 
and Soap Bubble 

In a certain sense, the tetrahedron is the most fundamental of forms. 
Through the stella octangula [see Figure 8.9(a)], it demarcates the do
main of a cube and contains the octahedron as a substrate, it can be 
truncated to form an icosahedron (see Section 9.5), and along with 
four other tetrahedra, it shares the vertices of a dodecahedron (see 
Figure 8.16). Exercise 8.4 also shows that the internal structure of the 
cuboctahedron is closely related to the tetrahedron. In fact, in Chapter 
10 we shall see how, through the mediation of the cuboctahedron, the 
tetrahedron plays a fundamental role in describing the packing of at
oms in a metallic crystal. Finally, in Section 9.2 we shall see how the 
tetrahedron is used to define the class of archimedean polyhedra. 

Figure 8.27 The methane mole
cule. Redrawn from Pauling and 
Hayward [1964]. 
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From a physical point of view, the tetrahedron serves as the basis 
for visualizing the methane molecule and primary soap bubble config
urations. For the methane molecule shown in Figure 8.27, the four hy
drogen atoms are situated at the vertices of a tetrahedron and share 
one electron each, with a carbon atom located at the centroid of the 
tetrahedron. Since the direction from vertex to center lies in the di
rection of the body diagonals of a cube, the angle between two carbon-
hydrogen bonds is 109.48 degrees, i.e., the angle between two body 
diagonals (see Section 7.13.2). This angle, which is characteristic of or
ganic molecules and therefore of life itself, is called the Miraldi angle. 

Construction 8.7 Build a tetrahedron out of wire and dip the frame into a soap 
solution [Stevens, 1974]. What do you observe? When you withdraw the tetra
hedron frame, six films extend from the wire frame inward to the center of the 
tetrahedron as shown in Figure 8.28(a). Each of the six films is a triangle en
closed by an edge of the tetrahedron and two edges running from the center to a 
vertex of the tetrahedron. If you look closely, you will notice that each edge of 
the film is the junction of three films that meet each other at 120 degrees and 
that each edge joins three other edges to make a corner that unites six films. 
Four edges meet at each vertex, and the angle between any pair of edges is the 
Miraldi angle. The angles between edges and faces in the tetrahedral frame are 
also generic to all freestanding three-dimensional bubble configurations (see 
Section 10.11). The angles are the result of the need to create an equilibrium 
between the tensile forces that the soap films exert on the meeting point of its 
faces and edges. 

If an additional small bubble is blown at the center of the tetrahedron, the 
bubble must assume the shape of a curvilinear tetrahedron with spherical faces, 
as shown in Figure 8.28(6), in order to conform to the generic soap bubble form. 
D'Arcy Thompson noted that this form represents one species of microscopic or
ganism known as radiolaria, shown in Figure 8.28(c) [1966]. Again, if a wire 
frame in the form of a cube is dipped into soap solution and a small bubble is 
blown at its center, another species of radiolaria results. The Soviet mathema-

Figure 8.28 (a) A soap film within a tetrahedron; (b) a bubble is blown at the center 
of the film; (c) a radiolarian with a similar configuration. 
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tician and artist A. T. Fomenko describes all the possible geometrical forms that 
soap bubbles can assume [1986]. 

8.10 Tetrahedron as the Atom of Structure 

We live in a world dominated by the right angle. Our streets meet 
along orthogonal grids. The shapes of our buildings are usually rect
angular parallelopipeds. The fact that we choose to measure area and 
volume in square and cubic units reflects our feelings that it is the 
square and cube which are the most natural units of measure. Yet, 
Fuller felt that it is actually the tetrahedron that is the fundamental 
measure of volume. He felt that the very nature of space requires the 
tetrahedron to supplant the cube as the unit of space [Edmondson, 
1987], [Loeb, 1975; 1965]. Let's see why. 

Volume has to be measured relative to something. Why not measure it 
relative to a tetrahedron? Table 8.1 compares the volumes of a tetrahe
dron, octahedron, cube, and cuboctahedron when the cube and tetrahe
dron are taken as units of measure. For comparison, two different cubes 
are used, one with unit edge and the other with unit diagonal. By looking 
at Table 8.1 you can see that the tetrahedron distinguishes itself as a 
natural building block of form by having a volume that divides evenly 
into the volumes of other polyhedra. Let's see why these polyhedra are 
integral multiples of the tetrahedron's volume. 

Look at an octahedron and a tetrahedron with the same edge 
lengths. It certainly does not appear as though the volume of the oc
tahedron is 4 times that of the tetrahedron. This follows from decom
posing the tetrahedron into four tetrahedra of half the edge length of 
the parent and one octahedron as shown in Figure 8.29 and as we did 
in Exercise 8.1. Thus, 

T = At + 0 (8.1) 

where T stands for the volume of the large tetrahedron, t for the vol
ume of the smaller tetrahedron, and O for the volume of the octahe
dron. 

TABLE 8.1* 

Polyhedron measured 

Tetrahedron 
Octahedron 
Cube (unit diagonal) 
RD 
Cuboctahedron 

Unit edge 

0.11785 
0.47140 
0.35356 
0.70710 
2.35700 

Unit ; face diagonal 

0.33333 
1.33333 
1.00000 
2.00000 
6.66666 

Tetrahedron 

1 
4 
3 
6 

20 

*From [Edmondson, 1987]. 
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Figure 8.29 Four tetrahedra added 
to one octahedron produce a larger 
tetrahedron. 

As we saw in Section 2.2, the volumes of two similar figures are re
lated by Equation (2.26), which is restated as 

v1 L, 

L2 
where — = 2 

Thus, T = 8t (8.2) 

Substitution from Equation (8.2) into Equation (8.1) leads to the re
sult 

O 
= 4 

That the volume of a cube is 3 times the volume of a tetrahedron 
with edges equal to the cube's diagonal also appears to confound our 
perceptions. Yet this can be shown by pulling apart a cube into four 
octants—an octant is the Vs sector of an octahedron—and one tetrahe
dron, as shown in Figure 8.30. Thus, 

C 4? + T 

where as before, 

0 = AT 

Substituting for 0 and rearranging the terms yields the result 

g = 3 
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Figure 8.30 Four octants added to a tetrahedron produce 
a cube. 

Problem 8.2 From the decomposition of the cuboctahedron into half-octahedra 
and tetrahedra given by Exercise 8.4 show that the cuboctahedron has the vol
ume of 20 tetrahedra with the same edge. 

Construction 8.8 Dissect a cube into a tetrahedron and four octants of an octa
hedron as shown in Figure 8.30. It makes a good puzzle to reassemble the cube 
from its parts. 

8.11 Packing of Spheres 

Perhaps the most fundamental context in which to study the relation
ships between the platonic polyhedra is the packing of spheres. Keith 
Critchlow, in Order in Space [1987], considers the hierarchy of geo
metrical concepts: point, line, plane, and three-dimensional space. 
This unfolding of dimensions can be made tangible, as illustrated in 
Figure 8.31, by representing a point by a sphere surrounding it, a line 
by the line segment joining the centers of two identical tangent 

POINT LINE PLANE SOLID 

Figure 8.31 The unfolding of the dimensions of space, (a) Point; (b) line; (c) plane; 
(d) solid. 
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spheres, a plane by the region spanned by the triangle joining the cen
ters of three mutually touching identical spheres, and three-
dimensional space by the solid space spanning the tetrahedron formed 
by the joins of four identical spheres in mutual contact. 

8.11.1 Evolution of platonic polyhedra 
from sphere configurations 

A tetrahedron is formed by placing a sphere atop an equilateral tri
angle arrangement of three spheres. The four spheres making up the 
tetrahedral configuration of Figure 8.32(a) are the greatest number of 
spheres that can be in mutual contact. If a second set of spheres is 
placed in the interstices of the first set, a spherical model of a dual 
tetrahedron is formed by the sphere centers of this second set as 
shown in Figure 8.32(6), and (c). 

An octahedron is formed by placing a sphere above and below a 
square arrangement of four spheres. The six spheres are then ar
ranged so that each sphere touches four others as shown in Figure 
8.32(d). The joins of these spheres result in an octahedron. Once 
again, if a second set of nontouching spheres is introduced into the in
terstices, the dual figure shown in Figure 8.32(e) and (/), a cube results 
from their joins. 

( a ) ( b ) ( c ) 

(d ) ( e ) ( f ) 

Figure 8.32 Evolution of the basic sphere point configurations, (a) Tetrahe
dron; (b, c) dual tetrahedron; (d) octahedron; (e, /) the cube dual to the octa
hedron. 
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The closest packing of equal spheres about a central nucleus in
volves 12 spheres in contact with the central sphere so that each 
sphere touches four neighbors in addition to the nucleus. In this ar
rangement, six spheres surround the nucleus [see Figure 8.33(a)], 
with three spheres lying in the interstices above and three spheres be
low [see Figure 8.33(6)]. Thus the spheres group themselves into three 
layers. If the three spheres in the top and bottom layers are oppositely 
oriented, the result of connecting the twelve surrounding spheres is a 
cuboctahedron, and the spheres are said to be cubically close-packed. 
The model of a cuboctahedron constructed in Exercise 8.4 from marsh-
mallows and toothpicks illustrates this packing quite well if you imag
ine the marshmallows to be spheres of radius half the length of the 
toothpicks. Notice how the surface spheres group into triangular and 
square arrangements. 

If the three spheres in the top and bottom layers are oriented simi
larly so that a sphere from the bottom layer lies directly beneath a 
sphere from the top layer, a polyhedron called an orthobicupola is 
formed and the spheres are said to be hexagonally close-packed. The 
relation between these close-packing arrangements and the structure 
of metallic crystals will be explored in Chapter 10. 

If the central sphere is removed, the close-packed arrangement be
comes unstable and the cuboctahedron collapses into an icosahedron 
with each sphere touching five others as shown in Figure 8.34. If a 
sphere is reintroduced into each of the interstices of the icosahedral 
arrangement, a dual figure, the dodecahedron, is formed upon con
necting the 20 outer nontouching spheres (not shown). 

Exercise 8.5 Arrange 16 spheres into a square pattern. Notice that the gaps be
tween the spheres are curvy squares (see Figure 8.37). Now add successive lay
ers of 9, 4, and 1 spheres. Notice that the gaps along the triangular faces of the 
resulting pyramid are curvy triangles. 

( a ) ( b ) 

Figure 8.33 (a) Six spheres surround a central sphere in the plane; 
(b) twelve spheres surround a central sphere in the close-packing of 
spheres in three-dimensional space. 
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Figure 8.34 Removal of the central sphere from a cub-
octahedron produces an icosahedron. 

8.11.2 A hierarchy of platonic polyhedra 

The evolution of platonic polyhedra from the packing of spheres re
veals the natural hierarchy 

tetrahedron -> octahedron -> icosahedron 

Some years ago this hierarchy was demonstrated to me by someone 
who had a rubberized model of a cuboctahedron. When he twisted it to 
the left or to the right, an icosahedron resulted (imagine that the di
agonals of the rhombic faces are added to complete the necessary tri
angles). Then he collapsed the icosahedron, first into an octahedron, 
then to an equilateral triangle and finally to a tetrahedron, as shown 
in Figure 8.35. At the time, I thought this demonstration was the epit-

(d ) ( e ) (f ) 

Figure 8.35 Stages in Fuller's jitterbug, (a) Cuboctahedron; (6) icosahedron; (c, d) tran
sition to an octahedron; (e) equilateral triangle; (/) tetrahedron. 

( c ) 
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ome of magic . Y e a r s l a t e r I l e a r n e d t h a t i t w a s discovered by Fu l l e r , 
who cal led i t t h e jitterbug [Edmondson, 1987]. 

Construction 8.9 [Frank, 1987]. To construct a jitterbug build a cuboctahedron 
out of %-inch wooden dowels about 6 inches long. Connect the dowels with about 
2 inches of surgical tubing to ensure flexibility. Since four dowels meet at each 
vertex, you will have to connect one pair of dowels with the other. This can be 
done by punching a hole through one of the rubber connectors with an awl (or 
leather punch) and pulling the other pair through the hole (wetting the connec
tor with water makes this operation a little easier). 

8.11.3 Frequency 

The six squares and eight triangles that outline the cuboctahedron in 
the cubic close-packing arrangement become more and more distinct if 
the cuboctahedron is surrounded by additional layers as Figure 8.36 
shows for 1-, 2- and 3-frequency cuboctahedra. Here the frequency fis 
defined as the number of tangency points between spheres lying along 
an edge of the figure. The high-frequency cuboctahedra also show how 
cubic close-packing figures are defined by planes of spheres arranged 
in both square and triangular patterns. There is no limit to the num
ber of layers that may be added to the cuboctahedron. In fact, the lay
ers may grow to fill all of the space, as we shall show in Chapter 10. 
Fuller determined that the number of spheres N on the surface of each 
frequency cuboctahedron could be determined by the formula 

N = 10f2 + 2 (8.3) 

which has been derived by Loeb [1975]. 
Let's compare this layering property of the cubic close packing of 

spheres with the sphere packing that results in an icosahedron. Con-

00 (b) (c) 

Figure 8.36 Higher-frequency cuboctahedra. (a) 1-frequency; (b) 2-frequency; (c) 3-
frequency. 
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secutive higher-frequency icosahedral shells cannot surround a previ
ous layer as they did for the cuboctahedron. Higher-frequency or 
larger icosahedra must be built one by one with one more sphere per 
edge and always of a single thickness. Nevertheless, the number of 
spheres on the surface of the single-thickness icosahedron is also de
rived from Equation (8.3). This may seem surprising since this equa
tion pertains to a cuboctahedron, but remember that in the ji t terbug 
transformation each square of the cuboctahedron twists to form two 
triangular faces of the icosahedron as shown in Figure 8.37(a). Since 
spheres are more closely packed in a triangular arrangement than in 
a square configuration, as shown in Figure 8.37(&), the surface of the 
icosahedron encompasses greater volume for the same surface area 
than the cuboctahedron. 

The endless spacefilling layering of cuboctahedra make this struc
ture open in comparison with the shell-like closed structure of the 
icosahedron. In fact, Fuller felt tha t the vector-equilibrium (cubocta
hedron) models a universal structure in which energy propagates 
along "cosmic railroad tracks" represented by the encircling or "trans-
universal" geodesies of the cuboctahedron [Edmondson, 1987]. How
ever, the geodesies of the icosahedron are not encircling [see Figure 
7.4(c)]. Thus when a single sphere is removed from the center of a 
cuboctahedron, the energy flow is disconnected from the closest pack
ing "railroad tracks" and directed into local orbits. The free flow of en
ergy in the cuboctahedron might be likened to a kind of harmony of 
the spheres, in contrast to the dissonance resulting from the blockage 
of energy in the icosahedron. 

Figure 8.37 Transformation from square packing to triangular 
packing of spheres. 
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Fuller explains that the closed system of the icosahedron is im
mersed within the harmony of the spheres and serves as the origin of 
life itself. Although this claim may appear to be exaggerated, there is 
also some t ruth to it since the icosahedron does appear as one of the 
geometric forms of viruses, as we shall see in the next section. 

When thinking about connections between polyhedra and the natu
ral world, it is difficult not to engage, as Fuller did, in mystical spec
ulation. In dealing with these objects, far-flung associations are con
tinually suggesting themselves. For example, in Sections 1.7.3 and 
1.8.3 we introduced different notions of open and closed systems of 
proportion based on the proportions cj>:l and V 2 : l . It is curious that 
V 2 : l is the ratio of the sides of the cuboctahedron's vertex figure, 
while <t>:l is the ratio of diagonal to side of the icosahedron's vertex 
figure, a regular pentagon. The duality of Bela Bartok's closed system 
based on the golden mean, in contrast to his open system based on the 
acoustic scale (see Section 3.8), also reminds one of the organic shell of 
an icosahedron emerging from the crystalline matrix of the close-
packed spheres. 

A tantalizing analogy to Fuller's world system involves a modern 
view of the collective nature of bacteria described by Sorin Sonea 
[1988]: 

In contrast to plants and animals, which are multicellular and exhibit a 
tremendous variety of configurations, most bacteria are one-celled and 
possess little morphological diversity Their range of metabolisms en
ables bacteria to colonize every environmental niche on the planet 
Their genetic material is not bound by a nuclear membrane, a character
istic that has earned them the name prokaryote, meaning before the 
nucleus They behave as if they were not discrete organisms; they are 
able to shuffle genetic information (among themselves) virtually over
night (resistance to an antibiotic in Tokyo will manifest in New York in 
a matter of days or weeks without direct transmission). In this respect 
the bacterial world resembles a vast computerized communications net
work—a superorganism whose myriad parts shift and share genetic in
formation to accommodate any and all circumstances.... As the bacteria 
multiplied and colonized more of the earth's surface the superorganism 
created the environmental conditions that favored an entirely new form 
of life: the eukaryotes.... The eukaryotic cells adapted by gathering into 
one bound cell as much DNA as possible and [disconnecting itself from 
the universal "communications system"] to live in near solitude—in the 
restricted gene pools of their respective species. 

8.12 Geodesic Domes and Viruses 

Fuller is best known for his geodesic dome [1973]. In its most rudimen
tary form, this dome is an icosahedron with its faces subdivided into 
equilateral triangles as shown in Figure 8.38 for a 3-frequency dome. 
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Figure 8.38 A 3-frequency icosahedron geodesic dome. 

( a ) (b) 

Figure 8.39 A cluster of 42 spheres with certain sphere centers inter
connected to define a 2-frequency icosahedron. 

The vertices are then projected onto the surface of the circumscribing 
sphere. The projected triangles are no longer congruent but are of two 
different kinds. Finally, the dome is truncated to give the desired 
height. Since a sphere has the least surface area for a given volume, 
the geodesic dome both creates a great amount of internal space and 
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Figure 8.40 A portrait of the HTLV-1 virus. {From R. C. Gallo, "The First Hu
man Retrovirus." Photo by George V. Kelvin, Science Graphics. © 1986 by Sci
entific American, Inc. All rights reserved.) 

minimizes heat loss because of its decreased outer skin surface. The 
number of vertices V on the surface of an icosahedron of frequency fis 
given by Equation (8.3). Thus, for the dome in Figure 8.38 f = 3 and 
V = 92 (before it is truncated). 

One class of virus with icosahedral symmetry is reminiscent of geo
desic domes. A virus particle is composed of a basic infective agent, a 
nucleic acid core of either DNA or RNA, and a protective shell called 
a capsid composed of protein units called capsomers. In some virus 
particles the shell is encased in an outer membrane or envelope 
[Williams, 1972]. 

The virus class with icosahedral symmetry has the structure of a 
geodesic dome in which each capsomer attaches to a vertex of the 
dome. For example, the Simian virus (SV39), the K-virus, and the 
Polyoma virus with one capsomer at each vertex of a 2-frequency 
icosahedron, 42 in all, look very much like the spheres of Figure 8.39. 
A portrait of the AIDS virus (HTLV-1) is shown in Figure 8.40. 
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Chapter 

9 
Transformations 

of the 
Platonic Solids II 

There is an old formula for beauty in nature 
and art: Unity and variety. JOHN DEWEY 

9.1 Introduction 

The platonic solids can also be transformed by cutting off their edges 
or vertices or by placing pyramids or other structures on their faces. 
These operations of truncation and stellation generally result in poly
hedra that are no longer members of the platonic family. In this chap
ter we show how the truncation operation leads to a family of 
semiregular polyhedra known as the archimedean solids while the 
stellation operation leads to the archimedean duals. We then intro
duce two other families of semiregular polyhedra, prisms and 
antiprisms. 

9.2 Archimedean Solids 

The platonic solids satisfy a severe constraint: The same number of 
identical regular polygons must meet at each vertex. If this condition 
is relaxed to allow similar arrangements of more than one polygon at 
each vertex, new possibilities—referred to as semiregular polyhedra— 
result, of which the cuboctahedron and the icosidodecahedron are two 
examples. Varney's movable polyhedron with a triangle, pentagon, 
and square surrounding each vertex, the small rhombicosadodeca-
hedron, shown in Figure 8.7 is another example. Heron in the first 
century B.C. said that Archimedes discovered 13 polyhedra that meet 
this requirement. They are illustrated in Figure 9.1. These polyhedra 
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SNUB DODECAHEDRON 

Figure 9.1 The archimedean or semiregular polyhedra. 

were rediscovered during the Renaissance; the first written descrip
tions appeared in Kepler's Harmonices Mundi in 1619 [Malkevitch, 
1988], [Griinbaum, 1977a]. 

Archimedes' original 13 polyhedra can be inscribed in a regular tet
rahedron so that four appropriate faces share the faces of a regular 
tetrahedron as shown in Figure 9.2 for the cuboctahedron. This distin
guishes them from prisms and antiprisms (see Section 9.10) and from 
one additional polyhedron called the pseudo-rhombicuboctahedron, 
3.4.4.4, which is also semiregular. These 13 polyhedra are the 
archimedean solids. 

Although the faces of the archimedean solids are of more than one 
kind, they are distributed in such a way that each vertex is equidis
tant from the geometrical center of the solid. Thus, a circumscibing 
sphere can be placed around each of the archimedean polyhedra. How-
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Figure 9.2 An archimedean 
solid framed by a tetrahedron. 

ever, since the faces are not all alike, these polyhedra do not have in
scribed spheres. 

What if we relax the constraint placed on the archimedean solids to 
include all convex polyhedra with regular polygon faces? Does this 
widen the membership beyond bound? Only 92 polyhedra can be con
structed in addition to the 13 archimedean solids, five platonic solids, 
and two infinite families of prisms and antiprisms discussed in Section 
9.10. This result was proven by V. A. Zalgaller. 

Certain space-filling combinations of archimedean solids in conjunc
tion with the platonic solids have been used by architects such as Zvi 
Hecker [1970], Keith Critchlow [1971], and Safdie [1969] as a source 
of building forms. A number of space-filling combinations are cata
logued by R. W. Williams [1982]. One such combination is shown in 
Figure 9.3. 

9.3 Truncation 

The archimedean polyhedra illustrate the chameleon-like characteris
tics of the platonic solids. Every one of them can be obtained by slicing 
off either the vertices or edges of a platonic polyhedron with a cutting 
plane [Pugh, 1976], [Williams, 1972], [Loeb, 1976]. Such an operation 
is called truncation. Six of the archimedean solids are "children" of the 
cube-octahedron pairs since they can be obtained by truncating either 
a cube or octahedron. Six others are related to the icosahedron-
dodecahedron pair, and a single archimedean solid is obtained by 
truncating the tetrahedron [Critchlow, 1987]. H. Lalvani has discov
ered additional ways in which the polyhedra within each of these 
three families are related in a unified manner such that these polyhe
dra can transform to one another continuously [1981]. 
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Figure 9.3 An archimedean space filling. 

Let's look at one sequence of truncations. In a sense, the faces of the 
octahedron on the cube-octahedron interpenetrating pair [see Figure 
8.9(6)] are cutting planes which truncate the vertices of the cube at 
the midpoints of the edges to obtain the cuboctahedron. If these eight 
cutting planes are moved parallel to each other toward the vertex so 
that the vertices are now truncated at appropriate points, another 
archimedean solid called the truncated cube is created. Figure 9.4 
shows the traces on the cube of a sequence of cutting planes situated 
at the 0S V6, ¥2, %» and 1 positions along an edge. These result in the 

Figure 9.4 A cube showing-three truncation planes at 
the Vo, V2, and 3/4» points of the edges (8 = 1 + vS). 
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(e ) ( f ) (») 
Figure 9.5 A sequence of truncations of a cube, (a) cube; (6,c) transition to a 
truncated cube; (d) cuboctahedron; (e) truncated octahedron; If, g) transition 
to an octahedron. 

sequence of truncations from cube -> truncated cube -* cuboctahedron 
-* truncated octahedron -* octahedron as shown in Figure 9.5. 

Notice that up to the Vi position of the cuboctahedron (intermediate 
polyhedron) the truncation planes do not interfere with each other. Af
ter this point the planes intersect within the cube. For example in Fig
ure 9.5(e), the eight cutting planes intersect to form the eight hexag
onal faces of the truncated octahedron, leaving its six square faces 
embedded in the faces of the cube. Finally the square faces disappear 
as further truncation produces an octahedron in Figure 9.5(g). 

Schlegel diagrams (see Section 7.6.3) can be useful in visualizing 
the result of transforming a polyhedron. For example, the 
cuboctahedron 3.4.3.4 in Figure 9.6(c) is gotten by truncating the ver
tices of the cube in Figure 9.6(a) at the center of its edges while the 

(a) (b) u: 
Figure 9.6 Truncation shown on a Schlegel diagram, (a) Cube; (6) trun
cated cube; (c) cuboctahedron. 
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truncated cube 3.82 in Figure 9.6(6) is gotten by truncating the edges 
of the cube as in Figure 9.5(c). 

9.4 The Truncated Octahedron 

A similar sequence of truncations could also have been obtained by 
considering the six faces of a cube to be the truncating planes of the 
octahedron in the interpenetrating pair. In this way, as Figure 9.7 
shows, the truncated octahedron results from truncating a 3-
frequency octahedron at the one-third points of its edges. The trun
cated octahedron is the only space filler among the archimedean sol
ids, although this is not evident by looking at its shape. Its space
filling capability is better seen by reconsidering the truncation of the 
cube in Figure 9.5(e) that produced it. Such a slice divides the cube 
into two congruent halves each with an hexagonal profile. Figure 9.8 
shows eight of these half-cubes joined together to form the truncated 
octahedron. Its space filling is thus the result of reallocating the space 
within a stack of cubes. 

Construction 9.1 [Loeb, 1986] Loeb has used the creation of the truncated octa
hedron from the truncation of eight cubes shown in Figure 9.8 as the basis of a 
remarkable construction. The eight half-cubes are hinged together as shown in 
Figure 9.9 to form a cube that envelops the other eight half-cubes that form the 
truncated octahedron. The hinges are so arranged on the cube that its eight seg
ments can fold inward to form another truncated octahedron while the trun
cated octahedron is able to fold outward to form another enveloping cube. 

The ability to fill space by itself places stringent conditions on the 
form of a polyhedron. Construction 9.1 shows the intricate geometry 
required of a truncated octahedron that enables it to pass the test. Fig
ure 9.10 shows in another way that the truncated octahedron is a nat
ural candidate to fill space. Here, bricks are laid down in a regular 
space-filling pattern. The edges are colored with paint. Do you see 

Figure 9.7 Truncation of a 3-
frequency octahedron to a trun
cated octahedron. 
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Figure 9.8 The hexagonal faces 
of a truncated octahedron bisect 
eight cubes. 

Figure 9.9 A hinged cube transforms to a truncated octahedron. 
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(a) (b) 
Figure 9.10 Two layers of bricks with painted edges imprint a polyhedron topo-
logically equivalent to a truncated octahedron upon each brick. 

that each brick borders 14 adjacent bricks? If all these surrounding 
bricks are removed, the imprints of their edges on the central brick is 
a pattern with the six rectangular and eight hexagonal faces of the 
truncated octahedron [Steinhaus, 1969]. The brick can now be topo-
logically deformed (see Section 4.11). In this deformation, opposite 
faces remain parallel (see Section 10.13). 

9.5 The Snub Figures 

Perhaps the most unusual of the archimedean solids are the two 
snub figures. These are the only archimedean solids that do not have a 
plane of reflection, and therefore they occur in enantiomorphic (see 
Section 2.2) pairs. But even these polyhedra can be obtained by trun
cation of the platonic solids. Jean-Francois Rotge [1984] has shown 
that the icosahedron, snub cube, and snub dodecahedron can be ob
tained by truncating a tetrahedron, octahedron, and icosahedron, re
spectively, in a special way. Each triangular face of the parent pla
tonic solid is subdivided as shown in Figure 9.11. When the crucial 
ratio r is assigned the value 1.618 (the golden mean), the tetrahedron 
is truncated to an icosahedron [see Figure 9.12(a)]. A value of 
r = 1.839 results in transforming the octahedron to a snub cube 
[see Figure 9.12(6)], and the value r = 1.943 produces a snub 

PB QC RA 

Figure 9.11 Construction of the 
fundamental triangle for snub 
figures. 

LB 1 . r 
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( a ) (b ) ( c ) 

Figure 9.12 (a) An icosahedron is produced from r = 1.618 (golden mean); (b) a snub 
cube is produced from r = 1.839; (c) a snub dodecahedron is produced from 
r = 1.943. 

dodecahedron after truncation of an icosahedron [see Figure 9.12(c)]. 
These snub figures also have many interesting relatives, as Rotge 
shows. 

9.6 Archimedean Duals 

Although the archimedean solids are ancient, all their duals with the 
exception of the RD were only discovered in the nineteenth century 
[Malkevitch, 1988]. The duals are known as the Catalan solids. Jus t 
as the archimedean solids have identical vertices, their duals have 
congruent faces. One way to define the duals is to place tangent planes 
to the circumscribing sphere at the vertices of the corresponding 
archimedean solid. The archimedean dual will then be the envelope 
formed by the intersection of these tangent planes, and the circum
scribing sphere of the archimedean solid will be the inscribed sphere 
of the dual. In this way the archimedean duals are related to the more 
general definition of dual polyhedra in terms of the pole and polar to a 
sphere given in Appendix 7.A. 

Just as every archimedean solid is obtained by truncating a platonic 
solid, each of the archimedean duals is gotten by adding the appropri
ate platonic solid by placing identical pyramids on its faces as Figures 
8.12 and 8.13 illustrate for the RD [Critchlow, 1987]. Another method 
of constructing the faces of any one of the duals is presented in the 
next section. M. Wenninger has shown how to construct fascinating 
designs of archimedean polyhedra and their duals embedded one 
within the other [1983]. 

9.7 Maps on a Sphere 

We have seen that a sphere can be circumscribed about each of the 
archimedean solids and inscribed within each of their duals. If the 
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edges are projected onto the surface of these spheres from the polyhe
dral centers, the edges of the polyhedra once again map to arcs of geo
desies of the sphere. In this way patterns of curvilinear polygons are 
created on a sphere somewhat reminiscent of the ancient Ukrainian 
tradition of Pysanki by which elaborate tilings on the surface of an 
egg are created and which inspired Ron Resch to build a 25-foot-long 
egg-shaped dome in a Ukrainian farming community in Vegreville, 
Alberta (see Figure 9.18). Figure 8.10 shows how the edges of the oc
tahedron, cuboctahedron, and icosidodecahedron project to three, four, 
and six great circles, respectively. 

Since the edges of any archimedean polyhedron are equal chords on 

Figure S.13 Ron Reach's egg-shaped dome. 
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its circumscribing sphere, the centers of these edges lie on another 
sphere (why?) called the intersphere. In fact, archimedean polyhedra 
and their duals can be constructed to share a common intersphere as 
we did with the interpenetrating platonic duals. This results in the 
Dorman Luke method for constructing the faces of the duals [Pugh, 
1976]. Draw the vertex figure of an archimedean solid which is ob
tained by connecting the midpoints of the edges incident to a vertex as 
shown in Figure 9.14(a) for a truncated octahedron. Circumscribe the 
vertex figure by a circle. This circle must be a small circle on the sur
face of the intersphere. Since the dual polyhedron shares this 
intersphere, its faces are defined by edges that are tangent to this cir
cumscribed circle at the points where the archimedean solid touches it 
as shown in Figure 9.14(6) and (c). Additional material concerning the 
Dorman Luke method is described in Section S.3 of the Supplements. 

9.8 Combinatorial Properties 

Because an archimedean polyhedron has identical environments sur
rounding each vertex, its global properties such as total number of 
edges, faces, and vertices can be determined from its local properties 
characterized by its Schlafli symbol. 

As we showed in Section 7.7, V, E, and F can be determined from 
Descartes' formula, qV = 2E, and from Euler's formula. For example, 
for 3.4.3.4 

8 = 360 - (60 + 90 + 60 + 90) = 60 

V ™ 12 
o 

E = 
qV 

4 x 
12 

F = 2 + E 

2 

V = 14 

24 

The number of triangles and squares can also be obtained in the 
same way in which the module for the semiregular tilings of the plane 

vertex figure 

lace of dual 

( Q ) (b) (c) 

Figure 9.14 Dorman Luke construction of faces of the archimedean duals. 
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was obtained in Section 5.8. The dual tiling is superimposed on the 
projection of an archimedean polyhedron onto a circumscribing 
sphere. Since the dual tiles are congruent and cover the sphere, we 
can determine the proportions of each species of face within a typical 
tile of the dual. Thus, for the cuboctahedron, 3.4.3.4, there are 

% triangle:2/4 square or 4 triangles:3 squares 

Therefore, 

No. of triangles = 4/7 x 14 = 8 

No. of squares = ¥? x 14 = 6 

As usual, the dual polyhedra have their edges paired but their faces 
and vertices interchanged. Thus for the RD, y(3.4.3.4), 

E = 24 F = 12 V = 14 

Although all faces are congruent, there are two species of vertices in 
the same ratio as the two species of faces of the cuboctahedron: eight 
vertices with vertex valence 3 and six vertices with valence 4. 

One of the prominent themes of this book is that the nature of space 
places severe constraints on the possibilities of the forms that can be 
created in that space. One such constraint is described by A. L. Loeb 
[1976]. Consider polyhedra constrained to have the same number of 
edges incident to each vertex (as for the archimedean solids) and two 
kinds of faces (two different face valences). From Equations (7.1) and 
(7.2), 

p1Fl + p2F2 = qV (9.1) 

From Equations (7.1) and (7.3), 

F, +F2 = 2 + f | - l W (9.2) 

Solving these two equations simultaneously, we get: 

2p2 + [l - Y » -1 F2 

This equation reveals a number of interesting constraints. If each 
vertex has three incident edges, i.e., q = 3 and we wish to build a poly
hedron with only pentagons and hexagons, i.e.,p1 = 5 andp2 = 6, we 
see that Equation (9.3) yields 
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Ft = 12 + (0)F2 = 12 

Thus Equation (9.3) says that any polyhedron with vertex valence 
q = 3 and with pentagon and hexagon faces can have an arbitrary 
number of hexagons but only 12 pentagons. Of course, the dodeca
hedron satisfies this constraint with 12 pentagons and no hexagons. 
The soccer ball, i.e., the truncated icosahedron 5.62, also satisfies it. 

Problem 9.1 Use Equation (9.3) to show that for q = 3, four triangles can com
bine with any number of hexagons to form polyhedra (e.g., the tetrahedron and 
the truncated tetrahedron). Also, six squares can combine with any number of 
hexagons (e.g., cubes and truncated octahedra). If q = 4, show that any number 
of squares can combine with exactly eight triangles (e.g., the cuboctahedron). 

If you replace F *» V, q ±*p in Equation (9.3), an equally correct but 
dual relation is obtained for the case of polyhedra with one kind of 
polygon but two kinds of vertices. 

9.9 Symmetry Revisited 

The operations of truncation and stellation do not alter the symmetry 
of the parent platonic solid. Thus, all archimedean polyhedra and 
their duals have either the symmetry of the octahedron-cube 4.3.2, 
icosahedron-dodecahedron 5.3.2, or tetrahedron 3.3.2 (see Section 
7.13). This fact was made clear to me one day when my (empty) coffee 
cup fell into the dihedral kaleidoscope of a cube (see Section 7.13.4) 
and was visually multiplied by the 48 elements of the symmetry group 
of the cube to the 48 vertices of the great rhombicuboctahedron 
grouped in the pattern 4.6.8 about each vertex (coffee cup). 

This kind of relationship between symmetry and three-dimensional 
pattern generation is shown in Figure 9.15(6) where a single point has 
been placed at point W within one of the 48 spherical triangles of Fig-

( Q ) (b) (c) 

Figure 9.15 (a) Typical vertices of seven regular and semiregular polyhedra placed 
in a fundamental domain of the cube; (b) vertices V of the great rhombicubocta
hedron; (c) vertices S of the truncated cube. 



340 Chapter Nine 

ure 9.15(a). V is the meeting point of the angle bisectors of a typical 
spherical triangle. The boundaries of these triangles are the great cir
cles where the nine planes of mirror symmetry of the cube intersect its 
circumscribing sphere (see Section 7.13.4). By reflecting the point suc
cessively in each of these mirror lines, the point is replicated once in 
each of the triangles to create the projection onto a sphere of 4.6.8. If 
point iS in Figure 9.15(a), located on one of the edges of the spherical 
triangle, is multiply reflected in all the mirror lines of the sphere, the 
truncated cube shown in Figure 9.15(c) is the result. In this way all 
archimedean polyhedra excluding the snub figures can be generated 
by the appropriate set of reflections [Coxeter, 1988], [Burt, 1982], 
[Lalvani, 1987]. 

Vedder Wright led a group of elementary school students from Cam
bridge, MA, in the exploration of the symmetry of polyhedra by hav
ing them play with a set of kaleidoscopes related to the platonic solids. 
Each kaleidoscope is a pyramid whose base is a face of one of the pla
tonic solids and whose sides are triangles that connect an edge of the 
base with the center of that platonic solid. The inner faces of the pyr
amid are lined with a reflective mylar tape. For example, an 
icosahedron kaleidoscope is constructed from three isosceles triangles 
with central angle arccos <J>/(1 + <$>2) = 63.43 degrees as shown in Fig
ure 9.16. (These edge lengths and angles can be determined by using 
the three golden rectangles that lie within an icosahedron as a coor
dinate system. Try it! See Section 3.4.) This isosceles triangle is iden
tical to the triangles on the face of the Pyramid of Cheops (see Sec
tions 3.2 and 8.3) [Verhayen, 1989]. This angle is also the supplement 
of the dihedral angle of the dodecahedron (see Section 7.10). The cen
tral angles for the octahedron and tetrahedron kaleidoscopes are 90 
and 109.5 degrees (the Miraldi angle), respectively. 

Construction 9.2 [Wright, 1989] Construct kaleidoscopes for the tetrahedron, oc
tahedron, and icosahedron, and place polygons of various shapes inside the ka
leidoscope. Images of all of the archimedean polyhedra except the snubs can be 
created in this way. Appropriately sized pyramids will result in the 
archimedean duals and star polyhedra. For example, the star polyhedra {5/2,5} 

Figure 9.16 Construction of a kaleidoscope with 
icosahedral symmetry. 
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and {5,5/2} of Section 7.14 are created by placing pyramids constructed from 
three golden triangles of type 1 and type 2, respectively (see Section 3.5). 

9.10 Prisms and Antiprisms 

Besides the archimedean polyhedra, there are two additional families 
of semiregular polyhedra: prisms and antiprisms. Many of these poly
hedra and their duals are defined by the external shapes of crystals 
and classical architectural structures. A prism is a polygonal cylinder. 
An example of an hexagonal prism is shown in Figure 9.17(a). If the 

, j 

( a ) 

Figure 9.17 (a) Hexagonal prism; (b) hexagonal anti
prism. 

upper face in this figure is rotated through half of the central angle 
between adjacent vertices, as shown in Figure 9.17(6), an antiprism is 
formed when adjacent vertices from the top and bottom faces are con
nected. Among the platonic polyhedra, the cube is a prism and the oc
tahedron is an antiprism. Figure 9.17 shows that while the lateral 
faces of a prism are all squares, the lateral faces of an antiprism are 
equilateral triangles. The prism duals are dipyramids and have all tri
angulated faces as illustrated for the hexagonal dipyramid in Figure 
9.18(a). The dual of the hexagonal antiprism, called the hexagonal 
trapezohedron, is shown in Figure 9.18(6). 

Figure 9.18 (a) Hexagonal di
pyramid; (6) hexagonal trapezo
hedron. 
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Prisms have no triangular faces (with the exception of the triangu
lar prism); thus they are not rigid according to Section 7.8. They will 
droop like cubes and dodecahedra if they are constructed with marsh-
mallows and toothpicks. However, antiprisms are rigid in response to 
lateral loads (forces perpendicular to their axes), although they will 
fold up like accordions when acted upon by axial loads (forces in the 
direction of their axes). 

9.10.1 A paper structure constructed from antiprisms 

The barrel vault, shown in Figure 9.19, has been an important struc
tural element of architecture since the time of the Romans because of 
its great structural efficiency [Ackland, 1972]. It is able to withstand 
lateral external loads many times its own weight. V. Sedlak has con
structed lightweight prefabricated paper shelters made from 
weatherized paper folded into a series of half-antiprisms [Sedlak, 
1973], Braces can be added between the vertices of successive 
antiprisms to prevent their tendency to fold up in response to axial 
loads. 

Construction 9.3 

1. Construct a vault by folding paper in a plane without cutting, as shown in 
Figure 9.20(a). In this figure, three families of lines are drawn on a piece of 

Figure 9.19 A gothic vault. 
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Figure 9.20 Construction of a vault made from antiprisms. (a) Scoring the pa
per; (b) assembling the vault. 

stiff paper. The two dotted families are folded down, while the solid family of 
lines is folded up. The vault may then be assembled as shown in Figure 
9.20(6). 

2. In the previous construction, the vault was made up entirely of a sequence of 
identical isosceles triangles arranged in a parallel configuration as illus
trated in Figure 9.21(a). There are two other arrangements of isosceles tri
angles: the pyramidal and the radial [see Figure 9.21(6) and (c)]. These ar
rangements figure in the construction of two other structures: the semidome 
and the intersection of vaults. The semidome is used to cap off a vault, while 
the intersection of vaults is the meeting point of three vaults that surround it 
radially and enables the structure to be continued in another direction. De-

Figure 9.21 Three ways to join 
isosceles triangles, (a) Parallel; 
(6) pyramidal; (c) radial. 

(a) (b) ( c ) 
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HEXAGON as the base BARREL VAULT HALF-DOME 
polygon 

Figure 9.22 Construction of a vault and a semidome by paper folding. 

Figure 9.23 Construction of an 
intersection of three vaults (IV). 
The edges of the IV must abut 
with the edges of the three 
vaults. 
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Figure 9.24 A paper folded structure. 

tails for constructing the semidome and intersection of vaults are shown in 
Figures 9.22 and 9.23. All isosceles triangles are identical with the exception 
of the three in the center of the intersection of vaults. Good models can be 
constructed with isosceles triangles that have 5-inch bases and 2%-inch 
sides. Once you have constructed several vaults, semidomes, and intersec
tions of vaults, you can arrange them in an indefinite number of ways to 
achieve some interesting tilings of the plane as Figure 9.24 illustrates. 
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Chapter 

10 
Polyhedra: Space Filling 

The rules will be seen to grow out of the 
parts and the parts out of the rules. 

PETER PEARCE 

10.1 Introduction 

The sphere and the cube are certainly the most familiar of all three-
dimensional geometric objects. The sphere is distinguished by being 
the most symmetric of all of them while the cube is known for its abil
ity to fill space when stacked. The apparent simplicity of spheres and 
cubes may make them seem uninteresting; however, careful analysis 
discloses that they are the building blocks of complex geometric struc
tures and lie at the basis of biological forms, soap bubble froths, crys
tal patterns, and architectural forms. In this chapter, we shall show 
how forms as simple as a sphere and a cube lead to complexity and 
diversity. First try the following exercises. 

Exercise 10.1 Get a bunch of 3-inch styrofoam spheres and toothpicks. Arrange 
the spheres on several levels, connecting adjacent spheres by toothpicks, and 
create some interesting designs. 

Exercise 10.2 Get some soap solution and a bubble blower and blow a froth of 
bubbles on a wetted surface. Observe the polyhedral configurations in the soap 
froth. Count the number of faces that meet at an edge of the film, the number of 
edges that are incident to a meeting point of films, and the number of different 
kinds of polygonal faces that make up various cells of the froth. 

10.2 Close Packing of Spheres 

As you can see from Exercise 10.1, although the sphere is extremely 
simple, the patterns it forms in juxtaposition with other spheres can 
be quite complex. A. L. Loeb shows that each sphere on the first level 
of a stack of spheres can be arranged so that it is surrounded by six 
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others, forming the familiar tr iangular grid of Islamic patterns (see 
Section 5.13), as shown in Figure 10.1(a) and schematically in Figure 
10.1(6) with the spheres occupying position D [1966]. Spheres in the 
second layer are then placed in the interstices of the spheres from the 
first layer (see Figure 10.2). Here, the spheres may be placed in the 
curvy triangles of either the E meshes or the F meshes where each 
mesh is related to itself and the other mesh by a rotation about D. 
Also note that the D, E, F centers each form their own triangular 
mesh. 

When a third layer is placed on the second one, a choice must again 
be made. If the E mesh is chosen for the second layer, the choices for 
the third layer are either D or F positions. In the D case a sphere in 
the third layer lies directly above a sphere in the first layer. This DED 
(or DFD) pat tern is the hexagonally close-packed system (hep) re
ferred to in Section 8.11.1 while the DEF pattern is the cubically 
close-packed system (ccp) that resulted in the cuboctahedron when we 
limited ourselves to surrounding a single sphere. Now we continue the 
pattern set by the first three layers, i.e., DEDED...(or DFDFD.. .) or 
DEFDEF. . . (or DFEDFE.. . ) , to fill all of space with spheres. 

Although the packing was constructed with a tr iangular grid of 
spheres [see Figure 10.3(a)], diagonal planes through the packing re
veal curvy square-shaped interstices [see Figure 10.3(6)]. But this is 
no surprise, since Figure 8.36 shows how both tr iangular and square 
interstices arise naturally from the close packing of spheres. The 

/ \ / \ / \ / \ / \ / \ / \ 

\AAAAAA/ 
^AAAAAA 
, /\ A /\ /\ / \ /\ , 

- D D -

/ \ / \ / \ / \ / \ / \ / \ Figure 10.1 The centers of a tri-
\ / \ / \ / \ / \ / \ / angular arrangement of spheres 

he on a triangular grid. 

(b) 
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Figure 10.3 Comparison of square and triangular packings of equal cir
cles in a given area. 

spheres group around the tr iangular gaps to form tetrahedra and 
around the square gaps to form octahedra. If we now concentrate on 
the toothpicks connecting adjacent sphere centers and forget about the 
spheres themselves, as we showed in Section 7.11, these octahedra and 
tetrahedra combine to fill all of space in a ratio of two tetrahedra to 
each octahedron. We will say more about this octet configuration in 
the following sections. 
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Both the hexagonal and cubic close-packed systems form the basis 
for the structure of mineral crystals where one species of atom occu
pies the sphere positions while other species are located in the gaps 
between the spheres. Section 10.7 describes this in more detail. 

10.3 The Shape of Space 

Since the close-packing arrangement of spheres occurs quite naturally 
by stacking identical spheres and since, like a sphere, space itself is 
symmetric in all directions, Buckminster Fuller felt that the ccp, or 
vector equilibrium configuration as he called it, represented the shape 
of space. Let's see how Fuller used this ccp to give shape to space. 

If the centers of touching spheres in a ccp arrangement are con
nected, a space-filling set of octahedra and tetrahedra remain corre
sponding to tetrahedral and octahedral interstices between the closely 
packed spheres. Figure 10.4 shows how each octahedron is completely 
surrounded by eight tetrahedra sharing its faces while each tetrahe
dron is completely surrounded by four octahedra sharing its faces. 
This configuration formed the basis of Fuller's octet truss (see Section 
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7.11). The space frame can either span a volume, as Figure 10.4 
shows, or it can span a planar region as shown in Figure 10.5. 

Each vertex of the ccp is surrounded by 12 edges corresponding to the 
12 close-packed spheres that touch the sphere represented by it. As we 
saw in Section 8.2, these are the 12 vertices of the cuboctahedron. 
Looked at another way, the 12 edges divide this cuboctahedron into 8 
tetrahedral and 6 half-octahedral cells, as Figure 8.8 shows. 

Furthermore, four planes defined by the cuboctahedron's hexagonal 
belts are centered at each vertex and correspond to the triangular grid of 
Section 10.2. Recall that these hexagonal belts appeared as geodesies on 
the surface of the interpenetrating cube-octahedron pair in Section 8.3 
and that they are oriented parallel to the four faces of a tetrahedron. 

At each vertex, three additional planes slice through the square 
cross sections of the six octahedra that are incident to that vertex. 
These are planes of square sphere packing shown in Figure 10.3(6). 
Again, these square belts are evident as the geodesies of the interpen
etrating tetrahedron duals (stella octangula) of Figure 8.9(a). In fact, 
the stella octangula represents a local view of the octet configuration 
with its central octahedron surrounded by eight tetrahedra. 

Construction 10.1 If the octahedra and tetrahedra are no longer regular but 
have edges of varying sizes, the planar space frame develops curvature as shown 
in Figure 10.6. Architects have used this form to create an impressive variety of 
architectural structures [Gabriel, 1985]. 

Now grab a handful of soft spherical pellets and squeeze them together. The 
12 points at which these close-packed spheres contact the central sphere widen 
into plane faces which eventually eliminate the gaps. The result (ideally if not 
practically) is a space-filling polyhedral version of the close-packed spheres 
shown in Figure 10.7. Although Fuller called these polyhedra spherics, they are 
actually rhombic dodecahedra—the duals of the cuboctahedra (see Section 8.4). 

Figure 10.5 Planar arrangement of an octet truss into half octahedrons and tetrahedra. 
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Figure 10.6 A space truss with curvature. 

Figure 10.7 Space-filling collection of rhombic dodeca-
hedra. 
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(b) ( c ) ( d ) 

Figure 10.8 The geometry of a beehive, (a) Plane section of a close-packed configura
tion of bees; (6) edges of neighboring chambers are flattened to form a hexagonal pat
tern; (c) detail of rhombic dodecahedron end attached to an hexagonal prism; (d) each 
bee working in its own sphere. 

Each vertex of the RD occupies the centroid of the cavities between the close-
packed spheres. The six vertices of a typical RD in a space-filling array that are 
surrounded by the acute angles of the rhombic faces fit in the octahedral inter
stices while the eight vertices at the obtuse angles lie in the tetrahedral inter
stices. These RD also occur as the shape of garnet crystals. 

It is perhaps in this way that bees construct their hives, each work
ing in its own sphere, yet always ending up with beehives in the form 
of hexagonal prisms capped by half-RDs, as shown in Figure 10.8. 

10.4 Packing Ratios 

The two arrangements of circles shown in Figure 10.3 are two planar 
cross sections of the ccp spheres. However, they differ significantly 
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from each other in their utilization of space. For the square pattern, 
the packing ratio is the ratio of circles to squares in a typical unit of 
the pattern, as shown in Figure 10.3(6). If the circles are taken to have 
unit radius, 

Packing ratio = ^ a of circle = ^ = 
area of square 4 

so that about 79 percent of the space in the plane is occupied by the 
circles. Compare this with the triangular pattern shown in Figure 
10.3(a) in which packing ratio = W2V3 = 0.905. Thus, about 91 per
cent of the plane is covered in this close-packing arrangement of cir
cles. 

Now let's compare packing ratios for three different space-filling ar
rangements of spheres. In simple cubic packing (scp) each sphere is po
sitioned at the vertices of an infinite aggregation of cubes. A single 
cell is shown in Figure 10.9(a). Thus each unit cube contains Vs of a 
sphere of radius V2 at each vertex. The density d of the scp arrange
ment is defined to be the ratio of the volume of the spheres contained 
in the cube divided by the volume of the cube, i.e., 

, 4/3T7(1/2)3 TT 

d = —- = £ = 0.5236 
1 6 

A similar computation can be carried out for a body-centered cubic 
packing (bcc) in which each sphere lies at the center of a cube and con
tacts eight other spheres, each located at the vertices of a typical cube 
from an infinite aggregation of cubes [see Figure 10.9(6)]. Each sphere 
has a radius one-half the body diagonal of a cube, or V3/2. It is easy to 
verify that the packing density is d = TT V3/8 = 0.6801. (Try it!) 

The face-centered cubic packing (fee) places a sphere at the center of 
each face of a cube so that it touches other spheres located at the ver-

Figure 10.9 (a) Simple cubic packing of spheres; (b) body-centered cubic packing of 
spheres; (c) face-centered cubic packing of spheres; another fee packing. 
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tices of the cube [see Figure 10.9(c)]. In this packing, each sphere has 
a diameter of V2/2 units if the cube has edge of 1 unit. You can check 
to see that the packing density is d = W V l 8 = 0.7408. Although it is 
not obvious, this packing of spheres is equivalent to the ccp [see Fig
ure 10.9(d), notice the cuboctahedron]. No other regular packing of 
spheres has a larger packing ratio, which justifies the reference to fee 
as the lattice of cubic-close packing. 

10.5 Three-Dimensional Lattices 

Each of the three arrangements of spheres from the last section forms 
a three-dimensional lattice structure, obvious generalizations of the 
two-dimensional lattices of Section 6.7 in that they are invariant un
der translation in three nonparallel directions. These are three of the 
fourteen possible lattice types catalogued by Auguste Bravais in 1848 
[Bloss, 1971]. However, they are the most prevalent types found in the 
structure of metallic crystals and salts. The arrangement of spheres in 
these lattices follows closely the geometry of stacked cubes (see Figure 
10.10). For example, in an infinite array of cubes, each corner of a 
cube is connected to six other corners by edges incident to that corner 
in the [1,0,0] directions (edge direction). This defines the three 
nonparallel lattice directions of the scp lattice. Decorating each corner 
of the cubes in Figure 10.10 with a lattice point [see Figure 10.9(a)] 
results in a scp lattice. 

Each corner of a stack of cubes is also incident to eight cubic cells. 
The directions from a corner to the centers of these eight cells are 
along the [1,1,1] direction (body diagonal) of a cube and define the 
points of the bcc lattice. Placing a lattice point in each corner of the 

Figure 10.10 Space-filling cubes. 
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cubes in Figure 10.10 and also at their centers results in a bcc lattice 
[see Figure 10.9(6)]. 

Each corner of a cube is incident to 12 faces of the adjacent cubes. 
The directions from the corners to the center of these faces, along the 
[1,1,0] direction (face diagonal) of a cube, define the fee lattice. Placing 
a lattice point at the corners and face centers of each cube of Figure 
10.10 results in a fee lattice. Can you see in Figure 10.9(c) that the 
unit cell of the lattice is the octet parallelopiped formed from two tet-
rahedra and one octahedron made up of six lattice points at the face 
centers and two opposite vertices of the cube. ? 

10.6 Dirichlet Domains 

Just as for two-dimensional lattices, the Dirichlet domains (D-
domains) of a point from a lattice of points are defined to be the points 
of space nearer to it than to any of the other lattice points. As for the 
D domains of two-dimensional lattices (see Section 6.5), to construct 
the D domain of a lattice point, the lines between that point and all 
other points of the lattice are perpendicularly bisected by planes, and 
the innermost envelope of planes is extracted. The resulting polyhe
dron comprising this innermost envelope is the D domain, and the 
mirror image points on opposite sides of the faces of the D domain are 
said to be neighbors of the original point. In fact, these neighbors form 
another polyhedron called the coordination polyhedron [Loeb, 1986]. 

Since each point of a lattice must belong to some D domain and 
since all domains are identical for a lattice, the D domains are space 
fillers. Also, the collection of points that lie at the vertices of the D 
domains of a lattice are known as point complexes. Point complexes 
are invariant under translations in three nonparallel directions, but 
they are not, in general, lattices. 

The D domains of the scp lattice are cubes, as can be seen by bisect
ing the six [1,0,0] directions on a cube (see Section 7.13.2) that connect 
a lattice point to its nearest neighbors. The coordination polyhedron is 
the octahedron formed by the vertices to which these six edges con
nect. 

Each point of the fee lattice is directed to its nearest neighbors along 
the 12 [1,1,0] directions. The envelope of planes that are the perpen
dicular bisectors of these directions form rhombic dodecahedon D do
mains, i.e., Fuller's spherics. The coordination polyhedron is the 
cuboctahedron. 

What are the D domains of the bcc lattice? Each lattice point is di
rected to eight nearest neighbors in the directions of the body diago
nals of the cube as we showed in the last section. The eight bisecting 
planes might form an octahedron. However, octahedra do not fill space 
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by themselves. In constructing the D domains of the bcc lattice, in ad
dition to the eight nearest neighbors, we must consider the six next 
nearest neighbors located at the centers of the surrounding cubes 
since these also contribute to the innermost envelope. The resulting 
polyhedra are truncated octahedra which are space fillers according to 
Section 9.4. The coordination polyhedron consists of the eight vertices 
corresponding to the nearest neighbors and the six centers of the sur
rounding cubes corresponding to the next nearest neighbors. These 
are the vertices of an RD by the construction of Figure 8.13. So we see 
that the RD serves as both the D domain of the fee lattice and the co
ordination polyhedron of the bcc lattice. 

10.7 Crystal Structure 

Looking at the configuration of ions that make up a crystal is a little 
like looking at the stars in the sky. Unless you have a clear ordering 
principle, the patterns appear chaotic or random. Just as constella
tions are formed from arbitrary orderings of the stars, there are many 
possible ordering principles that can describe the positions of ions in a 
crystal. Now we are in a position to better understand a system that 
Loeb developed to unify and simplify the interpretation of the crystal 
structure of common minerals [1975; 1970; 1966]. 

10.7.1 Cubically close-packed crystals 

In many metals (e.g., copper), the atoms arrange themselves as if they 
were closely packed spheres. Sometimes the packing is hexagonal 
(DED) and sometimes it is cubic (DEF). In the case of ccp each atom 
surrounds itself with 12 other identical atoms in the form of a 
cuboctahedron. 

When more than one species of atom is present, a great many of 
these crystals conform to a model in which one species is close packed 
while the other species occupies the curvy tetrahedral or octahedral 
interstices. For example, in sodium chloride (NaCl) crystals, the chlo
rine ions play the role of the cubically close-packed spheres and the 
sodium ions fill up all of the octahedral interstices. Since there is one 
octahedral cavity for each sphere in the packing, this creates just the 
right setting to house the equal numbers of sodium and chlorine ions 
present in the crystal. Likewise, potassium oxide (K20) crystals are 
represented by a ccp arrangement of the oxygen ions with the potas
sium ions occupying the two tetrahedral cavities that are available for 
each close-packed ion. Loeb has constructed plastic tetrahedron and 
octahedron chambers called Moduledra with vertices representing the 
positions of ccp or hep atoms and interiors modeling the interstices. 
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He places spheres into the appropriate chamber whenever a species of 
atom occupies that interstice [1963; 1965]. 

10.7.2 Cubic close packing with 
incompletely filled interstices 

For the examples of NaCl and K 2 0 , all of either the octahedral or tet-
rahedral cavities are filled to capacity by either Na or K ions. But 
what of situations in which the interstices are only partly filled? To 
answer this question, first observe that each of the ccp positions, oc
tahedral cavities, and tetrahedral cavities forms a tr iangular grid ori
ented parallel to the four faces of a tetrahedron or four geodesies that 
make up the vector equilibrium, i.e., the four directions or "dimen
sions" characteristic of space according to Fuller (see Section 10.3). 
Figure 10.11 shows how such a grid can be subdivided into four equiv
alent subnets where each subnet occupies the positions of a tr iangular 
grid [Loeb, 1958; 1964; 1966] [Morris and Loeb, I960]. In this network 
each point of one subnet is surrounded by six equidistant points from 
the same subnet and two equidistant points from each of the other 
three subnets. In this way, the maximum number of each species of 
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Figure 10.11 Subdivision of hexagonal net into four 
equivalent subnets. 
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ion is equidistant from each other. Also, by the geometry of triangular 
networks, you can see that there is no way to subdivide the nets into 
two congruent parts. 

Now consider the structure of the mineral sphalerite (ZnS). The sul
fur ions are cubically close packed while the zinc ions occupy half of 
the tetrahedral sites. Since the tetrahedral positions cannot be subdi
vided into congruent halves, only the upright tetrahedra are filled. 
The emptiness of the downward tetrahedra accounts for sphalerite's 
electrical polarity. Perovskites (with chemical formula ABX3; see Sec
tion 7.12) offer another example of partially occupied sites. As Figures 
7.21 and 10.9(d) show, the ccp sites are occupied by both the X and A 
ions, with A filling the positions in one of the four subnets while X 
occupies the positions of the other three subnets. The B ions fill one of 
the four subnets of the octahedral interstices, leaving three subnets 
open [Loeb, 1970]. Robert Hazen and his group have recently discov
ered tha t a superconducting material, a compound of barium, yttr ium, 
copper, and oxygen with the formula YBa 2 Cu 3 0 7 (called 1-2-3 because 
of the ratio of Y to Ba to Cu ions) has the structure of a perovskite 
with Y, Ba, and 0 occupying the ccp sites and Cu occupying the octa
hedral cavities. This perovskite has an incomplete complement of ox
ygen atoms since nine atoms are predicted by the formula. Hazen 
[1988] describes the ingenious way in which the atoms are arranged 
in 1-2-3 to give rise to its remarkable electronic properties. 

10.7.3 The vector equilibrium principle 

Unfortunately, the close-packing model does not explain all mineral 
crystal structures. For example, bcc structures are almost twice as 
prevalent in metals as the fee structures described by the close-
packing model. Loeb has postulated an organizing principle, the vector 
equilibrium principle (VEP), that agrees with the close-packing model 
when it is relevant and generalizes it to cases in which it no longer 
holds [1970]: 

Crystal structures tend to assume configurations in which a maximum 
number of identical atoms or ions are equidistant from each other. If 
more than a single type of atom is present, then each atom tends to be 
equidistant from as many as possible of each type of atom. 

Loeb says of this principle that, "the VEP marks tendencies, recog
nizing the need for compromises in satisfying geometric and 
stoichiometric constraints." This principle explains the structures of 
cubically close-packed copper atoms and NaCl crystals on the one 
hand and crystals such as (3-tungsten arranged in a bcc lattice on the 
other. In both of these cases, one species of atom is arranged in a lat-
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Figure 10.12 Relation of 0-
tungsten structure to the D do
main of the bcc point complex. 

tice (fee or bcc) while the other species lies at the vertices of the D do
main corresponding to the lattice. These vertices of the D domain play 
the role of the interstices in the close-packing model. For example, the 
CI atom lies at the vertices of an fee lattice while the Na atoms sit at 
the vertices of the D domain of this lattice, the RD. Since each vertex 
of a space-filling collection of RDs is surrounded by either four or six 
cells, each vertex of the RD corresponds to either one of the tetrahe-
dral or octahedral interstices of the close-packed spheres. A picture of 
p-tungsten is shown in Figure 10.12 with one species of atom lying at 
the positions of the bcc lattice, and the other species occupying one-
half of the sites of its D domain, the truncated octahedron. 

This picture conforms to Loeb's general principle in that each atom 
is a neighbor—in the D domain sense discussed in Section 6.5—of the 
maximum number of atoms of the same type. For the fee lattice, the 12 
neighbors are equidistant, forming the vertices of the coordination 
polyhedron of the fee lattice, the cuboctahedron. The 14 nearest neigh
bors of the bcc lattice lie at the vertices of the bcc lattice's coordination 
polyhedron, the RD. These 14 nearest neighbors cannot all be equidis
tant because the constraints of space permit only 12 equidistant 
points; rather, 8 neighbors are equidistant while the other 6 are only 
15 percent further away. The hexagonal grid of Section 10.7.2 also 
conforms nicely to the VEP. 

10.8 Networks 

To characterize metallic crystal structures we focused on the points of 
the lattice, or point complex, rather than on the network of edges that 

O bcc Point Complex 

# vector-equilibrium 
positions occupied 
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joins point to point. The lattice model is a good one because the points 
representing the atoms are held together in their matrix by a field of 
interatomic forces rather than by bonds from atom to atom, which 
would be modeled better by connectors. 

We would now like to shift attention to the nets joining the points of 
the lattices and point complexes since these also lead to crystal struc
tures when chemical bonding is important. But of more direct interest 
to us, they lead to interesting polyhedral forms. 

If we connect the lattice points of the bcc lattice to form the 8-
connected bcc net, we notice that unlike the fee network in which con
nectors define a space-filling set of octahedra and tetrahedra, the bcc 
net does not define any plane-faced polyhedra. However, if the six 
edge directions are added to the net to form a 14-connected regular net 
at each lattice point, the set of space-filling tetragonal disphenoids 
(not shown) is formed [Pearce, 1978]. 

However, the bcc network can also define a set of space-filling four-
faced polyhedra if we permit these polyhedra to have skew polygonal 
faces. These generalized tetrahedra are shown in Figure 10.13. Each 
face is a skew quadrilateral, i.e., a quadrilateral whose edges do not 
all lie in the same plane. Some authors have chosen to span these 
skew faces by soap films in order to subdivide space into discrete cells 
[Pearce, 1978], [Burt, 1973]. So, we see that the bcc lattice can be as
sociated with two distinctly different nets, with each net defining a 
space-filling set of polyhedra: tetragonal disphenoids in the first case 
and skew-faced tetrahedra in the second case. 

Figure 10.13 Space-filling bcc saddle tetrahedra. 
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10.9 Infinite Regular Surfaces 

M. Burt, M. Kleinmann, and A. Wachman [1974] discovered a large 
family of infinite regular polyhedra based on nets derived from lat
tices and point complexes and their duals. Whenever a net defines a 
space-filling collection of polyhedra with central symmetry, Burt et al. 
define a dual net as follows: place a vertex at the center of symmetry 
of the polyhedron defined by the net and pair an edge of the dual net 
with each face of the polyhedron so that the edges connect the center 
of symmetry of adjacent polyhedra through the centroid of the face. 
For example, by this definition the dual net of the fee connects the cen
ters of each tetrahedron to the four surrounding octahedron centers 
and the centers of the octahedron to the eight surrounding tetrahe
dron centers. This dual net is made up of the edges of the space-filling 
RDs. 

The dual net to the bec net, on the other hand, is the space-filling 
collection of truncated octahedra when the net is defined in terms of 
the tetragonal disphenoids. However, when the bec net is defined in 
terms of skew tetrahedra, the dual network defines a space-filling ar
ray of skew octahedra shown in Figure 10.14, in which each face is a 
skew hexagon with edges intersecting at right angles. The bec net
work and its skew octahedron dual is shown in Figure 10.15. 

The infinite regular polyhedral surfaces of Burt et al. are con
structed so that all of space is separated by the surface into two tun
nels through which a net and its dual net wind. Each tunnel is con
nected in the sense that any pair of points in one tunnel can be 
connected by a path lying within the tunnel, but points in different 
tunnels cannot connect without breaking through the surface. The 
surface is also regular in the sense that each of its vertices is sur-

Figure 10.14 Skew octahedral 
network dual to the bec net
work. 
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Figure 10.15 Body-centered cubic network and its dual. 

rounded identically by regular polygons, i.e., the surface is 
semiregular. One such surface based on the bcc net and its skew octa
hedron dual net is shown in Figure 10.16. 

Sometimes the infinite regular surface can be constructed by remov
ing selected faces from space-filling polyhedra. For example, Figure 
10.17 shows space-filling great rhombicuboctahedra 4.6.8 and octago
nal prisms with the octagon faces removed. This is the structure of 
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Figure 10.1 § Infinite regular surface with tunnels along a bcc lattice 
and its dual. 

certain zeolite crystals. A net derived from an scp lattice and its dual 
net fits through the tunnels. Since the scp net is its own dual, it is not 
surprising—but nonetheless amazing—that the surface divides all of 
space into two congruent tunnels. 

Figure 10.18(a) shows another surface formed by removing the 
square faces from a space-filling bunch of truncated octahedra. Again, 
this surface forms along a scp net and its self-dual and divides space 
into two congruent connected segments. Four regular hexagons sur
round each vertex on this surface {6,4}. This infinite polyhedron has 
all the properties of a platonic polyhedron, namely, identical faces and 
all vertices surrounded alike. It was discovered by H. S. ML Coxeter in 
1987 along with two other infinite platonic polyhedra. Its dual, also an 
infinite platonic polyhedron with six squares surrounding each vertex 
{4,6} is shown in Figure 10.19(a). The vertex figures of these polyhe
dra are also shown in Figures 10.18(6) and 10.19(6) along with the di
hedral angles between the faces. 

The third Coxeter polyhedron {6,6} is made up of a space-filling com
bination of truncated tetrahedra and tetrahedra in a 1:1 proportion 
with the faces of the tetrahedra removed (see Figure 10.20). 

Infinite regular polyhedra can be constructed by assembling and 
then combining the vertex figures or, in certain cases, by constructing 
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Pigyre 10.17 Infinite regular surface built from octagonal 
prisms and great rhombicuboctahedra. 

space-filling polyhedra and removing certain faces. [Burt et al., 1974] 
gives the necessary information to construct many interesting 
examples. 

10.10 The Diamond and Graphite Networks 

Carbon appears in nature in three very different forms. Graphite 
and diamond are abundant in nature while a third form known as 
Buckminsterfullerene, may pervade interstellar space particularly 
in the vicinity of red giant stars. The first, as we all know, is a soft 
material whereas the second in the hardest known material, while the 
third has the form of a truncated icosahedron or soccer ball with great 
chemical stability. That a single element can be found with properties 
that are so different can be attributed to the different ways in which 
the atoms of each bond together to form networks. Graphite and 
diamond are discussed in this section while Section S.4 of the 
Supplement is devoted to a discussion of Buckminsterfullerene. 

Each of the point complexes of diamond and graphite forms a 
network with four connectors at each point representing the bonds 
between carbon atoms [Loeb, 1966]. The graphite net has three of its 
connectors lying in a plane forming a two-dimensional space-filling 
tiling of regular hexagons while the fourth connector points in the di-
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Figure 10.18 infinite regular surfaces of Coxeter. (a) Square faces re
moved from truncated octahedra to form {6,4}; (h) vertex figure. 
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Figure 10.19 (a) Faces removed from every other cube of space-filling array to form 
{4,6}; (b) vertex figure. 

rection perpendicular to this plane and has a different length from the 
others. Each carbon atom lying in the plane is situated both at the 
vertex of an upright equilateral triangle and at the centroid of a down-
pointing equilateral triangle, as shown in Figure 10.21. 

On the other hand, in a diamond the carbons atoms occupy half the 
sites of the bcc lattice. Each carbon has four connectors meeting at the 
Miraldi angle (see Section 8.9) and pointing in the body-diagonal di
rection of the cube to the sites of four symmetrically placed nearest 
neighbors at the vertices of a regular tetrahedron [see Figure 10.22(a). 
Its dual network is an identical diamond net. The D domains of the 
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(a) (b) 

Figure 10.21 (a) Graphite lattice; (b) portion of a plane of carbon atoms in graphite. 

diamond point complex turn out to be the space-filling combination of 
truncated tetrahedra with quarter tetrahedra attached to each trian
gular face as shown in Figure 10.22(6) [Loebs 1986]. 

We see from the structure of its network that the structural weak
ness of graphite lies in its vulnerability to shearing forces lying 
within the plane of the hexagonally arranged carbon atoms, whereas 
the diamond network derives its strength from its ability to withstand 
forces equally in any direction. 

Diamond crystal structures can also be derived from the close-
packing of spheres (see Section 10.12). Carbons occupy both the ccp 
and the upturned tetrahedral interstice positions from Loebfs octet 
model of ccp crystals (just as we showed in Section 10.7.2 for 
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(a) (b) 

Figure 10.22 (a) Diamond point complex and self-dual; (b) D domain of the diamond 
point complex. 

sphalerite). When the tetrahedron centers are connected to the verti
ces of the surrounding tetrahedra, they form a 4-connected network of 
edges. These edges are in the direction of the bonds between the car
bons and meet at the Miraldi angle. 

10.11 Soap Froths 

The soap froth of Exercise 10.2 also forms along the diamond network, 
at least locally in the neighborhood of each corner of the froth. If you 
carry out this exercise, you will notice that, just as for the soap bubble 
in the tetrahedral and cubic frames of Section 8.9, four edges and six 
films meet at each corner of the froth at the Miraldi angle while three 
films meet at each edge with dihedral angles of 120 degrees. The edges 
and faces curve by just the right amount to satisfy these constraints 
on angle, and this curvature is regulated by pressure differences be
tween the cells of the froth [Hilderbrant, 1984], [Stevens, 1974]. 

Lord Kelvin, a great British scientist of the nineteenth century, con
templated the precise sense of order represented by a froth of soap 
bubbles and wondered whether there existed a polyhedron that could 
stack to fill space meeting all the requirements of a froth. He noticed 
that 14-faced truncated octahedra stack to fill space in such a way 
that four edges meet at each vertex and three faces meet at each edge. 
Although the dihedral angles between the faces are not 120 degrees, 
and the angles between the edges are not 109.48 degrees, Kelvin 
proved that all the requirements of the froth could be met by trans
forming the usual truncated octahedron with six square and eight 
hexagon faces into one that had planar square faces and saddle-
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Figure 10.23 Kelvin's ideal soap 
film. 

shaped hexagonal faces. His space-filling polyhedron is known as the 
tetrakaidecahedron and is shown in Figure 10.23. 

But, alas, Kelvin's ideal soap bubble is rarely found in froths al
though it is closely approached in certain simple, homogeneous biolog
ical tissues [Williams, 1972]. In Exercise 10.2, you may have discov
ered, as did F. T. Lewis, tha t about 75 percent of the cells were either 
12-, 13-, 14-, 15-, or 16-faced and that the average number of faces per 
cell was 13.96, an indication of the tendency toward Kelvin's ideal 
soap bubble. A froth subdivides three-dimensional space into random 
polyhedral cells with four edges incident to each vertex. The average 
number of faces (F) and the average number of edges per face ip) can 
be related by the formula [Rivier and Weaire, 1984] 

<"> - 6 ^ > (1°'U 

This formula is derived similarly to the two-dimensional version 
given by Equation (6.1) using only combinatorial properties such as 
Euler's formula and valency relationships. Although there is some 
question as to its generality in the serendipitous world of polyhedra, 
the value of ip) = 5.1 does lead to the experimentally determined 
value of (F) = 13.96. There is also strong evidence tha t this formula is 
valid with (F) in the range of 13.33 to 13.5 for the 24 Frank-Kasper 
metallurgical phases [Sadoc, 1983], [Shoemaker and Shoemaker, 
1986]. 

10.12 A Unified Look at Nets Related to 
Cubic Lattices 

Although scp, fee, and bee lattices and the diamond point complex 
were all derived from the geometry of a cube, Fuller sees them as all 
related to each other through the cubic close-packing of spheres. As 
we have seen, the ccp defines the edges of the octet network. Fuller 
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refers to this network as the isotropic vector matrix, or IVM net, as 
shown in Figure 10.24 [Edmondson, 1987]. 

Fuller then defines what he calls a dual net, IVM', by connecting 
the centroids of the cells of the IVM to its vertices. In this way, four 
edges meet at the centroid of the tetrahedron [Figure 10.25(a)] defin
ing a portion of the diamond net, and six edges meet at the center of 
the octahedron in three mutually perpendicular directions defining 
the scp net [see Figure 10.25(6)]. Thus, at each vertex of the IVM 
there are six edges in the [1,0,0] directions and four edges in the 
[1,1,1] directions from the IVM' system in addition to the twelve edges 
of the IVM system in the [1,1,0] directions. 

Thus the IVM system with no right angles in sight defines a 
cartesian coordinate system as part of the IVM' system. Also within 
the IVM system can be found some of the archimedean polyhedra (at 
least in a topological sense) from the cubic system. Within the IVM' 
system other polyhedra related to the ones from the IVM system can 
be found. For example, when eight quarter-tetrahedra are added to 
each octahedron which they surround, an RD is formed by the con
struction of Figure 8.12. 

Finally, if the vertices at the centroids of the tetrahedra are joined 
with the four octahedra centroids that surround it, as Burt did in de
fining his dual nets, the remaining [1,1,1] directions needed to define 
the bcc net are added to the IVM' system. Now all basic point corn-

Figure 10.24 Isotropic vector matrix and octet truss. 
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( a ) <bl 
Figure 10.25 Central nodes of (a) tetrahedron and (b) octahedron de
fine the edges of the IVM' net. 

plexes, scp, fee, bee, and diamond, are defined by Fuller's system in a 
unified way. 

10.13 Zonohedra 

In Section 6.7 we showed that only parallelograms and certain kinds 
of hexagons tile the plane with the same orientation. In the same 
manner, Fedorov, a Russian crystallographer, gave a proof in 1879 in 
his book on geometry entitled An Introduction to the Theory of Figures 
that there are only five kinds of convex polyhedra that can be ar
ranged to fill space with the same orientation. They are the 
parallellopiped, hexagonal prism, truncated octahedron, RD, and the 
elongated dodecahedron. All of these except the last have been previ
ously discussed, and special representatives of all five kinds are shown 
in Figure 10.26 

The five Fedorov solids are related to each other, as shown in Figure 
10.26, where they are all generated from a cube by inserting a se
quence of square or hexagonal prisms into the previous polyhedron of 
the sequence [Baracs et al., 1979], [Crapo, 1978a], [Coxeter, 1968]. 
Figure 10.27 shows another way to construct all five Fedorov solids, 
with the exception of the hexagonal prism, from a transformed 
parallelopiped whose vertices have been moved [Williams, 1972]. 

The Fedorov solids share with the parallelopiped from which they 
were generated the property that opposite faces are parallel and con
gruent. As a result, they belong to a family of polyhedra called 
zonohedra, the three-dimensional analogues of zonogons, which were 
discussed in Section 5.10.3. They also share with zonogons the prop
erty of being centrally symmetric. Jus t as zonogons were constructed 
to have all edges oriented in the direction of a set of vectors, referred 
to as a vector star, zonohedra may be constructed by specifying a star 
of vectors, not all of which lie in the same plane. 
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Figure 10.26 Each of the Fedorov solids are obtained by inserting prisms. 

Figure 10.28 shows the images of several zonohedra projected onto 
the plane. In each case, the vector star produces a zonogon as the pro
jected image of a zonohedron. As we saw in Section 5.10.3, each n-
zonogon divides into n(n - l)/2 parallelograms which are the projected 
images of the visible faces of the corresponding /z-zonohedron. These 
faces are indicated in Figure 10.28 by solid lines. A second set of n(n -
l)/2 faces, drawn with dotted lines, are the hidden faces of the 
zonohedron under the projection. Therefore, an /z-zonohedron, with all 
parallelogram faces, has [Coxeter, 1968] 

F = n(n - 1) (10.2) 

faces. Each vertex of an /z-zonohedron has incident edges oriented ac
cording to some subset of the vector star while the edges divide into n 
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Figure 10.27 The five Fedorov solids generated by vertex motion transforma
tions. A transformation from (a) a rectangular prism to (d, e) forms of 4 62; 
(/") rhombic dodecahedron; (g) elongated dodecahedron; (h, i) rectangular prism. 

groups of parallel edges called zones, each group of which rings the 
zonohedron with n rhombic faces. A zonohedron with all parallelo
gram faces formed from n vectors can also be subdivided into 

n(n - l)(n - 2) 
C„ = £ (10.3) 

parallelopiped cells in a number of ways JV given by the formula 

N = 2 " " ^ (10.4) 

where {f} = n\/(n - i)li\ and i is the dimension of the space, i.e., two 
dimensions for zonogons, three dimensions for zonohedra, etc. Differ
ent sets of these parallelopipeds self-intersect. In this subdivision into 
intersecting parallelopipeds, all n vectors are incident to each vertex 
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( b ) 
Figure 10.28 Zonohedra formed from vector stars, (a) Parallelopiped from a 3-vector 
star; (6) RD and hexagonal prism from a 4-star; (c) elongated dodecahedron from a 5-
star. 

and oriented the same from vertex to vertex. This constellation of 
parallelopipeds represents a projection of an n-dimensional cube into 
three-dimensional space (see Section 4.20). 

The star of three vectors in Figure 10.28(a) generates a 3-
zonohedron, or hexahedron. A star of four vectors gives rise to two pos
sibilities. If no three of these four vectors lie in the same plane, an 
n-zonohedron in the form of an RD results and its projection is shown 
in Figure 10.28(6). Six parallelogram faces, represented by solid lines, 
are visible while the six dotted faces are hidden. Since the vector star 
contains four vectors, the RD decomposes into two self-intersecting 
sets of four parallelopipeds (i.e., C4 = 4 andiV = 2) according to Equa
tions (10.3) and (10.4) with n = 4 and i = 3. With the RD subdivided 
by these eight parallelopipeds, the structure has the form of a four-
dimensional cube or tesseract shown in Figure 4.68(e). Can you iden
tify the eight intersecting parallelopipeds? 

The other possibility for a four-vector star occurs if three of the vec
tors lie in the same plane. For example, if vectors 1, 2, and 4 of the 
four-vector star lie in the same plane, while vector 3 does not lie in 
this plane, the hexagonal prism of Figure 10.28(6) results. 

Finally, in Figure 10.28(c) we show an elongated dodecahedron formed 
from a star of five vectors in which 1, 2, and 4 and 3, 4, and 5 are two sets 
of coplanar vectors resulting in two parallel pairs of hexagonal faces. 

Problem 10.1 Construct the two-dimensional projections of a rhombic 
triacontahedron (all rhombic faces) and a truncated octahedron from a six-
vector star. A six-dimensional cube, or 6-cube, whose outer surface is a rhombic 
triacontahedron is shown in Figure 10.29. 
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Figure 10.29 A 6-cube enclosed 
in a rhombic triacontahedron. 
{Computer Graphics Labs, NYIT.) 

As for zonogons, what makes zonohedra so important to design is 
that they can be expanded, contracted, or distorted by altering the 
length and orientation of the vectors of the vector star. For exam
ple, if the lengths of the vectors are altered, the zonohedron is ex
panded or contracted along the directions of the vector star, i.e., 
zones, without altering the dihedral angles. On the other hand, 
edge lengths may be preserved while angles between the vectors 
change, in which case the dihedral angles of the zonohedra are al
tered and the zonohedra are accordingly deformed. The space-filling 
zonohedra or Fedorov solids remain space filling even after they are 
deformed [Lalvani, 1990]. 

This way of altering the size and shape of space-filling polyhedra 
gives zonohedra an advantage over geodesic domes as building struc
tures. The shape of the geodesic dome is fixed by the polyhedron upon 
which it is based, and in order to change its size, all edges must be 

mm 
( a ) (b ) 

Figure 10.30 Certain edges of the rhombic triacontahedron of 
(a) collapse to form the truncated octahedron in (b). 
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altered. Thus the zonohedra has obvious implications for architec
tural design since it enables polyhedral enclosures to be built which 
fit form to function. As a result, modules as versati le as the paral-
lelopiped may be constructed, opening the way to new design pos
sibilities. The s t ructural topology group a t the Universi ty of 
Montreal has experimented along these lines with the RD as an al
ternat ive building form to the parallelopiped [Baracs, 1979], H. 
Lalvani has suggested tha t hypercubes be used as the possible basis 
for building form [1987]. 

Another example of the transformability of zonohedra is shown in 
Figure 10.30. By collapsing some of the edges of the rhombic faces of 
the rhombic triacontahedron into a plane in a continuous manner, the 
hexagonal faces of the resulting truncated octahedron are formed 
[Lalvani, 1989]. Lalvani has also created sequences for a computer an
imation of a continuous transformation of a 6-cube in its various 
states. It starts from a portion of a simple cubic lattice through the 
intermediate stage of a packed rhombic triacontahedron to the final 
stage of a portion of an fee lattice outlining a truncated octahedron 
[1989]. The edges of the cubic lattice [see Figure 10.31(a)] are hinged 
so that they open up into rhombic shapes until the triacontahedron 
stage of the transformation [see Figure 10.31(6)], after which the 
rhombuses close up until the fee lattice stage is reached [see Figure 
10.31(c)]. Notice that the outer shells of the lattice can be superim
posed on the faces of Figure 10.30(6). It is interesting that, like in 
Fuller's jitterbug, a figure of 5.3.2 symmetry (the triacontahedron in 
place of the icosahedron) bridges the transformation from two struc
tures with 4.3.2 symmetry. 

There is a natural relationship between the 3-zonohedron (cube), 4-
zonohedron (RD), and the 6-zonohedron (rhombic triacontahedron) 
and the three symmetry classes of the platonic solids: 3.3.2, 4.3.2, and 
5.3.2, respectively (see Section 7.13.1) [Lalvani, 1989]. Recall from 
Section 8.3 that each of these polyhedra has rhombic faces (square in 
the case of the cube) whose diagonals are the paired edges of the pair 
of intersecting polyhedra that are dual to each other. When the 
rhombic faces of one of these zonohedra are divided along their diag
onals into four triangles (each of the four sectors of the face can also be 
projected to one of the spherical triangles on the inscribed sphere of 
this polyhedron as described in Section 9.9 for the case of cubic sym
metry 4.3.2), all of the archimedean polyhedra except the snubs can 
then be generated by reflection in mirrors placed along these triangles 
as we described in Section 9.9. The platonic and archimedean polyhe
dra can be derived from the 3-, 4-, and 6-zonohedra directly by placing 
vertices in appropriate locations within the fundamental region de-
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(b) (0 
FIgyr© 10.31 Lalvani's continuous 6-cube transformation, (a) Simple cubic lattice; (6) 
rhombic triacontahedron; (c) fee lattice. (Computer Graphics Lab, NYIT) 

fined to be any one of the four sectors of the rhombic faces. Each sector 
is a 45 degree right triangle in higher space. Messer has shown 
practical and general methods of stellating the rhombic triaconta
hedron and other polyhedra [Messer 1995S]. 

10,14 Golden Isozonohedra 

A family of fi¥e zonohedra related to the golden mean, called golden 
isozonohedra (GIZ) by Coxeter [1968], have been studied by Baer [1970], 
and Miyazaki and Takada [1980]. The faces of these zonohedra are iden
tical rhombuses whose diagonals are in the ratio <|>:1 (see Figure 10.32). 
We have already seen in Section 8.3 that the rhombic triacontahedron 
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Figure 10.32 Golden rhombus 
with spherical dodecahedron mm-

• nectore. 

(a six-vector star zonohedron) is a member of this family [see Figure 
10.83(c)]. Two other hexahedra shown in Figure 10.83(G) and (6) are 
also derived from these golden diamonds as are a dodecahedron (four-
vector star) and an icosahedron (five-vector star; not shown). 

The two adjacent face angles of the golden diamond a n equal, to the 
two and only two angles under 180 degrees which are subtended at its 
body center by arbitrary pairs of vertices of the regular icosahedron. 
Golden diamonds can be made with Steve Baer's icosahedral system of 
sticks and connectors (available from [Biocrystal]). 

Since they are zonohedra, each of the GIZ can be subdivided into the 
number of parallelepipeds given by Equation (10 J ) . In fact, each of 
the larger ones can be packed with the two golden hexahedra. For ex
ample, the dodecahedron can be subdivided into two of each kind of 
hexahedron while the triacontahedron can be packed with ten of each 
[see Figure 10.33(c)]. 

If a vertex of a triacontahedron packed with 20 golden hexahedra is 
truncated, the interesting pattern shown in Figure 10.84(a) is ob
tained [Lalvani, 1989], Compare this with an identical truncation of 

(a) (b) ( C ) 

FIgyre 10.33 Golden isozonohedra. (a, h) Two golden hexahedra; (c) rhombic triaconta
hedron with golden parallelepipeds inserted. 

^ j F 
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(a) 
Figure 10.34 (a) A rhombic triacontahedron filled with 20 golden hexahedra trun
cated at a vertex; (h) a computer-generated picture of a rhombic triacontahedron with 
160 self-intersecting hexahedra (6-cube) truncated at a vertex, 

the triacontahedron in Figure 10.34(6) and on the cover of this books 

packed with a full complement of 160 intersecting parallelepipeds pre
dicted by Equations (10.3) and (10.4) (the three-dimensional projection 
of the 6-cube). Observe the symmetry of the second in contrast to the 
asymmetry of the first. Lalvani suggests a method of generating other 
hypercubes that leads to a large family of zonohedra which transform 
from one to another. Consider two basic examples: since the vector 
star of the golden triacontahedron is formed from the six directions de
fined by vectors from the center of the icosahedron to its 12 vertices, 
why not create a 10-cube and 15-cube from the vectors in the direc-

Flgure 10.35 Two pairs of golden 
hexahedra forming a "left fist" 
and a "right fist" which result in 
nonperiodic tilings of three-
dimensional space. 
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Figure 10.36 (a) A tiling with Penrose rhombuses su
perimposed with (6) a three-dimensional nonperiodic 
tiling with left and right fists. 

tions of the icosahedron face centroids and edge bisectorSj respec
tively? What would their truncations look like [Lalvani, 1990; 1986]? 

Besides serving as the building blocks of some very interesting 
structures, these zonohedra may be useful in unlocking some of the 
mysteries behind quasicrystals (see Section 6.10). In fact, two mirror-
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image concave polyhedra are obtained by connecting the two different 
hexahedra across an arbitrary pair of faces. These polyhedra, shown 
in Figure 10.35, resemble the fists of a right and left hand. If the faces 
of these left- and right-handed units are properly color coded and 
numbered (see [Miyazaki and Takada, 1980]), they lead to nonperiodic 
tilings of three-dimensional space that are exact replicas of the two-
dimensional Penrose tilings (see Sections 5.11 and 6.10). Figure 10.36 
shows part of one such tiling that lies exactly over the corresponding 
Penrose tiling. Also, Lalvani's 6-cube, shown in Figure 10.31(6), can 
be visualized as a quasicrystalline lattice that is the intermediate 
state in a transformation between two crystalline states (simple cubic 
and fee lattices). 
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Chapter 

11 
Isometries and Mirrors 

7s looking glass milk good milk to drink'? 
LEWIS CARROLL 

Through the Looking Glass 

11.1 Introduction 

Euclidean geometry governs the world of everyday experience. In this 
geometry, the properties of figures do not change if the figures are 
moved to a new position with a different orientation or if they are 
viewed in a mirror. For example, a cube sitting on a table can be 
moved to another room without the size or shape of either the cube or 
the table being changed by this process. The class of transformations 
that govern rigid-body motions and reflections in a mirror are called 
isometries. Mathematically, isometries are defined to be transforma
tions that preserve distances between points. As a consequence of pre
serving distance, the size and shape of the object are also preserved. 

If you take a string lying on a table in the shape of a circle, pick it 
up, and throw it back onto the table, its length is unchanged; however, 
it probably won't be a circle any longer, i.e., its shape has changed. So 
this operation is not an isometry. If you take a photograph and en
large it, the shapes of the images in the photo are unchanged; how
ever, all sizes are now larger. Hence, this transformation is not an 
isometry. 

In this chapter we will first develop the mathematical concepts and 
language that will enable us to adequately describe transformations 
in general and isometries of the plane in particular and some of their 
properties. We will show that reflections play a fundamental role in 
describing isometries; in fact we shall show that any isometry of the 
plane can be carried out by reflections in no more than three mirrors. 
All this is preparation for the next chapter in which we shall show 
how symmetrical patterns that have decorated the structures and ar-
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tifacts of mankind since the dawn of civilization are connected with 
isometries. We begin this chapter with a discussion of mirrors, and we 
suggest some experiments involving them [Crowe, 1986]. 

11.2 Mirrors 

Mirrors present us with a world of strange and interesting illusions. 
Some animals never learn that mirror images are illusions and think 
that they are seeing another animal when they see themselves in a 
mirror [Gardner, 1964]. However, dogs and cats are more intelligent 
and lose interest with the mirror as soon as they realize that they are 
seeing a mere image of themselves. On the other hand, chimpanzees 
and young children find great satisfaction with the fact that, whereas 
the images they see in the mirror are themselves, there are certain 
subtle differences. They can spend hours exploring these differences. 
We would like you to go back in time and try to look again at mirrors 
with the curiosity of a young child. Martin Gardner, whose articles, 
books, mathematical games, and puzzles have entertained and in
trigued millions over the years, suggests several things to do; how
ever, you may add anything that you wish to this list. In response to 
each of these mirror experiments write a paragraph to describe what 
you see. 

Exercise 11.1 Look in a mirror and wink your right eye. What does your im
age do? 

Exercise 11.2 Write out the words of the following poem by looking at them in 
a mirror: 

eavoi xAills srll bns ,§illhd aswT 
ladfiw aril ni aldmig briB 9'iv§ biG , 

t89VO§o-iod 9ril 919// v^rnirn IIA 
.9dB-i§Juo adlBi amorn aril bnA 

Exercise 11.3 Place the following objects in various orientations before a mir
ror: a ball, a cube, an egg, a clock, a helical spring, a knot, your right hand, at 
least three other objects of your choosing. 

Exercise 11.4 Look at a painting in a mirror. Does anything look strange about 
the painting or is it the mirror image of an equally valid painting? 

Exercise 11.5 Take a pair of mirrors, as shown in Figure 11.1, and look at your 
face in the mirrors. Wink your left eye. What does your image do? How does 
your left hand look? Rotate the mirrors 90 degrees to each other. What do you 
see? 

Exercise 11.6 Take a curved metal sheet like the one in Figure 11.2 and look at 
your reflected image in the sheet. What do you see? Change the orientation of 
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/i 
/ 

% ) H 
Figure 11.1 An image seen in 
two mirrors. 

Figure 11.2 A curved mirror. 

the sheet. What do you see? Try looking at objects in mirrors with different cur
vatures and record your observations [Thomas, 1980]. 

Exercise 11.7 The following sum is wrong: 

2U-IU-

#33T//S73 
Look at the sum in a mirror and show that it is now correct. 

Exercise 11.8 Look at the names in Figure 11.3 in a mirror. Why is TIMOTHY 
not reversed? Which of the letters of the alphabet look the same when seen in a 
mirror? Which will not look the same no matter how you orient them? 

Exercise 11.9 Turn the example of Scott Kim's calligraphy in Figure 11.4 up
side down. His book shows many other astounding examples [Kim, 1981]. 

R 
E 
B 
E 
C 
C 
A 

Figure 11.3 Why is TIMOTHY 
unaffected by a mirror while 
REBECCA is altered? 
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jTUiitlvQatfjclnir 
Figure 11.4 An example of the symmetric calligraphy of Scott Kim. 

Exercise 11.10 Why does an ordinary mirror appear to reverse right and left 
but not up and down? 

When we look in a mirror and wink our right eye, we see our image 
wink its left eye so we say that mirrors reverse left and right. Actu
ally, the mirror does not reverse left and right since it is really the eye 
on the right side of the mirror that winks when we wink our right eye. 
In fact it is front and back which the mirror reverses. We imagine that 
we can walk behind the mirror wherein the person in the mirror ap
pears to have his or her left-right orientation reversed. Likewise, an 
asymmetric object such as a left glove becomes a right glove in the 
mirror in the sense that if the left glove were carried around to the 
other side of the mirror, it would not match up with its image, 
whereas a right glove would. Is there any way that a left glove can be 
turned into a right glove so as to match up with its mirror image? 
Strangely enough the answer is yes; however, the explanation is wor
thy of a science fiction story rather than a mathematics book and will 
be deferred to Section 11.9. 

Physicists are particularly fond of symmetry. Recently, it was dis
covered that for every elementary particle there exists a mirror image 
particle (although it is not a strictly geometric mirror image). For ex
ample, corresponding to an electron there exists a positron with the 
same size but with opposite charge. Corresponding to protons there 
are antiprotons and for neutrons there are antineutrons. It has even 
been conjectured that there are mirror images of all forms of matter, 
known as antimatter. It is also thought that when these two mirror 
image forms of matter combine, they disintegrate with a large explo
sion which would seem to place Alice's "looking glass milk" in jeop
ardy. 

11.3 Sets 

Sets were introduced in Section 4.2 where they were defined as collec
tions of objects along with rules enabling one to decide whether or not 
a given object belongs or does not belong to a particular set. The ob
jects in a set are called its elements, or members. Two sets are equal if 
they have the same members. 
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If the set has finitely many (and not too many) members, we can 
display them. For example, {1,2,3,4,5} is the set consisting of the in
tegers 1, 2, 3, 4, and 5. Even if a set is infinite, we can represent it 
by a display of this type if its elements fall into a sequential pat
tern; for example, {2,4,6,8,...} represents the set of positive even 
numbers. There is a convenient brace notation tha t can be used for 
any set, namely, A = {a \ P(a)}. Here | stands for "such tha t " and 
P(a) is the rule of set membership. A is the set of all objects such 
tha t P(a) is t rue . For example, E - {x | x is a positive and even 
number} = {2,4,6,8,...} while {x\x is a real number and x2 = 1} = {1, 

We use captial letters for sets and lowercase for the members of a 
set. If an object x is a member of a set A, we write x E A. The symbol 
£ stands for "belongs to." If y does not belong to A, we denote this by 
y $ A. For example, in the set of positive even numbers, 2 E E but 
1 $E. 

It x E A =5> x £ B (where => denotes implies), we write A C B and 
say set A is contained in or is a subset of set B. 

11.4 Mappings 

A mapping is a rule of correspondence from one set to another. Archi
tects use mappings in drawing plans, constructing models, drawing 
pictures of buildings, and in many other ways. 

Definition 11.1 A mapping (or map) consists of a pair of sets A and B and a rule 
of correspondence which associates each element of A to one and only one ele
ment of B. It is usually denoted by 

M:A^>B or A -• B 

where M can be thought of as the rule of correspondence. A is called the domain 
and B the codomaih or range of the mapping. 

We often denote the mapping M: A -> B by M alone. If M associ
ates a G A with b G B, we call b the image of a or value of M at a 
and write M(a) = b or simply Ma = b. By definition, a mapping has 
the property tha t Ma = b for a unique b E B. Thus Ma = b and 
Ma = c cannot both be t rue if b * c. Pictorially, M: A -» B is repre
sented by a set of arrows from A to B; one for each element a G A as 
shown as Figure 11.5. 

Also, if M: A -» B is a mapping and C C A , the image of C (under M) 
is defined by M(C) = {Mix) \ x E Q. See Figure 11.5. 

The mathematical definition of a mapping is highly abstract, but it 
can be simply illustrated by placing two collections of objects in two 
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cups, one labeled A and the other labeled B. For example, sets A and 
B might consist of 

A = {pen, key, dime, chalk} 

B = {nickel, quarter, eraser, handkerchief} 

For convenience we use the abbreviations/? = pen, k = key, d = dime, 
c = chalk, n = nickel, q - quarter, e = eraser, h = handkerchief. 

The mapping Mx : A—* B is represented by emptying the objects 
from sets A and B onto the table. To each object of A we associate a 
unique element of B. For example, to the pen we associate the quarter 
which we set beside it. To the key we associate the nickel, to the dime 
we also associate the nickel, and to the chalk we associate the hand
kerchief. These associations are depicted schematically in Figure 11.6. 
Notice that while every element from set A is mapped to a unique el
ement in set B, one element in set B, the nickel, is associated with (or 
mapped from) two elements in set A, the key and the dime, while an
other element of B, the eraser, is not associated with any element of A. 
With the above notation this mapping can be represented by 

Mxp = q Mxk = n Mxd = n M±c = h 

It is thought that numbers originated from the need to keep track of 
such possessions as animals killed in the hunt or cattle out to pasture. 
At first, a stone was associated with each animal to be kept track of. 
Later the stones were replaced by counting numbers which served the 

Figure 11.6 (a) A many to one map. 
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same purpose. The key to this procedure was a special mapping of an
imals to numbers. Such a mapping is an example of a one-to-one map
ping. 

Definition 11.2 A mapping M: A-*B is said to be one to one if for each 
b £ M(A) there is a unique a E A such that Ma = b. 

Thus, mapping M1 in Figure 11.6 is not one to one. In order to be one 
to one, arrows from different points in A cannot lead to the same point 
of B. For example, if c? is associated with e instead of n, the resulting 
mapping, M2, 

M2p = q M2k = n M2d = e M2c = h 

is one to one and is illustrated in Figure 11.7. 
Since each element of B is mapped from some element of A, we say 

that M2 is an onto map in contrast to Mx which is not onto since e has 
no element of A to which it is associated. 

If M : A -> B is both one to one and onto, we say it is a bijection or 
one-to-one, onto correspondence. We shall use the word transformation 
to denote a bijection M:A-*A, where domain and range are the same 
sets. 

If M is a one-to-one, onto mapping (bijection), it induces another 
mapping M'1: B —> A defined as follows: 

x = M'1 (y) if and only if (o)M(x) = y 

The mapping M _ 1 is called the inverse of M. Pictorially it is repre
sented by reversing all the arrows in Figure 11.7. Note that for the 
inverse to exist, M must be onto so that Mix) = y has a solution x for 
each y £ B, and it must also be one to one so that the solution is 
unique. 

Example 11.1 Given any set A, the identity map I-.A-* A where / is defined by 
1(a) = a, for all a £ A is a transformation of A -» A. 

By the definition of the inverse map, we see that any element of A is 
mapped to itself, (i.e., is an identity transformation), by first trans-

M2 u[ 

A B 
Figure 11.7 A one-to-one mapping. 
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forming it with M and then transforming the result of this mapping by 
M _ 1 . This is also true if the transformations are carried out in the re
verse order. In other words, 

M'\M(x)) = x = M(M-\x)) or M ^ M = 7 = MM'1 

for all x in either domain or range of M. The parentheses have been 
omitted in the second expression and the product of two transforma
tions denoted by BA means "first carry out mapping A on an element, 
then carry out B on the result." 

The remainder of this chapter is devoted to a discussion of the im
portant class of transformations known as isometries of the plane 
which, as we described at the beginning of this chapter, transform sets 
of points in the the plane in such a way that distance between pairs of 
points is preserved. We will rely on the following two important the
orems (given without proof) [Martin, 1982]: 

Theorem 11.1 If a set of points in the plane is transformed by an isometry to 
another set of points in the plane, the transformation is either a translation, ro
tation, reflection, glide reflection, or the identity. 

Theorem 11.2 The product of two isometries is another isometry. 

The remainder of the chapter is devoted to describing these four ba
sic isometries—translation, rotation, reflection, and glide reflection— 
and their properties. 

11.5 Translations 

Translations are familiar to us as the transformations that preserve 
the lattices in Section 6.7. A translation T of points in the plane is de
fined by specifying a vector v of translation. Points in the plane are 
transformed by translation when a typical image pointp' is located at 
the tip of the vector whenever the object point p has its position at the 
tail of the vector as shown in Figure 11.8. If another point q is trans
formed to q', the distance d between object and image points is pre
served as must be true for all isometries, i.e., d\p,q} = d\p',q'}. Also, it 
is clear that no point is mapped to itself under a translation; in other 
words, there are no fixed points under translation. 

p v 

Figure 11.8 Translation of a figure in the plane. 
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'«£!& 

(?&? 

Figure 11.9 Multiple translations. Kala nut box, Nigeria. 

The translation is denoted, in the notation of Section 11.4, by T: 
p^>p' or by Tp =p'. Since transformations are one to one onto 
mappings, according to Section 11.4, they have well-defined inverses. 
Thus there exists another translation, 71-1, with the property that 
T~xp' = p and therefore T~xTp = p for all p. Also TT'^p' = p' or 
T~XT = I = TT'1 where 7 stands for the identity transformation. 
From Figure 11.8, it is clear that the inverse translation T'1 is de
fined by the vector - v directed opposite from v. 

A geometric pattern or motif and its translations are illustrated in 
Figure 11.9. If the motif is transformed by products of the translation 
T and its inverses, 

rp-S rp-2 rp-l j rp rp2 rp 3 

the result is a linear train of reproductions of this set. 

11.6 Rotations 

A rotation S of points in the plane is defined by specifying the cen
ter of rotation 0, the angle of rotation 6, and whether the rotation is 
clockwise or counterclockwise, with counterclockwise rotations be
ing denoted by positive angles while clockwise rotations are de
noted by negative angles. Figure 11.10 shows the result of rotating 
a typical pair of points p,q to image points p',q' counterclockwise 
through angle 6 about the center O. Once again, distance is pre
served by the rotation, i.e., d{p,q) = d\p'q'}. Also, 0 is the only fixed 
point of the rotation. 

°tf 

£\ %.. 
Figure 11.10 Rotation of a figure in the plane. 
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Figure 11.11 Multiple rotations. 

In the notation of transformations, 

S:p -*p' or Sp = p' 

and the inverse rotation maps 

S-y=p or S-1S = I = SS~l 

Such an inverse rotation must be the rotation about O through the 
same angle as S but in an opposite sense. 

A geometric pattern or motif is transformed in Figure 11.11 by a 
sequence of rotations and inverse rotations: 

/ . S . S 2 , . . . ^ " - 1 

where Sn = I and Sn~k = S~k to obtain a repeating circular pattern. 

11.7 Reflections 

A mirror of infinite length placed perpendicular to the plane defines a 
reflection R of the points of the plane in the mirror. The trace of the 
mirror on the plane is called a mirror line M, and the image p' of a 
typical point p lies on the perpendicular line to the mirror that con
tains p, the same distance d from the mirror asp but on the opposite 
side as shown in Figure 11.12. Again, distances between any pair of 

Figure 11.12 Reflection of a fig
ure in the plane. 

p 
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points p,q and their images p',q' are preserved, i.e., d{p,q) = d\p',q'}. 
All the points on the mirror line are fixed points of the reflection. 

The transformation is denoted by 

R :p -»p' or Rp = p' 

and the inverse transformation is clearly identical to R, i.e., R'1 = R 
since the reflection of a reflection maps any point to itself, i.e., RR = I. 

In Figure 11.12, a set of points is mapped by the reflection to the image 
set on the opposite side of the mirror. Notice that the reflection reverses 
the direction of the boundary curve which appears counterclockwise on 
the object curve but clockwise on the corresponding image curve. 

11.8 Glide Reflection 

The glide reflection G is the least familiar of the isometries. One way 
of thinking about it is as a combination of a translation and a reflec
tion. It too is defined by an axis of glide M, together with a vector v 
parallel to M. A typical point p is glide reflected to its image p' by 
translating it through vector v top" and then reflectingp" in the glide 
axis M top' as shown in Figure 11.13. It is easy to see that the axis of 
glide reflection bisects the line between any point and its image. 

As was true for translations, a glide reflection has no fixed points 
under G, and as we saw for reflections, the sense of the boundary 
curves of geometric figures are reversed under G. Also, the inverse 
glide reflection has the same glide axis as G, but the translation is in 
the opposite direction - v . It is also evident that the product of two 
glide reflections, i.e., a glide reflection of a point followed by another 
glide reflectlion of the image point, is a translation through 2 v. 

A pattern formed by subjecting a motif to a sequence of glides and 
their inverses is shown in Figure 11.14. 

...G\G~\I,G,G\... 

As you see, glide reflections nicely describe the pattern of footprints in 
the snow. Figure 11.15 shows a more interesting pattern constructed 
from glide reflection of a motif. 

\ ^ - - w 
f-M 

Figure 11.13 Glide reflection of a figure in the 
plane 
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Figure 11.14 Footprints along a line have a glide reflection symmetry. 

r T u n i m n i i i i r i T i T i i i i i i i r t n t H T H t T t t i i i T T i i i 
Figure 11.15 Multiple glide reflections. 

11.9 Proper and Improper Transformations 

E. A. Abbott's fable, Flatland [1952], is about how strange three-
dimensional space would seem to creatures accustomed to living in a 
two-dimensional world. His creatures are all two-dimensional and re
side in the plane. Each resembles the other [depicted in Figure 
11.16(a)], with mouths on the right side of their faces and geometri
cally congruent. Each of these creatures can move in the plane with a 
rigid-body motion so that they match up with any of the others. One 
day a stranger moves into Flatland. Nothing like this individual has 
ever before been seen. As Figure 11.16(6) illustrates, his mouth is on 
the left side of his face although all other features appear normal. Try 
as they might, no creature from Flatland can match himself up with 
the stranger. That is, not until someone with the intuition of a 
Flatland's Einstein recognizes that by lifting the stranger out of the 
plane which comprises Flatland's universe, turning him over in an un
known higher-dimensional space (three-dimensional space), and re
placing him, a match up can be achieved. 

k 
(a) ( b ) 

Figure 11.16 Three Flatland creatures encountering an alien. 



Isometries and Mirrors 395 

Although all the Flatland creatures and the stranger are congruent 
by the standards of euclidean geometry, there is obviously something 
different about the two classes of images. Match ups between pairs of 
Flatlanders or pairs of strangers can be achieved by rigid-body move
ments (isometries) entirely in the plane; they are directly congruent, 
whereas superimposing a Flatlander over the stranger, or the oppo
site, requires a rigid motion out of the two-dimensional space that 
comprises Flatland: They are enantiomorphic (see Section 2.2). 

The preceding discussion indicates why it is useful to subdivide 
isometries into two categories: proper isometries P which transform 
geometric figures by rigid-body motions entirely within the plane and 
improper isometries / which can be only carried out by rigid-body 
movements that remove the figure from the plane. Rotations and 
translations are examples of proper isometries while reflections and 
glide reflections are improper. 

A little thought on this matter will lead you to the conclusion that 
the composite transformation of a proper transformation P followed by 
another proper transformation results in a proper transformation, i.e., 
PP = P. Likewise, 

PI = I = IP and II = P (11.1) 

where improper isometries are denoted by J. This is analogous to the 
situation in which even and odd numbers are added together: 

E + E = E E+0=0=0+E 0+0=E 

where E stands for even and O stands for odd numbers. For this rea
son proper isometries are sometimes called even while improper 
isometries are referred to as odd. 

A similar situation exists for isometries in three-dimensional space. 
Translations and rotations have the effect of transforming figures by 
rigid-body motions in three-dimensional space. Reflections and glide 
reflections require the figure to be moved into a higher-dimensional 
space (this time four-dimensional space), turned over, and then re
placed in three-dimensional space. In the same way a left glove can 
become a right glove if it is removed from three-dimensional space, in
verted in a world of four dimensions, and returned to our three-
dimensional world [Rucker, 1989], [Banchoff]. 

11.10 Isometries and Mirrors 

Mirrors are objects of great fascination and have many nonintuitive 
properties as we showed in Section 11.2. They are also very much con
nected to the idea of symmetry. In fact, in Section 7.13.3, we men
tioned that the reflection symmetry of a figure can be detected with 
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the help of a mirror. The relation between mirrors and symmetry will 
be discussed in greater detail in the next chapter. In preparation for 
this discussion, we investigate the mathematics behind transforma
tions of points by reflection in a mirror. We again limit ourselves to 
reflections in the plane, for which a mirror is represented by a line in 
the plane. We describe the transformations that result from points re
flected first in a single mirror, then in two mirrors either intersecting 
or parallel to each other, and finally in three mirrors. It will turn out 
that no more than three mirrors are needed to generate any isometry. 
Before proceeding, we recommend that you carry out Exercise 11.11. 

Exercise 11.11 [Martin, 1982] The materials needed are a pencil and at least 
three sheets of waxed paper, each sheet about 30 centimeters square. A ruler 
and a protractor might also help. The first sheet of waxed paper is used to in
troduce the technique of using waxed paper to illustrate reflection. Fold the 
sheet in half. The crease represents the mirror line M. It is obvious how to find 
the image p' of any point p. We merely fold the sheet on M, trace the point p 
with the pencil (from either side of the sheet), unfold the sheet, and label the 
new point p'. Find the images of the integers 5, 6, 7 and the line N shown in 
Figure 11.17(a). You should get a result that looks like Figure 11.17(6). 

Now trace the image of the image of 5, 6, and 7 under reflection in the line N. 
As Martin points out, this is not as easy to do as it sounds, and you should not be 
impatient with yourself when you find you have traced a wrong figure. Now ask 
yourself, "What do I conjecture is the result of first reflecting in line M and then 
in line NT' The protractor can be useful here in helping you make your conjec
ture. If you feel challenged, you might also carry out this experiment for triple 
reflections in three mirror lines that meet at a common point: reflect under M, 
then N, then L. Make another conjecture. Finally, try tracing the images of 
points under reflections in lines M and then N when these lines are parallel. Try 
reflections in three mirror lines M, then N, then L. What result do you get? Note 
that parallel lines can be constructed as those lines perpendicular to a given line 
U. When the paper is folded two or more times in such a way that U coincides 
with itself, the fold lines must be parallel. 

Let ' s see how y o u r conjectures b e a r u p u n d e r t h e following an a ly s i s 
[Baglivo a n d Graver , 1983]. 

(a) (b) 
Figure 11.17 Figures reflected in mirror 
line M. 
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11.10.1 Reflection in a single mirror 

Consider a mirror M and a point p located a distance d from M as 
shown in Figure 11.12. The transformed point p' is located distance d 
on the other side of the mirror. 

Rule 1 A mirror M is always the perpendicular bisector of the line between a 
point and its reflected image. 

If we use the letter R to stand for a reflection in mirror M, RR de
notes a reflection followed by a reflection. Since a reflection followed 
by a reflection leaves all points p in the plane unchanged, we can 
write as we did in Section 11.7: 

RR = I or R = R-1 

where / stands for the identity transformation. 

11.10.2 Reflection in two mirrors 

Consider mirrors Mx and M2 (assumed to be of infinite length). A re
flection in M1 followed by a reflection of the result in M2, i.e., R2Ri, by 
Theorem 11.2 is clearly an isometry. Since both Rx and R2 are im
proper transformations, according to Section 11.9, their product must 
be proper, i.e., either a rotation or a translation. But if the mirrors in
tersect, say at point 0, then O must be a fixed point of R2R\ (why?). In 
this case, using Theorems 11.1 and 11.2, the product of the two reflec
tions must be a rotation S since translations have no fixed points. On 
the other hand, if the two mirrors are parallel, the product of the re
flections has no fixed point (why?) and the resulting proper isometry 
must be a translation. Let's now consider the geometry of these two 
cases in a little more detail. 

Intersecting mirrors. Let's say mirrors Mx and M 2 intersect with angle 
0 at 0 and consider an arbitrary point p in the plane. Reflect p first in 
M1 to p", then in M 2 to p' as shown in Figure 11.18(a). Notice that 
Op' = Op (why?). Can you prove that angle pOp' = 26? (Do this!) 

Let's now reflect p first in M 2 and then in Mx. Again, Op' = Op and 
angle pOp' = -26 . (Prove this!) We can therefore state the following 
rule: 

Rule 2 If any point in the plane is reflected successively in two intersecting 
mirrors, the transformed point is rotated about the point of intersection by twice 
the angle between the mirrors and with the same sense as the angle between 
the first and second mirror. 
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(b) 

Figure 11.18 (a) Multiple reflection of a point in two intersecting mir
rors produces a rotation; (6) the reflection is unaffected by the posi
tioning of the mirror pairs. 

If we use R1 and R2 to stand for reflections in mirror Mx and M2, 
respectively, and S for the rotation that results from successive reflec
tions, rule 2 can be stated algebraically as 

S = R2R, and S"1 = R,R2 (11.2) 

where S _ 1 is, according to Section 11.6, a rotation with the same angle 
but opposite sense as S. 

Remark 1 Without proof we state that any two mirrors intersecting with angle 
8 at point O will have the same effect upon an arbitrary point of the plane re
gardless of the orientation of the mirrors. Thus, the pair of mirrors Mx ' and M2 ' 
of Figure 11.18(6) will have the same effect on point p as Mx and M2; namely, 
they will transformp top'. (Prove this!) 

Parallel mirrors. Now let's consider two parallel mirrors, Mx and M2, a 
distance L apart. Ifp is reflected first in Mx to get p" and thenp" is 
reflected in M2 to get p', the result of this multiple reflection is to 
translatep top ' by an amount 2L as Figure 11.19(a) shows. Likewise 
a reflection first in M2 and then in Afx translatesp top ' by an amount 
2L in the opposite direction. Thus we can state rule 3. 

Ml 

, C . 

M2 

—#— 
2L 

MS 

Figure 11.19 (a) Multiple reflections of a point in two parallel mirrors 
produces a translation; (b) the reflection is unaffected by the positioning 
of the mirror pairs. 
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Rule 3 Consecutive reflections in two parallel mirrors translate a point to its 
image point by an amount twice the distance between the mirrors in a direction 
from the first mirror to the.second mirror. 

If Rx and R2 stand for reflections in Mx and M 2 and T refers to the 
translation corresponding to the multiple reflection, in accordance 
with Section 11.4, we can summarize rule 3 algebraically as follows: 

T — R2R^ and - T - l _ RJH2 

Remark 2 If two parallel mirrors a distance L apart are oriented the same as 
Mx and M2 and placed anywhere, they have the same effect on points of the 
plane, i.e., they result in a translation T through twice the distance between the 
mirrors. For example, if the mirrors are placed so that M1 is located on point p 
in Figure 11.19(6), it is directly evident thatp' is translated a distance 2L in the 
direction from Mr to M2. 

11.10.3 Reflections in three mirrors 

Since reflections are odd transformations, according to Section 11.9, 
three consecutive transformations result in another odd transforma
tion, i.e., a reflection or a glide reflection. 

Now let's look at the different ways in which three mirrors can be 
oriented relative to each other. There are five distinct ways, and they 
are shown in Figure 11.20. (1) The mirrors can all intersect at a point, 
(2) they can all be parallel, (3) two can be parallel with the third per
pendicular to them, (4) two can be parallel with the third cutting them 
obliquely, or (5) they can intersect each other but not all at the same 
point. 

It might seem tedious to analyze each of these five cases. However, 
the first two cases have already been considered by rules 1,2, and 3. 
The fact that we are now dealing with three mirrors presents no new 
problems. 

Problem 11.1 Successive reflections in three mirrors intersecting at a point O 
are equivalent to a single reflection in a mirror through O. Where is the equiv
alent mirror located? In a similar vein, where is the equivalent mirror to three 
parallel mirrors located? 

l a ) (b) ( c ) (d) ( e ) 

Figure 11.20 Five ways in which three mirrors can intersect. 
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Let's consider case (3). A point/* is reflected first in parallel mirrors 
Mx and M2 a distance L apart and then in the mirror M3 perpendicular 
to Mx and M2. The result of the first two reflections is to translate a 
typical point p through a distance 2L from Mx to M2 to p" followed by 
a reflection in M3 to p'. It is evident from Section 11.8 that such a 
transformation is a glide reflection and that M3 is the axis of the glide 
reflection. 

We are now ready to analyze case (4) illustrated in Figure 11.20(d). 
We shall show that it is also a glide reflection by reducing it to case 
(3). The succession of reflections in Mlt M2, and then M3 can be 
thought of first as a reflection of p in Mx to p" and then a rotation 
about 0 in Figure 11.21(a) through twice the angle between M2 and 
M3 top', i.e., R3R2R1 = (R3R2)R1 = S R±. Although this is fine, it is 
not evident that this transformation is a glide reflection, and we are 
left in the dark as to where the glide axis is located. 

We can reapproach this transformation by using the fact that the 
effect of successive reflections in M2 and M3 does not depend on how 
these mirrors are oriented about O (see Remark 1 above). For exam
ple, M2 and M3 have been rotated about O until M2' is perpendicular 
to Mt as shown in Figure 11.21(6). Likewise, Mx and M2' are rotated 
about O' until M2" is perpendicular to M3' as shown in Figure 11.21(c). 
This reduces case (4) to case (3) where M2" is the axis of the glide re
flection. 

By a similar argument, case (5) can also be reduced to case (3). We 
leave this to the reader. 

11.10.4 A major theorem about isometries 

We have described how reflections in one, two, or three mirrors give 
rise to all the isometries of the plane, namely, reflections, rotations, 
translations, and glide reflections. Now we summarize all the results 
of this section by an interesting theorem. 

Theorem 11.3 Any isometry of the plane can be carried out by a series of no 
more than three reflections. (In other words, any two congruent geometric fig-

l a ) f\ (c) 
(b) 

Figure 11.21 (a) Multiple reflections in three mirrors produces a 
glide reflection; (b), (c) geometric construction of the glide line. 
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ures can be made to coincide by subjecting one of them to a sequence of no more 
than three reflections.) 

proof It is sufficient to match up the two congruent triangles ABC and A'B'C 
shown in Figure 11.22. The procedure is as follows: 

1. Choose two corresponding vertices, for example A and A', and find the per
pendicular bisector Afx of AA'. 

2. Reflect triangle ABC in a mirror at M1 to triangle A'B-fi^. 
3. Reflect triangle A'B1C1 in the perpendicular bisector M2 of two other corre

sponding vertices, say B' and Bx to triangle A'B'C2-
4. Reflect triangle A'B'C2 to triangle A'B'C in a mirror Ma placed onA'B'. 

Figure 11.22 A triangle can be transformed to a congruent 
copy by no more than three reflections. 
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11.11 Some Reflection Exercises 

Any pair of points p,q can be transformed to any other pair p',q' by 
both an even and an odd isometry using some combination of mirrors. 
The location of the mirrors can be found by a geometric construction 
using compass or dividers and a straightedge. 

Example 11.2 [Baglivo and Graver, 1983] The four points p, q, p', q', where d 
(p,q) = d(p',q'), are located at the vertices of the parallelogram in Figure 11.23. 
Sincep,q translate top',q', the two mirrors needed to carry out this even isometry 
can be placed a t p and at the midpoint ofpp' and oriented perpendicular topp'. 

The odd isometry transformingp,q top',q' could in theory be either a simple 
reflection or a glide reflection. However, it can't be a simple reflection since the 
perpendicular bisector of pp' is not, in general, the perpendicular bisector of qq', 
so the odd isometry must be a glide reflection. As we saw in Section 11.8, the 
axis of the glide reflection is located at the line joining the bisectors ofpp' and 
qq'. The other two mirrors that generate this glide reflection are perpendicular 
to the glide axis and intersect this axis at A a n d S as shown in Figure 11.23(6). 
A is the point where the perpendicular line through p to the glide axis intersects 
this axis while B is the midpoint of AC where C is the point on the glide axis 
where the perpendicular throughp' intersects the glide axis. 

Example 11.3 Here q and q' are identical points in Figure 11.23(c), labeled O, 
whilep andp ' are equidistant from q,q'. It is obvious that the proper isometry is 
a rotation about 0. The two mirror lines that carry out this rotation are line Op 
and the angle bisector of angle pOp'. The odd isometry is the reflection gener
ated by the mirror line through O that bisects angle pOp'. 

Problem 11.2 With compass and straightedge, construct the mirror lines that 
transform the pairp,g top',q' which are illustrated in Figure 11.24 by both odd 

(b ) ( c ) 

Figure 11.23 P,q can be transformed to p',q' 
by an even and odd isometry. 

i »q 
•q 

P Figure 11.24 Find a rotation and 
# , glide reflection that maps p,q to 

p p',q'-
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(a glide reflection) and even (a rotation) isometries. The trick to finding the ro
tation is to first locate its center. 

11.12 Some Additional Relations 
Involving Isometries 

11.12.1 Half-turns 

Among rotations, half-turns H deserve special attention. In the next 
chapter they will play a special role along with reflections in describ
ing symmetric patterns along a line. First of all, they are generated, 
according to Section 11.10.2, by two perpendicular mirrors. 

Next, a pair of half-turns generate a translation. For example, let 
HA and HB be half-turns about points A and B, respectively. If a typ
ical point in the plane is transformed by a half-turn about A and the 
result is then transformed by another half-turn about B, the product 
of these transformations has the effect of translating any point in the 
plane in a direction from AtoB through a distance twice the distance 
from A to B, i.e., HBHA = T. Satisfy yourself that this is true by choos
ing A and B to be any two points in the plane and transforming an 
arbitrary point p by successive half-turns about A and B. 

Now carry out a sequence of three consecutive half-turns through 
points A, B, C not all lying on the same line. Show by experimentation 
that this has the same effect on a typical point p as rotating p through 
a half-turn about D, the fourth point on the parallelogram defined by 
A, B, and C. 

11.12.2 Products of rotations in general 

If consecutive rotations are carried out about point O through an an
gle 0 followed by angle <p, and the result is clearly a composite rotation 
about O through angle 6 + <p, and the result is the same regardless of 
the order in which the rotations are carried out. 

Let's see what happens if the successive rotations are carried out 
about two different centers [Martin, 1982]. If any product of rotations 
is carried out consecutively about A through angle 6 and about B 
through angle cp, the result is a rotation through angle 0 + cp about a 
third point C. The location of C is easily determined by looking at Fig
ure 11.25(a). Mirrors a and c generate the rotation S6rA about A while 
c and b generate the rotation S^ B about B. C lies at the intersection of 
a and b and corresponds to the rotation <Se+ipC about C. This follows 
from 

SV,BSO,A = RbR-cRcRa ~ Rb^a = "Se + <p,C 

Check this result by constructing an example illustrating it. Show 
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Figure 11.25 Multiple rotations about points A and B produce (a) a rotation about a 
third point C; (6) a translation when 9 + cp = 360 degrees. 

that the result is affected by the order in which the rotations are car
ried out. If 6 + <p = 360 degrees, it can be shown that the product of 
rotations results in a translation. 

Many additional relationships between isometries are described in 
Transformation Geometry by G. E. Martin [1982]. These relationships 
are often surprising and make excellent use of the concepts of 
euclidean geometry. 
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12 
Symmetry of the Plane 

Tyger! Tyger! burning bright 
In the forests of the night, 
What immortal hand or eye 
Could frame thy fearful symmetry? 

WILLIAM BLAKE 

12.1 Introduction 

To begin this book we questioned whether the beauty of a work of ar t 
or architecture is due entirely to the craft of the designer or is intrin
sic to its geometry. This book has tried to show that beautiful designs 
must both exhibit a free flow of creative energy from the designer to 
the work and obey the invisible hand restraining design due to the 
geometric constraints of space. More often than not, the designer is 
not conscious of these constraints; however, the success of a design de
pends to a large degree on how well the artist is attuned to the prob
lems and possibilities presented by these constraints. Nowhere is this 
tension between artists and their art more evident than with regard to 
the issue of symmetry. 

Symmetry is a concept that has inspired the creative works of art
ists and scientists; it is the common root of artistic and scientific en
deavor. To an artist or architect symmetry conjures up feelings of or
der, balance, harmony, and an organic relation between the whole and 
its parts. On the other hand, making these notions useful to a math
ematician or scientist requires a precise definition. Although such a 
definition may make the idea of symmetry seem less flexible than the 
artist's intuitive feeling of it, that precision can actually help design
ers unravel the complexities of a design and see greater possibilities 
for symmetry in their own work. It can also lead to practical tech
niques for generating patterns. 

The object of this chapter is to study several kinds of two-
dimensional symmetries: bilateral, point, line or frieze, planar or 
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wallpaper, and similarity symmetry. We will lay the mathematical 
foundation for the subject of symmetry and give some ideas of how to 
classify and generate symmetry patterns. This chapter is meant to 
serve as an introduction to several excellent books and articles that 
have been written on this subject [Shubnikov and Koptsik, 1974], 
[Martin, 1982], [Loeb, 1971], [Hargittai, 1986; 1987; 1988]. We begin 
with some introductory exercises. 

The study of symmetry begins with observations of our own bodies. 
We share with all land animals the property of having approximate 
bilateral symmetry (see Figure 12.1). Since the force of gravity, in ex
erting a force upon us toward the center of the earth, distinguishes 
between up and down but not between left and right, the bodies of 
land animals are externally differentiated from head to feet but are 
symmetric from left to right. In other words, as Martin Gardner has 
described in his book by the same name, we live in an ambidextrous 
universe [1964]. 

Exercise 12.1 Your face appears to be symmetric. Let's see how symmetric it is. 
Place a mirror along the line of symmetry that divides the left side of a photo
graph of a human face from the right side and see whether the exposed portion 
of the face and its mirror image combine to give a realistic or distorted image of 
the entire face. 

Symmetry around a point is familiar in patterns observed in the 
central spaces of buildings and in patterns such as the one in Figure 
12.2. It is also the kind of symmetry that you see when you look into a 
kaleidoscope, which is why these patterns are sometimes called kalei
doscope symmetries. 

Exercise 12.2 Place one corner of a small rectangular mirror at point O in Fig
ure 12.3 and place the edge of the mirror on line Mv Now place the corner of a 
second mirror at O and vary its angle with respect to Mx until the image of the 
curve between the two mirrors repeats in the mirrors. You will notice that this 
occurs for a discrete set of angles. What are they? 

Exercise 12.3 To discover how a kaleidoscope works, place two small rectan
gular mirrors perpendicular to a protractor and open them to a sequence of 
angles, 180/n degrees. Place a colored sequin between the mirrors and note 
the number of sequin images (including the original) that appear in the mir
rors as a function of the angle of intersection between the mirrors. Record 
this information in a table. Also create a pattern from several sequins and 
look at the complete pattern that is generated by the two mirrors at each an
gle in the sequence. 

All snowflakes exhibit hexagonal symmetry as illustrated by the 
pattern shown Figure 12.4. [Bentley and Humphreys, 1962]. In the 
next exercise, we invite you to create your own snowflake patterns. 
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Figure 12.1 Bilateral symmetry 
in a Senufo wooden mask, Ivory 
Coast/Mali/Upper Volta. 

Figure 12.2 Circular symmetry 
pattern. 
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View 

Figure 12.3 Place a smooth curve between two mirrors and move one mirror until a con
tinuous curve is produced. 

Figure 12.4 Snowflake pattern. 

Exercise 12.4 Fold a piece of construction paper in half. Draw a line oblique to 
the fold of the paper at an angle of 180 / n degrees. Fold along this line. Next, cut 
away the excess paper (the portion of the paper not doubled up). Refold along the 
original fold, and again cut away the excess paper. Continue this process of fold
ing and cutting until there is no longer any excess paper. Next, fold the result
ing figure into a multilayered triangle and cut a pattern or motif into the tri
angle. Unfold to get a snowflake pattern around the central point consisting of 
several rotations and reflected images of your motif that are similar to an actual 
snowflake. Can you devise a way of creating snowflake patterns with rotations 
but no reflections of your motif? 

12.2 The Mathematics of Symmetry 

According to the examples of the last section, symmetry can be con
sidered to be the ordered repetition of a basic pattern. The left half of 
the mask in Figure 12.1 is replicated by reflecting it onto the right 
half while one-sixth of the snowflake in Figure 12.4 is repeated in ro
tated and reflected positions to form the whole snowflake. 
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The mathematical definition of symmetry that we shall now present 
makes the notion of ordered repetition precise. If you do not wish to 
ponder the mathematical technicalities of this and the next two sec
tions on your first reading, you can skip to Section 12.5 and return to 
these sections as needed. 

Let A be a subset of the line L, plane P, or three-dimensional space 
S. A symmetry of A is any similarity T that leaves A invariant al
though the individual elements of A may be transformed; i.e., 
T:A -> A or T(A) = A. (Note that this does not mean that individual 
points are invariant.) In most cases every similarity leaving A invari
ant turns out to be an isometry. For this reason, we prefer to use the 
following restricted definition for all but the last section of this chap
ter. 

Definition 12.1 Let X = L, P, or S, and let A C X. A symmetry of A is an isom
etry TX —> X which leaves A invariant. The set 

Symm(A) = {T \ T : X -> X is an isometry, and T(A) = A} 

is called the symmetry group of A. If this group contains only the identity trans
formation I, A is said to have no symmetry. Why we use the word "group" will 
be explained shortly. 

There is a natural product on Symm(A) which is defined by the com
position of mappings (see Section 11.2). If Tlt T2 G Symm(A), the prod
uct T2TX is just the result of operating on points first with T1 and then 
following it by T2. Suppose Tx(p) = p' for points p and p'\ then 
T2Tx(p) = T2(p'). This is shown graphically in Figure 12.5. Clearly, if 
7\(A) = A and T2{A) = A, T^T^iA) = A, which means the product of 
symmetries is a symmetry. Recall that the identity map I:X -> X is an 
isometry. Obviously 7(A) = A, so 7 is a symmetry of any set A. An 
isometry T has an inverse T~1, which is an isometry. If T{A) = A, 
T'1(A) = A as well. To see this, note that the definition of an inverse 
can be given in terms of products as TT'1 = T~XT = I. Thus, if we 
multiply A = TiA) on both sides by T'1, we obtain T~1(A) = 
T~1T(A) = 7(A) = A. Paraphrasing, we say that the inverse of a sym
metry is a symmetry. To summarize these facts (and others) we state 
the following; the proof is left to the reader: 

Figure 12.5 The product of translations is a 
translation. 
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Theorem 12.1 Let Tlt T2, T3,...E SymmtA). Then the identity I, the inverse 
T^1, and all products TtTj belong to SymmCA). Furthermore, you can verify 
that the following properties are satisfied: 

(i) {TiTj)Tk = Tt(TjTk) for any i,j, and k (associativity) 

(ii) IT{ = TtI = Tt for every i (identity) 

(Hi) TiTi " x = Ti'lTi = I for every i (inverse) 

12.3 Symmetry Groups 

Theorem 12.1 shows t h a t Symm(A) is a n e x a m p l e of t h e i m p o r t a n t 
m a t h e m a t i c a l s t r u c t u r e cal led a group [Budden, 1972]. 

Definition 12.2 Let G be a set together with a composition law *, which associ
ates to each pair g,h G G another element g*h G G called the product of g and 
h. Furthermore, suppose that * satisfies the following properties: 

(Gl) (£L * g2) * g3 = £ i * (g2 * g3) for all gu g2, gaeG (associative 
law). 

(G2) There exists an identity element e G G such that e* g = g * e = gfor 
all g E G (identity). 

(G3) For each g G G, there exists an element g~x £ G called the inverse 
of g such that g * g'1 = g'1 * g = e (inverse). 

Then G is said to be a group. If, in addition, G satisfies 

(G4) g * h = h * g for all g, h G G (commutative law), we say G is a 
commutative, or abelian, group. 

The n u m b e r of e l e m e n t s in t h e set is cal led t h e order of t h e g roup . 

Example 12.1 Let Z denote the set of integers. Define m * n = m + n. It is easy 
to see that Z is an (additive) abelian group with identity 0 and inverse -m for 
each m. 

Example 12.2 Let G = { x \ x £ R and x * 0} where R stands for the set of real 
numbers. Define x * y - xy where xy is the product of real numbers. Then G is a 
commutative group with identity 1 and inverse 1/x for each x. 

Example 12.3 The groups in the preceding two examples have infinitely many 
elements. A group of finite order can be constructed as follows: Let G = {0,1} and 
let * be defined by the following multiplication table which denotes 0 * 0 = 0, 0 
* 1 = 1, and 1*1 = 0. Then G is an abelian group with identity 0 and inverses 
0"1 = 0, l " 1 = 1: 
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* 

0 
1 

0 

0 
1 

1 

1 
0 

Example 12.4 Consider the symmetry group of the letter E shown in Figure 
12.6. Clearly Symm(E) consists of two elements: the identity I and a reflection R 
in the line AA'. Observe that RR = R2 = I. 

A' 

Figure 12.6 Symmetry of the letter E. 

Although the groups G and Symm(E) in Examples 12.3 and 12.4 ap
pear quite different, they are actually equivalent in a certain sense. 
To see this, we define a mapping <J>: Symm(E) -» G by 4>(J) = 0 and 
<t>CR) = 1. Then <$> is a bijection (see Section 11.4) which, furthermore, 
preserves the law of composition. Thus, <$>{IR) = <)>(/) * <&(R), 
$(RD = 4>0?) * WD, W = <))(/) * <M/), and <$>(RR) = 4>tR) * MR)- Such 
a mapping is called an isomorphism. 

Definition 12.3 Let G and H be groups with composition laws * and °, respec
tively. A one-to-one correspondence <)>: G -*• H such that 4> (g *h) = <)> (g) ° <&(h) 
for every g,h G G is said to be an isomorphism, and the groups G and H are said 
to be isomorphic. We denote this by G - H. 

Although the two isomorphic groups appear as different as apples 
and aardvarks, they are identical as abstract groups, i.e., they have 
the same mathematical structure. This is the same situation that we 
encountered when we studied isomorphic graphs in Section 4.2. 

12.4 Subsets of a Group 

Definition 12.4 The generators of a group are the smallest subset of elements of a 
group, say fv f2, whose products f\ f™ for m and n integers generate all the ele
ments of the group, i.e., every element g of the group is of the form g = fiffy. 

Definition 12.5 A subgroup H of a group G is a subset of elements from the 
group that itself constitutes a group. (Every subset of elements of G generates 
either G or some subgroup of G.) 

Theorem 12.2 (Fundamental theorem of group theory). The order of any sub
group of G is a divisor of G, i.e., if G has n elements and a subgroup H has k 
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elements, n I k - m for n, k, and m positive integers; m is called the index of the 
subgroup. 

Definition 12.6 If a £ G and H is a subgroup of G, the set aH = {ah \ h E H), 
gotten by multiplying each element of H by a, is called a left coset ofH. The set 
Ha = {ha | h E H) is called the right coset of # . 

Now, if a $ H, aH has no elements in common with H (why?). As a 
result of this and the fundamental theorem, if H is a subgroup of G of 
index m and order k, G is partitioned into exactly m disjoint sets (no 
elements in common), each of order k. H is one of the sets of the par
tition. 

Definition 12.7 If H is a subgroup of G and aH = Ha for all a e G, H is called a 
normal subgroup of G. This defining relationship can also be written 
H = aHa-\ 

Theorem 12.3 If H is a normal subgroup of G, the cosets of H form a group in 
which the product is defined by aH ° bH = (a * 6)H. This group is called the quo
tient group of G and is symbolized by GIH. The identity element of this group is 
H = eH. H is called the kernel of the mapping <|>: G -* GIH, i.e., 4>(a) = aH. 

It is a little difficult to get a geometric handle on the meaning of a 
normal subgroup in this abstract context; however, we will attempt to 
do this. In Figure 12.7, the group G is schematically partitioned into 
its cosets aH where the cosets are the elements of the quotient group 
GIH while the normal subgroup H functions as the identity element of 
the quotient group. Each coset may be thought of as a "universe" unto 
itself. This universe can be transformed to the base universe H by 
multiplying each of its elements by a - 1 . What is most notably t rue 
about these universes is tha t they are in some sense self-similar. 
What we mean by this is tha t any two elements in coset aH are re
lated to each other through multiplication by an element of H just as 
in the base universe and so they share the same structure as H. This 
relationship is shown schematically in Figure 12.7 and is proven in 
Problem 12.1. 

a3H 

a2H 

a,H 
a,| k' 

Figure 12.7 Diagram showing self-similarity of a 
normal subgroup. 
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Problem 12.1 Show that if g t and g2 are two elements of coset aH of a normal 
subgroup H, g2 = hg1 for some h £ H. Hint: The solution uses the fact that 
aHa'1 =H. 

Example 12.5 The even numbers are a normal subgroup of index 2 of the group 
of integers under the operation of addition. The other coset consists of the odd 
numbers. Access from one universe (coset) to the other is by addition of an odd 
number. 

Example 12.6 All the isometries of the plane form a group of infinite order. The 
even isometries (rotations and translations) form a subgroup of index 2. The odd 
isometries (reflections and glide reflections) form the other coset. As we saw in 
Section 11.9, the even and odd cosets can be imagined to be separate universes 
as Abbott did in his Flatland allegory (Section 11.9). Access from one universe 
to the other is via either a reflection in the plane or a rotation into a higher-
dimensional space. 

In Section 12.7, we will discover that the quotient group is the key 
to understanding the nature of colored symmetry where the number of 
colors corresponds to the index of the underlying normal subgroup. 

We now look at the structure of the symmetry group of the equilat
eral triangle and see how it relates to point or kaleidoscope symmetry. 

12.5 Kaleidoscope Groups 

12.5.1 The group of the equilateral triangle 

In this section we elaborate on Exercises 12.2, 12.3, and 12.4 in order 
to study the mathematics of kaleidoscope symmetry groups. First, con
sider the group that keeps an equilateral triangle {3} invariant. It is 
obvious from Figure 12.8 that {3} is mapped to itself by the following 
isometries: the reflections Rt in mirrors Mt and the rotations S and S 2 

of 120 and 240 degrees about the centroid of the triangle O, i.e., 

Symm ({3}) = {/, Rlt R2, R3, S, S2} 

Figure 12.8 The equilateral tri
angle is invariant under the el
ements of the dihedral (kaleido
scope) group D3. 

i 
l 
I 
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Symm ({3}) is usually known as the dihedral, or kaleidoscope, group 
of order 6 (it has three reflections). It is usually abbreviated D3. Even 
though D3 was constructed for an equilateral triangle, it is also the 
symmetry group of many other sets of points. That D3 is a group fol
lows from the fact that each element has its own inverse within the 
set and that the product of any two elements lies in the set. For ex
ample, 

iijiZf = I SS = I SRi = R2 

The last relation follows from the fact that according to Section 11.7, 
S = R2R1 and thus SR1 = (R2R1)R1 = i ^ C R ^ ) = R2I = R2. 

Problem 12.2 Construct a multiplication table similar to the table in Example 
12.3 for the elements of D3. 

According to Definition 12.4, any two reflections of D3, say Rx and 
R2, generate all the elements of the group. To see this, we showed in 
the last section that S = R2RV It also follows from Section 11.10.2 
that S2 = RXR2. What about R3? We leave it to the reader to show that 
R3 = R1R2R1. It is this ability to generate all the transformations of 
D3 by two mirrors which lies at the basis of the. kaleidoscope (see Ex
ercise 12.3). 

If the three reflections are removed from D3, another group called 
the cyclic group (abbreviated C3) results, i.e., 

c3 = {/, s, s2} 

Since every isometry of C3 is also in D3, C3 is a subgroup of D3. Any 
figure invariant under D3 is also invariant under C3 but not the other 
way around. For example, Figure 12.9 is a symmetry of C3 but not of 
D3. The reflections do not leave the set invariant because of the flags 
on the spikes. C3 has a single generator, namely S. 

Figure 12.9 A figure invariant under the cyclic 
group C3. 
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12.5.2 Other kaleidoscope groups 

Dn for n > 3 is the symmetry group of an rc-sided regular polygon as 
illustrated for the dihedral group of the triangle. Dn symmetry pat
terns contain n lines of mirror reflection and 2n isometries. Dn is gen
erated by reflections in two mirrors intersecting at an angle of 180/n 
degrees and serves as the symmetry group of the kaleidoscope pat
terns whose generating region is the segment of the plane between the 
two mirrors. D1 and D2, with one and two mirror lines, respectively, 
are special cases of dihedral groups. D 1 is the symmetry group corre
sponding to bilateral symmetry (generated by one mirror), i.e., the 
group in Example 12.4. D2 is the symmetry group of a rectangle (gen
erated by two perpendicular mirrors). 

As the number of mirrors increases, the angle between them de
creases. In the limiting case of D*, the kaleidoscope group contains an 
infinity of parallel (zero angle of intersection) lines of reflection sym
metry. This corresponds to the doubly infinite t rain of images ob
served in the parallel mirrors of a barber shop. Z)x can also be viewed 
as the symmetry group of a circle in which an infinite number of mir
ror lines intersect at the center of the circle. Although the symmetry 
of a circle may appear trivial, it plays an important role in electro
magnetic theory and other areas of science [Shubuikov, 1988(a)]. 

If the mirror lines are removed from Dn, the cyclic group C„ re
mains. Again, Cn is a group of order n generated by a rotation through 
360/n degrees; it is the group that generates rosette patterns such as 
the one in Figure 12.12. Cx corresponds to a doubly infinite series of 
images translated along a line as in certain molding patterns to be il
lustrated in Section 12.10. 

12.6 Pattern Generation and the 
Kaleidoscope 

We are now in a position to understand the relationship between pat
tern generation and group structure. Starting with a simple region of 
the plane or tile called a fundamental region, or domain, determined 
by the nature of the symmetry group, one can obtain a symmetry tiling 
by constructing the collection of images obtained by operating on the 
fundamental domain with members of a group of isometries. This 
technique has been employed extensively in ar t and architecture. In 
this section we show how it works for kaleidoscope patterns. 

The shaded area in Figure 12.10 is the fundamental domain of the 
symmetry group of {3}. It is transformed by each isometry of the group 
to form a tiling of the equilateral triangle. Five replicas are generated 
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Figure 12.10 Each fundamental domain of the 
equilateral triangle is labeled according to the 
element of D3 that maps it from the fundamental 
domain marked / (identity). 

Figure 12.11 A fundamental 
pattern mapped by the elements 
of D3 to form a symmetry pat
tern. 

from the fundamental domain which, itself, corresponds to the iden
tity element of D3. Thus, the number of replicas (including the origi
nal tile) equals the order of the group. This is also what you discovered 
in Exercises 12.2 and 12.3. 

Fundamental domains of D3 with other shapes may also be created 
in the 60-degree sector formed by the rays corresponding to two mirror 
lines of D3 and replicated by the elements of the group to form a ka
leidoscope tiling. A fundamental pattern, or motif as it is called, may 
also be emblazoned on the fundamental domain to form a symmetry 
pattern or design such as the snowflake patterns of Exercise 12.4 or 
the circular symmetry pattern of Figure 12.2. In Figure 12.11 the fun
damental domain is taken to be the entire sector, and a comma is 
taken as the motif of another D3 symmetry pattern. In general, a mo
tif placed between two mirrors intersecting at an angle of 180/n de
grees will create a snowflake pattern with the symmetry of Dn. Each 
pattern will consist of In replicas of the motif. It is important to note 
that the motif can be created only in the fundamental region. Any 
part of the motif drawn outside the fundamental region would be su
perimposed by other parts of the design during the pattern generation 
process. 
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( a ) ( b ) ( C ) 

Figure 12.12 A rosette design with fourfold rotational 
symmetry has symmetry group C4. The wedge in (a) is a 
generating region for the design; the altered wedge in (6) 
is another generating region for the same design [note 
that the generating region in (6) fits the motif better]. 

The fundamental region corresponding to C3 is made up of a 120-
degree sector about the center of rotation (see Figure 12.9). Again, any 
motif drawn in the fundamental region is replicated three times in
cluding itself by C3 to form a rosette pattern. Unlike the fundamental 
region of D3, which is bounded by mirror lines, the fundamental re
gion of C3 can take many forms. Two fundamental regions of a C4 ro
sette pattern are shown in Figure 12.12. [Schattschneider, 1986] de
scribes how to create a variety of fundamental domains for the 
symmetry patterns of the plane. 

12.7 A Colored Kaleidoscope Symmetry 

Color may be used to enhance the aesthetic effect of a symmetry pat
tern [Schattschneider, 1986]. For the case of tilings that use only two 
colors, say black and white, the symmetries of the tiling are most en
hanced whenever each symmetry of the uncolored tiling either 
(1) transforms all white tiles to white tiles and all black tiles to black 
tiles or (2) transforms all black tiles to white tiles and all white tiles to 
black tiles. 

Every symmetry of the colored tiling which satisfies (1) or (2) is 
called a two-color symmetry of the tiling. When every symmetry of the 
uncolored tiling is also a two-color tiling of the colored tiling, we say 
that the coloring is perfect, or compatible. (Each symmetry of the 
uncolored tiling induces a permutation of the colors in the colored 
tiling.) 

Perfect colorings can be described by the language of group theory 
introduced in Section 12.4. Let's see how this works for the kaleido
scope pattern D3. According to Section 12.4, C3 is a subgroup of D3 

with order 3 and index 2. Therefore, according to Theorem 12.2, the 
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quotient group D3/C3 has two elements. Beginning with a tile of one 
color, say black, color all elements black that are generated by the ac
tion of C3 on this tile. Color any uncolored tile white. The action of C3 

on this element results in coloring the remaining congruent images of 
the tile white. Thus, in a sense, we have colored the two elements of 
the quotient group black and white, as Figure 12.13 illustrates for {3}. 
The only perfect two-coloring of the C4 rosette tiling is shown in Fig
ure 12.14. You will also notice that conditions (1) and (2) are also sat
isfied. 

In a sense, the tiling has been decomposed into two distinct but op
positely congruent (self-similar) universes accessible to each other by 
mirror reflection as we described in Section 12.4 in an abstract sense. 
The coloring brings out this fact. In general, a perfect coloring with m 
colors is defined by a normal subgroup of the pattern of index m and 
separates the pattern into m congruent subsets, each marked by a dif
ferent color. 

A colored symmetry can also be generated by a motif emblazoned on 
the fundamental domain or tile. In this case the motif is usually called 
the figure and the remainder of the fundamental domain is called the 
ground. The colored symmetry proceeds to permute the colors of the 
motif, leaving the ground the same color, or it may permute both fig
ure and ground as described above for colored tilings. 

Figure 12.13 A perfect coloring 
of A,. 

Figure 12.14 A perfect coloring of C4. 
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12.8 Some Other Examples of Pattern Generation 

In gene ra l , g iven a set of i somet r i e s subject to c e r t a i n c o n s t r a i n t s (to 
be described in Sect ions 12.13 to 12.16) a n d a s t a r t i n g p a t t e r n or mo
tif, a s y m m e t r y p a t t e r n can b e c rea t ed w i t h t h e s e i somet r i e s a s t h e 
gene ra to r s . 

Example 12.7 Start with a right triangle represented by the identity I in Figure 
12.15. Let Rx and R2 be reflections in mirrors Mx andM2> respectively. Let S be 
a 90-degree rotation (quarter-turn) in the center c. Every member of the group 
can be written in the form fx f 2 • • • / * , where each is one of Rlt R2, S or 
•Rf \ R21, S'1. A pattern formed by some of the images of the triangle under 
this group is shown in Figure 12.15. 

Example 12.8 Perhaps the most dramatic example of pattern generation is il
lustrated by the dihedral kaleidoscope (see Section 7.13.4). Here the image of a 
cube is obtained by combining the 47 images of an irregular tetrahedron 
(orthoscheme) generated by three mirrors. In other words, each of the 48 ele
ments of the symmetry group of the cube contributes one transformed replica of 
the fundamental domain (orthoscheme) of the cube to recreate the entire cube. 

Example 12.9 In Section 9.9 the sphere was divided into 48 congruent curvilin
ear triangles (fundamental domains). The 48 images of a single vertex recreated 
the vertices of one or another of the archimedean polyhedra with the symmetry 
of a subgroup of the cube, depending on the position of the starting vertex. 

RisH 

i 

A 

I . S W R , 

<v :SR 

R2R,S2 | r 
R 2 _ S ^ _ _ ; _ _ ^ R 2 R , S 

R 2 S R f ^ I ^ - R , S 3 
J . 

A 

S R ; S » | X ,S R2S = S->R2S 

'V 
Figure 12.15 An example of pattern generation. A right triangle 
is repeatedly acted upon by reflections in two mirrors and four
fold rotations around a center. 
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12.9 Pattern Generation in Hyperbolic Geometry 

A group of isometries generates a symmetry pattern consisting of con
gruent images of some motif in euclidean space. A repeating pattern 
composed of hyperbolically congruent copies of a motif can also be gen
erated (see Appendix 2.B). M. C. Escher has created beautiful patterns 
with hyperbolic symmetry, and Douglas Dunham [1986] has recreated 
some of Escher's patterns in addition to many of his own with the aid 
of a computer. Escher's and Dunham's patterns are created in the 
Poincare circle model of the hyperbolic plane (see Appendix 2.B) in 
which lines are represented by circular arcs in the disc which are per
pendicular to the boundary circle. 

A {6,4} tiling of the Poincare circle is shown in Figure 12.16. The 
edges of the tessellation are the solid lines while the dual tiling is rep
resented by the dotted lines. Both of these sets of lines represent lines 
of mirror symmetry of the tiling. The dashed lines are additional lines 
of mirror symmetry. In hyperbolic geometry, a point and its reflected 

Figure 12.16 The tessellation {6,4} (solid lines), the dual tessellation 
{4,6} (dotted lines), and other mirror lines (dashed) of the two tessella
tions. 
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image with respect to an arc (line) is represented by the point and its 
inverse with respect to the arc (see Appendix 2.B). The vertices of this 
tiling are also fourfold rotocenters while the vertices of the dual are 
sixfold rotocenters. 

The fundamental domain of this tiling is the curved right triangle 
made up of solid, dotted, and dashed lines. In general, a regular {p,q} 
tiling with congruent tiles exists in hyperbolic geometry whenever (p 
- 2) (q - 2) > 4. The fundamental domain of these tilings also consists 
of right triangles with acute angles irlp and -u/q. Any design created in 
the curvaceaous triangle would be multiply reflected in the convex 
mirrors that make up its sides to produce the entire pattern, which 
would also possess p- and g-fold rotocenters. 

In Figure 12.17, Dunham creates flounder-like fishes arranged in a 
repeating hyperbolic pattern in the style of Escher's famous picture 
"Circle Limit I." Either the right or the left side of any one of the 
fishes serves as the motif. (If color is taken into account, a motif may 
be formed from half of a black fish together with half of an adjoining 
white fish.) The backbones of the fish all lie on hyperbolic lines (arcs) 
which are also lines of reflection symmetry. The mirrors are removed 
from the fourfold rotocenters but retained at the sites of the sixfold 
rotocenters to produce a symmetry pattern corresponding to a sub
group of the symmetry group of the {4,6} tiling. Further information 

Figure 12.17 A hyperbolic pattern. 
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about these tilings, including a computer program to generate them, 
can be found in [Dunham, 1986]. 

12.10 Line Symmetry 

A frieze group is the symmetry group of a repeated pattern on a strip 
which is invariant under a translation along the strip, although it can 
also be the symmetry group of a pattern on the whole plane (or half-
plane) provided all its translations are in one direction. The finite 
width of the strip permits a variety of patterns which may be invari
ant under reflections in horizontal or vertical mirrors, half-turns, and 
glide reflections. Many beautiful examples of these symmetries, such 
as the ones in Figures 11.9 and 11.15, are to be found in the work of 
the ancient Egyptians, Greeks, Romans, and the Moors and of modern 
artists and designers. 

There are seven essentially different frieze groups, and start ing 
with some figure having no symmetry (invariant only under 7), say a 
P, we can enumerate them. The seven frieze groups are listed in Table 
12.1, along with their generators and commonly accepted symbols. 

In this table, — denotes the mirror line of a reflection or glide re
flection and ° denotes the center of a half-turn. The group symbolized 
in the right column is isomorphic, in the sense of Section 12.3, to the 
frieze groups in the left column. Notice that Cx is identical with Fx 

and F2 while Dx is identical with F\. Also Cx is isomorphic to F\ while 
D% is isomorphic to FfandFl. The direct products C* x D± and 
Dx x D 1 means that every element of these groups is the product of 
one element from Dx and one element from either C% o r D , . We say 
that these groups have a reflection in a center. 

TABLE 12.1 

F, 
F3 
I 

f ,2 

F 2 

^ 

•V 

F2' 

P P P P P 

b b 
p p p 

qip ! q P q P 

d.p • dp dp 

qp . db qp 

b b b b b 

P p P P P 

d;b j d b d b d b 
q;p I q P q p q P 

1 translation 

1 glide reflection 

2 reflections 

2 half-turns 

1 reflection and 

1 half-turn 

1 translation and 

1 reflection 

3 reflections 

C« 

D o 

C«xD, 

D.xD, 
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Rather than analyzing the structure of these groups, our primary 
interest in presenting them is to enable the reader to recognize them 
on sight. Since the overwhelming majority of patterns use either Fx, 
F\, or F\, perhaps the ability to correctly read patterns will result in an 
appreciation of the wider range of possibilities. Figure 12.18 gives a 
flowchart for determining frieze groups [Martin, 1974]. 

Problem 12.3 Use Figure 12.18 to determine the frieze groups corresponding to 
the patterns in Figure 12.19 collected by D. W. Crowe [1986]. 

In the next exercise we invite you to try your hand at creating seven 
tilings representing each of these classes of line symmetry. To tile a 
frieze means to fill a band in the plane with identical tiles, without 
overlaps or voids and without turning the tiles over (with the tiles 
having distinct tops and bottoms). 

Exercise 12.5 [Findeli, 1986] A practical method of obtaining tiles for the seven 
frieze patterns starts with pasted paper cut according to the following proce
dures. The name of the symmetry class is specified, and illustrations of the con
struction are shown in Figure 12.20. 

Fv Make a cylinder by gluing two opposite edges of a rectangle. Join the two 
edges of the cylinder by an arbitrary line and cut along it; the designer has com
plete liberty as to the choice of the shape of this line (motif) and of course also 
for the decoration of the tile itself (color, etc.). 

Hal/turn? 

Reflection Reflection 
in center? in center? 

Reflection? .?' Reflection? .?' 

Figure 12.18 A flowchart for classifying frieze patterns. 
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I. 

ra wtii W 
3. 

>^>v>v 
4. 

5. 

6. 

7. 
Figure 12.19 Examples of the 
seven frieze patterns appearing 
on the pottery of San Ildefonso 
pueblo, New Mexico. 

F2. Make an envelope by gluing three edges of two superimposed paper rect
angles, leaving the fourth open. Join each of the corners of the envelope to the 
open boundary of an arbitrary line; cut along these lines and unfold the tile thus 
obtained. 

F \. Fold a rectangle in two along a median and make a cylinder from the rect
angle obtained by gluing the edges. Proceed as for Fv 

F\,F\. NO liberty is permitted for these groups by reason of the presence of 
mirrors. The elementary tiles are mere rectangles. 

F\. Make a Mobius band (see Section 4.12) from a rectangle; cut the band 
along an arbitrary line and unfold the tiling obtained. 

F | . Take a half-envelope such as that constructed for F2 and join the corner to 
the upper boundary by an arbitrary line; cut and unfold. 
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Figure 12.20 Construction of frieze tiles. 

The frieze groups can also be perfectly colored by identifying normal 
subgroups. In fact, there are 23 two-colorings of the frieze groups. Ex
amples of some of them are found in [Schattschneider, 1986]. 

12.11 The Two-Dimensional Ornamental 
Symmetry Groups 

For thousands of years, elaborate patterns of ornamentation along 
lines and planes have been created for aesthetic purposes. Even so, the 
mathematical limitations of these patterns were not fully understood 
until the end of the nineteenth century, when a deeper analysis was 
inspired by their application in crystallography. In 1881, Fedorov 
proved that there are 17 essentially different wallpaper groups. Pat
terns representing all of these groups were known to the ancient 
Egyptians, who exhibited them in the decoration of their temples and 
tombs. 

Perhaps the most dazzling display of these groups was rendered by 
the Moors in the ornamentation of the Alhambra. Following the dic
tates of the Koran forbidding the likeness of living things in decora
tive art, the Moors covered the walls of the Alhambra with myriad 
geometric patterns of breathtaking beauty and variety [Griinbaum, 
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and Shephard, 1986]. Escher, who was unfettered by any such theolog
ical restraints, spent a great deal of time creating patterns for the 17 
ornamental groups consisting of strange looking creatures, an exam
ple of which is shown in Figure 12.21 [McGillavry, 1976], [Escher and 
Locher, 1971], [Coxeter, 1986]. In this section we give examples of the 
17 distinct classes of symmetry patterns that can cover the plane. The 
rest of this chapter shows how a study of the geometry of these pat
terns can lead to an understanding of how to generate them. Our aim 
is to provide a creative spark akin to that experienced by Frank Lloyd 
Wright and Le Corbusier after reading Jones' Grammar of Ornament 
[1928] to fire the intellect and the imagination. 

An example of a two-dimensional ornamentation is shown in Figure 
12.22. The pattern is potentially infinite in two nonparallel directions 
A and B. Translations of appropriate lengths in these directions leave 
the pattern invariant. In other words, a typical point within the pat
tern is replicated in the whole pattern as a two-dimensional lattice. 
Reflections in CC and a series of mirror lines perpendicular to CC 
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B 

L 
c' 

Figure 12.22 A wallpaper symmetry pattern. 

also leave it invariant. Crystallographers symbolize the group of this 
pattern hy pm m. 

The two-dimensional ornamental groups (or wallpaper groups) are 
the symmetry groups of repeated patterns in the plane which are left 
invariant by a pair of independent translations; in other words they 
are patterns with underlying lattice structures. Each point of the pat
tern is replicated as a two-dimensional lattice. The fundamental do
mains, group generators, and group structures of the 17 distinct wall
paper groups have been nicely described by other references 
[Schattschneider, 1978], [Martin, 1982]. Many examples of patterns 
from ancient cultures illustrating these groups can be found in the 
classic book Pattern Design by Christie [1969] and the more recent 
books Symmetries of Culture by Donald W. Crowe and Dorothy K. 
Washburn [1989] and Handbook of Regular Patterns by Peter Stevens 
[1981]. 

Problem 12.4 Some beautiful wallpaper patterns from a variety of ancient 
sources are illustrated in Figure 12.23 [Stevens, 1981]. Use the flowchart in Fig
ure 12.24 to identify the symbol of each crystallographic group. The crystallo-
graphic symbols are given so that you can identify them with the aid of the flow
chart. 

Once again, perfect colorings of the wallpaper patterns can enhance 
their interest. For wallpaper patterns with two opposing colors there 
is always the question of what is to be considered the figure and what 
the ground. Designers have brought off feats of incredible ingenuity in 
order to play with the idea of figure and ground. An example of this is 
shown in Figure 12.25 where the word 'Allah' in Arabic letters is set 
out in diagonal bands across the surface. The black letters dovetail the 
white so that no ground appears. Another example is shown in Figure 
12.26(6) in which the symmetry of the pattern of Figure 12.26(a) is 
broken by eliminating every alternate crossing with the result tha t a 
new element appears, completely changing its character. Illustrations 
of the 46 possible two-colorings along with listings of their groups are 
given by Crowe in [1986a] [Senechal, 1975; 1979] and [Griinbaum and 
Shephard, 1987]. 
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Figure 12.23 Examples of the 17 wallpaper symmetries from different cultures. 
(a) p6mm; (b) pg; (c) p2; id) p3; (e) p4; (/) p4g; (g) p6; (/i) c2mm; (i) p2mm; (/) p31m; (A) pi; 
(I) p2gg; (OT) pm; in) p3ml; (o) cm; (p) p2mg; iq) p4mm. 
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Figure 12.24 A flowchart for classifying the 17 wallpaper symmetry patterns. 
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( a ) ( b ) 

Figure 12.26 The basic pattern in (a) is transformed to the de
sign in (b) from a drawing in the Mirza Akbar collection. 

12.12 Symmetry and Design 

What are the ingredients of an aesthetically pleasing ornament or de
sign? This remains one of the great mysteries. After all, the smallest 
unit of a pattern or motif bears little resemblance to the entire pat
tern. The quest for the essence of beautiful ornamentation led to the 
following debate between two designers [Gombrich, 1979]: 
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My friend had been maintaining that the essence of ornament consisted 
in three things: contrast, series and symmetry. I replied that none of 
them together would produce ornament. Here, [making a ragged blot 
with the back of my pen on the paper; see Figure 12.27(a)] you have con
trast; but it isn't ornament: and here—1,2,3,4,5,6—you have series; but it 
isn't ornament: and here [sketching the figure in Figure 12.27(a)] you 
have symmetry; but it isn't ornament. My friend replied, "Your materials 
were not ornament, because you did not apply them. I send them back to 
you, made Up into a choice sporting neckerchief [see Figure 12.27(6)]. 

Exercise 12.6 Gombrich places the mathematics of ornamentation into perspec
tive with his comment that "there is no danger that the resources of the pattern
maker will ever be exhausted by the constraints of geometry because any one of 
the groups or devices described by [mathematicians] can be combined with oth
ers in an infinity of combinations and permutations." By rotating the divided 
two-colored square in Figure 12.28(a), four variants are produced. Sixteen dif
ferent motifs are created by pairing these four units, and 256 possibilities are 
created from combining four of them. Try your hand at creating a motif from 
these units and repeating it to form a planar ornamentation such as the ones 
shown in Figure 12.28(6). 

It is a good exercise to look at a design and to characterize it accord
ing to the group to which it belongs. The anthropologist Washburn in 
collaboration with the mathematician Crowe has even used some of 
these assignments as clues to help trace the origins of designs left be
hind by primitive cultures [1989]. Nevertheless, we are left with a 
feeling of incompleteness. On the one hand, the group categories ap
pear to be rather coarse. Designs which appear to bear no visual re-

(a) (b) 

Figure 12.27 An example of ornamental design. 
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Figure 12.28 Designs based on divided two-color squares. 

semblance to each other may belong to the same group. On the other 
hand, the fundamental domain of a wallpaper pattern gives a limited 
view of how the entire finished pattern will appear and how to create 
the whole pattern from its smallest part or fundamental pattern 
[Griinbaum, 1990]. 

In his book Color and Symmetry [1971] A. L. Loeb presents a way of 
both generating and reading patterns in a more global manner by first 
studying their underlying geometric structure: location and order of 
points of rotational symmetry or rotocenters and location of mirror 
lines and glide lines. For example, rotocenters lie at the vertices of 
meshes of a semiregular tiling and that mirror lines may constitute 
the edges of this mesh or lines run through the mesh according to pre
cise geometric laws. H. Lalvani has shown how this mesh can be used 
to generate the motifs of a great many of the classical Islamic tilings 
as we shall see in Section 12.18. In the next five sections of this chap
ter, we will reproduce some of Loeb's analysis and description of the 
structure of mosaics. First we will see how the nature of space places 
a severe constraint on the kind of rotocenters that are possible in a 
wallpaper symmetry. 

12.13 A Fundamental Postulate 

Let's consider the interaction between two rotocenters of a pattern, 
one of order k located at Ak and one of order I located at Bt. We mean 
by an nth-order rotocenter that n successive rotations of any point 
about the rotocenter results in the identity transformation. By the na-
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Figure 12.29 Interaction of roto
centers. {From Loeb, 1971. © 
1971, Wiley.) 

ture of rotational symmetry, there will be other directly congruent k-
fold rotocenters located on a circle of radius BlAk about Bl as shown in 
Figure 12.29. Ak' is the nearest of these &-fold rotocenters to Ak, and it 
is rotated counterclockwise from Ak through an angle of 2ir/l. Like
wise, other Z-fold rotocenters lie on a circle of radius Ak'Szabout Ak'. 
B/ is the nearest of these Z-fold centers to B^ It is rotated counter
clockwise from B[ through an angle of 2TT/&. 

An example of how this interaction works for a sixfold and a three
fold rotocenter is shown in Figure 12.30. As a consequence of the in
teraction between these centers, another threefold and sixfold 
rotocenter appears at the vertices of a parallelogram. This interaction 
can also be applied to generating patterns. Beginning with a single 
sixfold rotocenter and a motif having threefold rotational symmetry, 
Figure 12.30 shows that another motif and sixfold center is a neces
sary consequence of the interaction. 

Let's see what happens if we consider the interaction between a 
threefold and a fourfold rotocenter. Starting with rotocenters A3, B4, 
we trace a sequence of rotocenters generated by each other similarly, 
as in Figure 12.31: A3B4A3'B4'A3"B4".... But before continuing, let's 

( a ) ( b ) 

Figure 12.30 (a) Interaction of a threefold and a sixfold 
rotocenter; (b) interaction of a motif having threefold 
symmetry with a sixfold rotocenter. (From Loeb, 1971. 
© 1971, Wiley.) 



434 Chapter Twelve 

Figure 12.31 (a) The interaction of a threefold and a fourfold 
rotocenter. Note in (b) that after five cycles, the polygonal line closes 
upon itself. {From Loeb, 1971. © 1971, Wiley.) 

stop to examine the point B4". Observe that it lies closer to the original 
A3 than B4 does. Let's call the ratio of these distances 

. „ = r for r < 1 
A3B4 

Instead of continuing the polygonal line beyond B4", as shown in Fig
ure 12.31(6), we could have started all over again with the pair of 
rotocenters A3, B4". If we do this, it is clear that we will generate an
other rotocenter distant from A3 by r2A3B4. If we repeat this proce
dure n times, there will be a fourfold rotocenter at a distance rnA3B4 

from A3. Since there is no limit to the number of times this procedure 
can be repeated and since r < 1, this implies that there are rotocenters 
arbitrarily close to each other. 

Continuous distribution of rotocenters is not a situation that occurs 
in crystallography or in wallpaper patterns, and so this possibility 
must be excluded. To do this, Loeb first considers the set of all 
rotocenters congruent to each other (e.g., A3 and A3 ' are congruent 
while A 3 and BA axe not), which he calls a rotosimplex. Thus all 
rotocenters congruent to A3 form one rotosimplex while all rotocenters 
congruent to B4 form another. Now we can state the fundamental pos
tulate of crystallography. 

Postulate of Closest Approach For every pair of rotosimplexes in a plane, there 
exists a finite distance such that no point in one simplex is closer to any point of 
the other simplex than that given distance. 

It follows from this postulate that even within a rotosimplex, 
rotocenters are not arbitrarily close (why?) so that no pair of 
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rotocenters in the entire pattern can be arbitrarily close. This postu
late imposes a severe constraint on space and limits the kinds of wall
paper patterns that are possible. At every step along the way this pos
tulate enters into the geometrical arguments that determine the 
structure of mosaics. We will now summarize some of this structure 
and encourage the interested reader to look at Color and Symmetry for 
the details. 

12.14 Interaction of Two Rotocenters 
Implies a Third 

Returning to the polygonal sequence of &-fold and i-fold rotocenters 
generated in Figures 12.29 and 12.31, in order to satisfy the funda
mental postulate, the polygon must close. Loeb finds that the 
rotocenters congruent to Ak lying at the vertices of this polygon also 
lie on a circle while the rotocenters congruent to Bl lie on another cir
cle concentric with the first as shown in Figure 12.32. The center C of 
these circles lies at the intersection of the angle bisectors to AkBl Ak' 
and Bl Ak' B{ and is itself an m-fold rotocenter. Referring to the quad
rilateral Bl Ak' B{ C, it follows, upon summing its angles, that 

^ 4 ^ = 2, 
I k m 

Figure 12.32 Generation of a polygonal line by the in
teraction of two rotocenters. {From Loeb, 1971. © 
1971, Wiley.) 
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or 

\ + y + - = 1 (12.1) 
k i r n 

for k, I, m integers or °° (l/oo = 0). This latter equation was discovered 
jointly by Loeb and Le CorbeiUer and is the key to unlocking the 
structure of wallpaper patterns. Let's see how it works. 

Reconsider the interaction between the sixfold rotocenter and the 
motif with threefold symmetry. This interaction results in the pat
tern shown in Figure 12.33. Since k = 3 and I = 6, Equation (12.1) 
predicts that m = 2, which is borne out. The pattern also shows that 
the interaction of threefold and twofold rotocenters equally well 
produces sixfold centers and that twofold and sixfold centers result 
in threefold centers. 

Figure 12.33 This pattern can be considered equally as the result 
of the interaction between an A2 and a B3, an A3 and a B6, or an A6 
and a B2. {Computer generated by David Henig-Elona based on fig
ure in Loeb, 1971. © 1971, Wiley.) 
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TABLE 12.2 

k I m 

1 x x 
2 2 x 
2 3 6 
2 4 4 
3 3 3 

In fact, there are only five solutions to Equation (12.1) involving 
positive integers or », and they are listed in Table 12.2. Rotocenters of 
order °° signify tha t the corresponding rotations degenerate to trans
lations as they would if the center of the rotation were located at in
finity. For example, the patterns for which k = l,l = v,m = n are the 
ones generated by William J. Gilbert's method in Section 6.8. Loeb re
fers to the symmetry groups of the plane with rotational subgroups of 
these orders by the symbols 1 »», 22 ®, 236, 244, 333 where the sub
group corresponding to the symbol » is understood to be a group of 
translations. 

12.15 Nets 

If lines are drawn so that every rotocenter is joined to its nearest 
neighbor in each of the other two rotosimplexes, a net is formed whose 
nodes are the rotocenters. For example, the net for another pattern, 
with k = 2, I - 3, m = 6, is shown in Figure 12.34. 

The net is subdivided into directly congruent and enantiomorphic 
regions (see Section 12.16) called meshes. The number of meshes meet
ing at any rotocenter equals twice the symmetry value of that 
rotocenter. But the number of directly congruent points at a given dis
tance from a rotocenter equals the symmetry value of that rotocenter. 
Therefore two points in adjacent meshes (meshes that share an edge) 
cannot be directly congruent, though they may be enantiomorphic. 

When a pattern does not contain enantiomorphy (no mirror or glide 
lines), the fundamental region can be taken to be the content of any 
two adjacent meshes. But in this case, the fundamental region is not 
unique, and Figure 12.34 shows that such a pairing of meshes can be 
accomplished in three different ways. If the pattern possesses 
enantiomorphy, the pattern contains mirror lines and glide lines. As 
we shall show in the next section, if all rotocenters lie on mirror lines, 
each mesh constitutes a fundamental domain and is bounded by mir
ror lines; in this case the shape as well as the area of the fundamental 
region is uniquely defined. 
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Figure 12.34 Pattern and net representing the solution k = 2, I = 3, m = 6. {Computt 
generated by David Henig-Elona based on figure in Loeb, 1971. © 1971, Wiley.) 

12.16 Enantiomorphy 

By definition, two figures are enantiomorphic if each can be trans
formed to the other by an improper isometry (see Section 11.9). 

12.16.1 Mirror lines 

Two points P and P' of a symmetry pattern are said to be directly con
gruent if they have identical environments. In other words, any region 
of the pattern that includes P can be transformed to some region of the 
pattern including P' by a proper isometry. For example, in Figure 
12.35(a) triangles PQR and P'Q'R' are identical environments of 
points P and P'. On the other hand, P and P' are said to be 
enantiomorphic if any region including P can be mapped by an im
proper isometry to a corresponding region including P'. Thus, trian
gles PQR and P'Q'R' are enantiomorphic environments of points P 
and P' [see Figure 12.35(6)]. 
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Figure 12.35 Two points being simultaneously congruent and 
enantiomorphic. (a) P and P' are congruent; (b) P and P' are 
enantiomorphic; (c) P and P' are congruent as well as enantiomorphic. 
{From Loeb, 1971. © 1971, Wiley.) 

It is also possible for two points to be both directly congruent and 
enantiomorphic. In this case, both proper and improper isometries re
sult in transforming the environment of P into the corresponding en
vironment of P'. Figure 12.35(c) illustrates such a situation in which 
the pair of triangles PQR and PQR are both directly congruent and 
enantiomorphic to triangles P'Q'R' and P'Q'R'. Notice that for this to 
take place, it is necessary for both P and P' to lie on mirror lines. 
Thus, 

Theorem 12.4 Two points that are both directly congruent and enantiomorphic 
necessarily lie on mirror lines. 
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This theorem refers in particular to enantiomorphic rotocenters 
since these must also have the same orders. Therefore, enantiomorphy 
between twofold rotocenters from the 236 system implies that all two
fold centers lie on mirror lines. The same holds for enantiomorphy be
tween threefold and sixfold rotocenters, which must also lie on mirror 
lines. Figure 12.36 illustrates a 236 pattern in which all rotocenters 
are enantiomorphic. 

What about 244 patterns? By the same argument, the twofold 
rotocenters must lie on mirror lines. However, the two fourfold 
rotosimplexes either may or may not be directly congruent. If they are 
directly congruent, they must, once again, all lie on mirror lines as 
shown in Figure 12.37. If they are not directly congruent, they need 
not lie on mirror lines as Figure 12.38 illustrates. (Note that here mir
rors bisect the meshes.) 

12.16.2 Glide lines 

As a final look at the structure of wallpaper symmetries, we ask 
where the glide lines are located. Consider two £-fold enantiomorphic 
rotocenters Ak and Ak (see Figure 12.39). Choose an arbitrary point 
P0; the rotocenter Ak implies the existence of k points P0,..., Pk-i 
equidistant from Ak. Enantiomorphy implies the existence of k corre
sponding points P0 • • • Pk-i equidistant from Ak. From a property of 

Figure 12.36 Enantiomorphy in the 236 system: all rotocenters lo
cated on mirror lines. Solid lines represent mirrors, dashed lines 
represent glide lines. (Computer generated by David Henig-Elona 
based on figure in Loeb, 1971. © 1971, Wiley.) 
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Figure 12.37 Enantiomorphy in the 244' system: all rotocenters located on mirror 
lines. {Computer generated by David Henig-Elona based on figure in Loeb, 1971. © 
1971, Wiley.) 

Figure 12.38 Enantiomorphy in the 244' system: non-
congruent fourfold rotocenters enantiomorphically 
paired. The 4' indicates enantiomorph of 4. {Computer 
generated by David Henig-Elona based on figure in Loeb, 
1971. © 1971, Wiley.) 
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Figure 12.39 Two enantiomorphically noncongruent k-
fold rotocenters. (From Loeb, 1971. © 1971, Wiley.) 

glide reflections (see Section 11.8), a line bisecting the line segments 
AkAk and PQP0 joining equivalent pairs of points is a glide line. This 
glide line also bisects the line segments P^i where i is an integer join
ing the other equivalent pairs of points. Since AkP0 and AkP1 are also 
equivalent, there is another glide line that bisects the line segments 
AkAk and P0P1 and others that bisect Aj^k and PoP2, etc. In total, 
therefore, k reflection lines intersect at the point halfway between Ak 

and Ak. In general, these are all glide lines, but if one of them perpen
dicularly bisects AftA^ it is a mirror. Thus, 

Theorem 12.5 Two enantiomorphic fe-fold rotocenters imply the intersection, at 
a point midway between them, of either k glide lines or k - 1 glide lines and a 
single mirror line. 

W h a t ' s more , Loeb goes on to prove: 

Theorem 12.6 Two glide lines can only intersect at angles of 0, 30, 45, 60, and 
90 degrees, and this can occur only in patterns of the type: 1 " , 244, 333, 2222 
(not mentioned before but it has rotocenters of order 2 at the vertices of a par
allelogram). 

and, 

Theorem 12.7 A rotocenter located on a glide line is limited to the symmetry 
numbers 2, 4, and » and implies its enantiomorph on the same glide line. The 
shortest distance between enantiomorphs equals the translation component of 
the glide lines. 

12.16.3 Some enantiomorphic patterns 

Enantiomorphy in the 236 system is well represented in Figure 12.36. 
All rotocenters lie on mirror lines as required by Theorem 12.4. Mir-
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ror lines are represented by solid lines and glide lines are dotted. By 
Theorems 12.5 and 12.7, a glide line connects enantiomorphic twofold 
rotocenters and intersects mirror lines midway between these 
rotocenters and at right angles to them. 

Enantiomorphy in the 244 system takes two forms. The first is il
lustrated in Figure 12.38. Here, the fourfold rotocenters are not di
rectly congruent and do not lie on mirror lines. Consistent with The
orem 12.7, the line between the enantiomorphic fourfold rotocenters is 
a glide line and is intersected midway between the fourfold centers by 
perpendicular mirror lines that bisect the mesh. The second 244 sym
metry pattern is shown in Figure 12.37. Here, all fourfold rotocenters 
are directly congruent and as a result of Theorem 12.4, all lie on mir
ror lines. There are also glide lines connecting twofold rotocenters as 
permitted by Theorem 12.7. 

Loeb has developed his own notation for the 17 classes of wallpaper 
symmetries. Since his notation is based on the underlying structure of 
these classes, it helps you to read the pattern much better than with 
the more standard crystallographic symbols. The symbols also convey 
all the information needed to construct the underlying geometric scaf
folding for the patterns, i.e., the rotosimplexes and mirror and glide 
lines. Table 12.3 lists all 17 wallpaper symmetries along with the 
usual notation of crystallographers. In Loeb's notation, rotocenters 
completely define the symmetry of a pattern in most cases. The sym
bols ' and " denote distinctness and enantiomorphy of a rotocenter, re
spectively. The symmetry number of a rotosimplex is underlined when 
the rotocenters lie on mirror lines. The use of a diagonal, e.g., m/g and 
gig' indicates mutually perpendicular glide and mirror lines; two sym
bols beside each other, e.g., mm', mg, andgg', indicate parallel mirror 
and glide lines. 

12.17 Aesthetics of Wallpaper Patterns 

Loeb commented on the aesthetics of wallpaper patterns as follows: 

Patterns may have rotational symmetry only, may have enantiomor-
phically paired noncongruent rotocenters, or may have all rotocenters lo
cated on mirror lines These kinds of patterns have decided character
istics of their own: the patterns without enantiomorphy are wildly 
dynamic, whereas the patterns whose rotocenters are located on mirror 
lines are excessively static [Loeb] has found the frameworks with 
enantiomorphically paired (but not directly congruent) rotocenters the 
most satisfactory from an aesthetic point of view because they give a fine 
balance between the static and the dynamic. 

Exercise 12.7 Figure 12.23 shows some lovely wallpaper symmetry patterns re
produced from ancient sources. We leave it to the reader to explore their under
lying structures in the light of Loeb's analysis. Try to relate the aesthetic qual-
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ities of these patterns to their geometry. After all, it has been the aim of this 
book to show that through the microscope of geometry, a great many areas of 
artistic and scientific endeavor can find their common ground. 

12.18 The Symmetry of Islamic Tilings 

Although Islamic tilings exhibit a breathtaking variety of patterns, 
they have a common underlying structure [Lalvani, 1982, 1989]. 
First, Islamic patterns all have wallpaper symmetry. Next, consider 
the fundamental domain of the tiling. For example, the tiling shown 
in Figure 12.40 has symmetry 236, which means that its fundamental 
domain is a typical right triangle in the net shown in Figure 12.34. 

The motifs of many of the Islamic tilings and other patterns such as 
Chinese lattices are directly related to the symmetry of the overall 
pattern. For example, in Figure 12.41 Lalvani replicates the 236 net 
shown in Figure 12.34 at a smaller scale within the fundamental do
main itself. The sixfold, threefold, and twofold rotocenters in the 
fundamental domain are denoted by Pi, Qj, Rk where i, j , k are indices 
to distinguish one net point from the other. The motif of the tiling is 
traced along the lines of this replicated net. For example, 
Q1.P2.Q3.P3.Q6 traces the fundamental pattern of Figure 12.40. In
terestingly, Lalvani is able to manipulate the sequence of net points 
within the fundamental region to transform one pattern to another so 

Figure 12.40 An Islamic pattern 
with 236 symmetry. Fundamen
tal pattern outlined in boldface 
and reproduced in a 236 net su
perimposed on the fundamental 
domain. 

Q 1.P2. Q3. P3. Q6 
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Figure 12.41 A magnification of 
the fundamental domain with 
236 net superimposed. The fun
damental pattern of Figure 12.40 
is outlined by Q1.P2.Q3.P3.Q6. 

that there is a dynamic between all tilings within a symmetry group. 
It is also remarkable that, once again, the basic structure of a pattern 
is repeated at different scales. 

12.19 Symmetry of Similarity 

Throughout this book, we have tried to show how geometry mediates 
between the harmony and unity of forms in the natural world and our 
human capabilities to grasp these forms with our senses. The similar
ity of natural forms has been one of the keys to understanding this 
unity and harmony and it has been a recurring theme throughout this 
book. The first three chapters showed how the concept of similarity is 
related through geometric series, spiral growth in nature, fractals and 
their application to the geometry of natural forms from mountains 
ranges to coastlines, proportion in architecture, the musical scale, and 
Fibonnaci series. In Chapters 5 and 6 the Penrose tilings could each be 
inflated to tilings with kites and darts of arbitrarily large scale. All 
origami patterns were shown to be made up of self-similar elements, 
as were the polygons within the Islamic tiling discovered by 
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Chorbachi and described in Section 5.13.3 and the ones studied by 
Lalvani and illustrated in the previous section. In Chapter 6, two-
dimensional patterns of soap bubbles, biological tissues, rural market 
networks, and the patterns of plant growth were shown to be made up 
of self-similar cells. Also, in Chapter 8 the close packing of spheres led 
to a series of similar high-frequency polyhedra where the frequency 
depends on the number of layers in the packing. It is therefore fitting 
to conclude this book with a brief discussion of the symmetry of simi
larity. 

12.19.1 The mathematics of similarity 

In Section 2.9, the self-similarity of the right triangle led to the con
struction of the logarithmic spiral which arises in nature in the form 
of the Nautilus shell and other patterns of growth. In polar coordi
nates, the logarithmic spiral was described by r = a9 for some a > 0. 
For each real number t, the transformation 7* = (r, 0) -* (ra\ 6 + i) is 
a similarity which leaves the logarithmic spiral invariant. In other 
words, there is a whole continuum of similarities that leave the loga
rithmic spiral invariant. We now examine this similarity transforma
tion and some of its variants. 

12.19.2 The three similarity-symmetry 
operations in the plane 

Shubnikov has made a complete study of the symmetry of similarity 
[19886] and described the three similarity transformations that keep 
a plane similarity pattern invariant, which he refers to as Operations 
K, L, and M. 

Operation K. Operation K is the simplest of the three operations. It 
translates a figure parallel to itself so that all lines joining corre
sponding points converge to a common point, O, the center of simili
tude (see Appendix 2.B). Any pair of corresponding points A,B and 
A',B' are enough to establish both the center of similitude and the 
growth factor k of the similarity where 

, AB 
k=ArW 

as shown in Figure 12.42. Repeated applications lead to a symmetry 
pattern such as the one shown in Figure 12.43. 

Operation N. Corresponding points within two directly similar figures 
related by Operation N are rotated with respect to each other so that 
they simultaneously define and lie on a logarithmic spiral. For exam-
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Figure 12.42 Operation K translates a figure 
parallel to itself. Any pair of points A,B and cor
responding points A',B' establish a center of si
militude O. 

J^Tfcfrfcft*^ 
Figure 12.43 Example of a figure having similar
ity symmetry K. 

pie, corresponding points A,B and A',B' spanning the sides of two tri
angles in Figure 12.44 define the growth factor k, where k = ABI A'B' 
of the similarity. The two triangles are rotated with respect to each 
other by angle <p. The two quantities k and <p uniquely define a loga
rithmic spiral upon which can lie any sequence of corresponding 
points under this transformation as shown in Figure 12.44. For this 
spiral, k = r^jrx where rx, r2 are the two radii separated by angle ip 
that joins A and A' to the center O of the spiral. In fact, if 

r2 = a92 and rx = a"1 

then 

or, taking logarithms, 

r2 

— = a* where <p = 62 - Bl 

7*2 

In — = <p In a 

°< 1 .0 

- ^ 

Figure 12.44 Operation L rotates a figure 
through angle <p. 
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Setting r2/rx = k and using Equation (2.10) yields 

tan ib = :—j-
l n « 

where ib is the angle between the tangent and radial directions to the 
spiral, which completely defines the spiral as described in Section 2.9. 

Repeated applications of Operation N are shown in Figure 12.44. 
Figure 12.45 represents another pattern with symmetry L (9 = - I T / 5). 
In other words, successive segments of the pattern are displaced by 
one-tenth of a revolution, with the negative number signifying that 
the pattern grows in a clockwise direction. You will also notice that 
the pattern subdivides into 10 congruent segments with each segment 
representing similarity symmetry by Operation K. This segmenting of 
an L symmetry into K symmetries will always be possible when the 
angle of rotation 9 is a rational fraction of 2TT. It is this Operation L that 
lies behind the symmetry of the Nautilus shell shown in Section 2.10. 

Operation M. Operation M is the analogue of a glide reflection. Corre
sponding enantiomorphically similar figures such as the two right tri
angles with hypotenuses spanning AB and A'B' are shown in Figure 
12.46. They have a growth factor k = AB/A'B', and they are related to 
each other by a combination of translation by the K-operation and a 
kind of similarity-reflection glide axis G. To be more specific, notice in 
Figure 12.46 that the line AA' joining corresponding points A and A' 
is oriented at an angle 9 with respect to any characteristic line of the 
original pattern such as AB. Thus, the similar image A'B' is oppo
sitely oriented by the same angle ip to the line A'A" joining A ' with the 
corresponding point A" of the hypotenuse A'B" where AA'/A'A" = 
AB/A'B' = k. A'B" can be seen to be related to AB by Operation K. 
The center of similitude O defined by Operation K is also the center 
for a if-operation relating A ' B ' and A'"B'". The similarity glide line G 
is the angle bisector of &, A'OA. 

Figure 12.45 Example of a fig
ure having the similarity sym
metry L (8 = -TT/5). 
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Figure 12.46 General method of 
constructing a figure having the 
similarity symmetry M from 
two given parts AB and A'B' 
having mirror-similarity rela
tion. The similarity plane bi
sects angle AOA'. 

The result of repeated applications of the M-operation to a series of 
right triangles is shown in Figure 12.46. 

12.19.3 Similarity symmetry groups 

Operations K, L, and M can be combined with the usual point symme
try transformations to generate patterns tha t have point similarity 
symmetry. For example, the pattern in Figure 12.47 is called 6.L 
(<p = -TT/8) because it is invariant under sixfold rotations about the 
center. The black polygons transform to the black and the white to the 
white. The angle <p = - I T / 8 signifies the angular intervals through 
which all the main spirals, which are readily visible, run along the 
short diagonals of the black (or white) quadrilaterals. 

Figure 12.48 illustrates a pattern with symmetry 8.M since it com
bines the M-operation with eightfold rotational symmetry. Figure 
12.49, demonstrating similarity symmetry Yl.mL (cp = tr/12), is made 
up of all similar hexagons as in two-dimensional space-filling patterns 
of soap bubble and biological tissue of Section 6.3. It can be seen to 
have twelvefold dihedral symmetry about the center and similarity 
invariance under the L-operation through a central angle of TT/12. 

As a final example, we return in Figure 12.50 to another geometric 
diagram illustrating the archetype 12 contained in the sacred geome-

t**»-l 
Figure 12.47 Figure having the simi
larity symmetry 6. L (<p = -TT/8). 



sii§<N 
Figure 12.48 Figure having the 
similarity symmetry 8.M. 

Figure 12.49 Figure having the 
similarity symmetry 12.mL. 

Figure 12.50 A 12-square pattern with similarity symmetry ei
ther \2.mL (<p = ir/24) or \2.mK. Growth factor between succes
sive squares is V2. 

file:///2.mL
file:///2.mK
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try of the New Jerusalem (see Section 1.2). Keith Critchlow states 
that this pattern was taken as a proportioning diagram used by Is
lamic craft schools to illustrate controlled proportional increase or de
crease [1976]. He also describes this diagram's relevance to the design 
of the Chartres Cathedral in the film Reflections [1977]. The similarity 
symmetry is either \2.mL (9 = TT/24) or 12.mK, with a growth factor of 
V2 between successive squares within each of the 12 spirals. In other 
words, the diagonal of each square is the side of the next larger square 
in the spiral. A sequence of nine stages is shown from the outermost to 
the innermost square. These spirals of growth are models for the 
growth of plants while also serving as a proportional guide for the de
sign of an entire building or a single tile. 

file:///2.mL


Epilogue 

When I undertook the writing of this book 4 years ago, I had a dim 
awareness of how similarity, proportion, the theory of graphs, two-
and three-dimensional geometry and tiling, and symmetry were inter
related and formed a common language for the arts, architecture, the 
sciences, and engineering. At the conclusion of this project, I stand in 
awe of the degree to which the knowledge of these areas connect. 
These various disciplines, rather than being nations at the Tower of 
Babel, all speaking in different tongues, have much in common. 

I have also discovered that mathematics provides the sinew and 
bone that knits these diverse areas of knowledge together. However, 
this is not enough. In order to gain life, ideas must travel from their 
roots in abstraction to the sights, sounds, smells, and textures of the 
world of experience. Here is where designers enter the picture as co-
equals. In a sense, the mathematician tears at the heart of a problem 
and reduces its essence while, paradoxically, gaining a deeper and 
more general understanding of it. On the other hand, the designer 
sees a problem as a whole and offers up a personal solution and 
through this special involvement, sheds light for all to see. Each needs 
the other's insights. It is only through this duality of approaches to 
problems of all kinds that lasting and useful solutions can come about. 

It is my feeling that the most worthwhile achievements of human
kind come about not merely for util i tarian purposes but to fulfill cer
tain spiritual yearnings in common to us all. It is here that the work 
of fine artists, composers, the great works of sacred architecture, and 
some of the writings of ancient civilizations have something to tell us. 
I have tried as best as I can in this book to present some of this ma
terial and point to the need to take a more serious account of it. 

Although two- and three-dimensional euclidean geometry has tra
ditionally nourished the roots of mathematical thought, today it is a 
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much neglected subject studied only by a few specialists. It is our hope 
that educators will be stimulated by the material that we have pre
sented to introduce geometry to their students through constructions 
and applications. 

It is out of the need to rediscover geometry as the language of the 
arts and sciences that design science had its origins. This book only 
touches the periphery of this vast discipline of design science, yet we 
hope that it will provide readers with a compass to find their own way. 
The reward will be to put the reader not only in touch with colleagues 
from other areas of thought but also to help recreate the linkages that 
bind us to the work of the centuries that have preceded us. 
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Alberti, Leon Battista, 2, 12-14, 16, 
248-249 

Angular deficit, 276-277, 293-294, 337 
Archimedean polyhedra, 297, 298, 

327-329 
circumscribed sphere, 328, 335-338 
combinatorial properties, 337-339 
duality, 335-337 
snub figures, 334-335 
symmetry, 339-341 
truncation of Platonic, 329-332 

Archimedes spiral, 44-45 
Architecture: proportion in, 1-34 

golden mean (see Golden mean) 
musical scales (see Musical scales) 
myth and number, 2-7 
proportion and number (see Number, 

proportion and) 
Roman, 28 
systems of, 16-20 

Arithmetic means, 11, 22 
Arithmetic series, 44 
Augmentation-deletion, 190 

Baracs, Janos, 188, 224, 251-252, 273, 
371, 376 

Barrel vault, 342-345 
Bartok, music of, 97-103, 323 
Beehive, 353 
0-tungsten, 359-360 
Bijection, 389, 411 
Bilateral symmetry, 406, (illus.) 407 
Bipartite graph, 120, 158 

(See also K 3 3 ) 
Boticelli Venus, 25, (illus.) 26 
Bracing subgraph, 158-159 
Bracing problem, 155 

Canons of proportion, 1, 16, 17, 24, 95 

Cell decomposition, 226 
Cellular forms, 105, 106, 214-217 
Center: 

of similitude, 36, 67 
of symmetry, 181 

Central place theory, 217 
Chinese rings, 166 
Circle chopper, 41-43, 68-70 
Circumscribed sphere, 261-262, 287, 292, 

335-338 
Close-packed spheres, 319-323, 347-351, 

357, 360 
Closed system, 25, 97, 103, 322-323 
Colored symmetry, 417-418, 427 
Combinatorial properties: 

archimedean polyhedra, 337-339 
cellular networks, 214-217, 241-242 
Descartes' formula, 292-294 
graphs 120-122 
regular polyhedra, 268-270 

Commensurable groups of units, 7, 31-33 
Compass and straightedge, 41, 47, 69-70, 

83-87, 171, 211 
Complete graph, 120 
Congruent squares, 32-33, 36, 71, 

438-440 
Connected graphs, 107, 116, 119-120 
Continued fraction, 20, 31, 33 
Convergents, 20, 79, 240 
Convex and nonconvex, 169-173, 

226-227, 256, 291 
Coordination polyhedron, 356, 357, 360 
Coxeter, H. S. M., 67, 71, 93, 96, 238, 

261, 286, 340, 364-365, (illus.) 
366-367, 372, 426 

Coxeter polyhedra, 364-365, (illus.) 
366-367 

Crapo, Henry, 154, 224, 266, 272-273, 
371 
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Critchlow, Keith, 54, 202, (illus.) 
204-205, 207, 262, 317-318, 329, 
(illus.) 451, 452 

Critical number, 33 
Crowe, Donald, 88, 163, 383, 423, (illus.) 

424, 427, 431 
Csaszar polyhedron, 142-145, table 

(illus.) 146 
Cube, 258 

dihedral kaleidoscope, 288, (illus.) 289 
embeddings in, 304 
and golden mean, relation to, 311 
interpenetrating, 266-267, 300 
principal directions of, 284-285, 

355-356, 370 
rigidity of, 257, 271-272 
rhombic dodecahedron, relation to, 303 
space-filling, 277 
symmetry of, 283-284, 286-287 
truncation of, 306-309, 330-331 

Cubic close packing (see Close-packed 
spheres) 

Cuboctahedron, 296-297, 317 
close packing of, 319-323, 348, 

350-351, 357 
coordination polyhedron, 356 
geodesies, 300-301 
space-filling, 297, (illus.) 298 
tensegrity and, 312-313 

Da Vinci, Leonardo, 39, 89, 249 
Decagon, 89, (illus.) 90-91, 244, 247 
Descartes' formula, 274-275, 292-294, 

338 
Diamond and graphite networks, 365-368 
Dihedral angle, 275-277, 278, 364 
Dihedral symmetry (see Point symmetry) 
Dilatations, 36, 67-68 
Diophantine equation, 8, 33 
Dirichlet domain: 

in plane, 220-224 
and plant growth, 238-243, (illus.) 244 
rigidity in, 227-230 
three-dimensions, 356-357, 360, 368 

Divergence angle, 91, 238 
DNA, 51, 89, 323, 325 
Dodecahedron, 258, 339 

dihedral angle, 277 
embeddings in, 304-305 
and golden mean, relation to, 308-309 
and stellated figures, 289-291, 309 
symmetry of, 284 

Dorman Luke method, 337 
Duality: 

of archimedean solids, 335-337 
in Bart6k's music, 103 
of convex polyhedra, 291-292 
interpenetrating duals, 266-267, 

299-301, 351 
isometric vector matrix (IVM) dual, 

370-371 
of maps, 125-127 
of networks, 362-368, 370-371 
of platonic solids, 264-268 
of reciprocal figure, 224-230 
of regular tilings, 177 
of semiregular tilings, 181-182 

Dunham, Douglas, 71, 420-422 
Diirer, Albrecht, 87, 137, 246, 248 

Enantiomorphy, 36, 304-305, 437-443 
Escher, M. C , 71, 134, 191, 248, 265 

Black and White Knights, 235 
Liberation, 192 
Mobius Strip II, 136 
photo of, 266 
Reptiles, 250 
Stars, 268 
wallpaper pattern, 420 

Euclid's algorithm, 34 
Eulerian paths, 159-163 
Euler's formula: 

for plane, 106-108, 118-120, 123 
for polyhedra, 257, 269, 274, 275, 

292-294, 337 
for random cells, 215, 241, 369 
for other surfaces, 133, 144 

Federov solids, 371, (illus.) 372, 375 
Fibonacci Nim, 81 
Fibonacci series, 17, 27, 76-80 

additive properties as, 17, 82 
in Bartok's music, 97-103 
decomposition in, 81 
Lucas series, 76, 93 
Modulor, 21-24, (illus.) 25 
plant growth and, relation to, 93, 238, 

240-241 
Figure and ground, 418, 427, (illus.) 430 
Five brother's problem, 129-130 
Fivefold symmetry, 196, 234, 243-248, 

285, 289-291, 304-306, 309, 
375-381 

Flatland, 394-395, 413 
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Floor plans, 145-154 
access graph, 147-148 
adjacency graph, 147 
five-step procedure, 150-153 
of Wright, Frank Lloyd, 148-153 

Fractals, 55-63 
of coastline, length of, 57 
dimension of, 60 
geometrical, 55-62 
Koch snowflake, 58-62 
length of, 55-57 
Peano curve, 60-61 
scale of, 55-59, 62 
statistical, 62-63 
(See also Self-similarity) 

Frequency of polyhedron, 321-322, 323-325 
Frieze symmetry, 422-425 
Fuller, R. Buckminster, 131, 258, 279, 

297, 299, 301, 320-323, 350-351, 
369-371 

Fundamental pattern, 234, 236-238, 416 

Galileo, Galilei, 63-64 
Garden Houses of Ostia, 28-32, 97, 101 
Gardner, Martin, 42, 43, 47-48, 63, 71, 

81, 142, 194-197, 384-386, 406 
Geodesic dome, 323-324, 375-376 
Geodesies, 262, 300-301, 351 
Geometric means, 11, 12 
Geometric series, 13, 16-18, 79-80, 82 

logarithmic spiral, 45-48 
Modulor, 21 
musical scale, 12-16, 98 
sacred cut, 29 

Ghyka, Matila, 2, 76, 89, (illus.) 90-91 
Gilbert's method, 235-239, (illus.) 

239-240, 437 
Glide reflection, 393-394, 400, 402, 

440-442 
Gnomon, 3, 4, 52-55 
Golden isozonohedra, 377-381 
Golden mean, 8, 55, 75-103 

Bartok, music of, 97-103 
continued fraction, 20 
Fibonacci series, 76-82 
golden isozonohedra, 377-381 
golden rectangle, 22-23, 55, 79, 80, 

82-85, 308, 311-312 
golden section, 21, 22, 25, 83, 89, 99, 

308 
golden triangle, 85-86, 194, 248, 

(illus.) 249, 290-291, 308, 309 

Golden mean (Cont.): 
and Modulor, 21-27, 82, 97 
pentagon, 86-89, 308, 323 
plant growth, 89-97, 241 
platonic solids, 308-309, 311-312 
Wythoff s game, 96-97 

Graphs, 105-166 
bipartite, 120 

(See also K3 3) 
bracing structures, 154-159 
combinatorial properties, 120-122 
complete, 120 

(See also K5) 
connected, 116, 119-120 
with cycle, 119 
digraph, 112-114 
Eulerian paths, 159-163 
floor plans, 145-154 
Hamiltonian paths, 163-166 
incidence matrix, 109, 120, 150 
isomorphic, 110-112, 125 
magic squares, 137-138 
maps, 114-120, 122-124, 138-141 

duality, 125-127 
Szilassi and Csaszar, 142-145 

multigraphs, 112, 113 
new, from old, 124-125 
1-, 2-, 3-connected, 120 
planar and nonplanar, 112, 116, 125, 

127-129, 150, 152 
and platonic solids, 308-313 
polytopal, 166, 269 
pseudographs, 112-114 
subdivision, 125 
subgraph, 124 
supergraph, 124 
surfaces for, 129-134 
torus: 

and Mbbius strip, 134-137 
regular maps on, 141-142 

tree, 119, 213 
(See also Eulerian paths; Hamiltonian 

paths) 
Great dodecahedron, 289, (illus.) 291 
Great rhombicuboctahedron, 328, 339, 

363 
Griinbaum, Branko, 256, 269, 328 

and Shephard, G. C., 168, 178, 183, 
426, 427 

Half-turns, 403, 422 
Hamiltonian paths, 163-166 
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Handshake lemma, 122 
Harmonic means, 11-12, 22, 31 
Harmony of the spheres, 9, 322-323 
Hexagon, 87, 175, 215-217, 223-224, 

231-232, 300, 338-339, 353, 406, 
(ilius.) 408 

Hexagonal close packing, 319, 350, 357 
Hierarchical arrangements, 77-78 
Holden, Alan, 259, 303-308, 313 
Horizon line, 250, 251 
Human scale, 2, 25-27 
Hyperbolic geometry, 70-73,176, 420-422 
Hypercube, 165-166, 374-381 

Icosahedron, 84, 85, 258 
circumscribed sphere, 261-262 
close-packing, 319-322 
embeddings in, 305 
and geodesic dome, relation to, 

323-325 
and golden mean, relation to, 85, 308, 

310-311, 334-335 
icosamast from, 281 
interpenetrating dual, 300-301 
rigidity of, 271 
symmetry of, 284 
stellated figures, 309 
and virus, relation to, 323-325 

Icosidodecahedron, 295-298, 300-301 
Identity transformation, 389-390 
Incidence matrix, 109, 110, 113-114, 117 
Incommensurable ratios, 8 
Inflation, 197 
Inscribed angle, 42, 65-67 
Inscribed sphere, 264-266, 287, 292 
Intermediate polyhedra, 296-299 
Intermediate sphere (intersphere), 

266-267, 287, 292, 337 
Inverse mapping, 389-390 
Inversion in a circle, 68, 291 
Irrational numbers, 7, 9, 43, 95, 96, 170 
Islamic art, 168, 200-207 

symmetry of, 445-446 
tilings, 202-206 

Isometries, 383-404 
half-turns, 403-404 
mappings, 387-390 
and mirrors, 384-386, 395-402 
proper and improper, 394-395 
reflections of, 392-393, 395-402 
rotations of, 391-392 
sets, 386-387 

Isometries (Cont.); 
and symmetry groups, relation to, 

409-410 
transformations, 394-395 
translations of, 390-391 

Isomorphic graph diagrams, 110-112, 
125, 166, 411 

Isotropic vector matrix (IVM), 369-371 
Isozonohedra, golden, 377-381 

Jitterbug, 298, 320-321, 376 
Juxtapositions, 279 

K-dron, 186-188, 288 
K33, 120, 127-128, 134, 153-154 
KB, 120, 126, 134, 150 
Kaleidoscope (see Symmetry, and 

kaleidoscopes) 
Kappraff, Jay, 44, 55, 75, 238, 251 
Kelvin's ideal soap film, 368-369 
Kepler, Johannes, 39, 167, 175, 258, 

264-265, 289, 328 
Koch snowflake, 58-62 
Kuratowski's theorem, 128 

Lalvani, Haresh: 
and archimedean polyhedra, relation 

between, 329, 339-340 
and duals, 266 
and hypercubes, 375-382 
Islamic patterns and, 445—446 

Lattices, 230-234 
body-centered cubic (bcc), 354, 355, 

361-363, 369-371 
face-centered cubic (fee), 354-356, 361, 

369-371, 376, 381 
long-range orientational order, 

231-232, 245 
long-range translational order, 231, 

232, 246 
networks derived from, 360-371 
and pattern generation, 234-239 
and plant growth, relation to, 238, 

240-241 
and quasicrystals, 245-246 
and simple cubic packing (scp), 354, 

355, 364, 369-371, 376, 381 
symmetry of, 230-232, 426-427 
three-dimensional, 355-356 
and unit cell, 232, 233 

Le Corbusier, 2, 21, 23, 27, 55, 89, 96, 
101, 426 
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Line choppers, 41 
Line of symmetry, 181 
Line symmetry, 422-425 
Loeb, Arthur L.: 

combinatorial constraints, 338-339 
and diamond and graphite, structure 

of, 365-368 
and Dirichlet domains, 220-221, 

356-357, 368 
and frequency, formula for, 321 
and metallic crystals, 347-350, 

357-360 
and rhombic dodecahedron, 303 
and rigidity, 270-273 
and Schlegel diagrams, 263, 267, 329 
and symmetry, 406, 432-445 
and tetrahedron, 315-317 
and truncated octahedron, 332, (illus.) 

333 
Logarithmic spiral, 45-48 

Magic squares, 137-138 
Mandelbrot, Benoit, 55, 57, 59-62 
Mappings, 387-390 
Maps: 

coloring of, 138-141, 203 
dual, 125-127 
isomorphism in, 115 
pseudomap, 115 
regular maps: 

in four-dimensional space, 165-166 
on plane, 122-124 
on torus, 141-142 

on sphere, 117-119, 259-261, 335-337 
Mean proportional, theorem of, 39, 45 
Melancholia, 87, 137, 246 
Metallic crystals, 279-280, 350, 355, 

357-360 
Michell, John, 4-6 , 87, 88, 138, 

172-173 
Miraldi angle, 285, 314, 340, 366, 368 
Mirrors, 384-386, 395-403, 406, 408, 

438-440 
Mobius strip, 134-137, 424 
Module, 15, 16, 182-183 
Modulor, 21-27, 81, 82, 96, 97 
Monad, 4, 17 
Musical scales, 9-16 

acoustic, 9, 101 
chromatic, 98, 101 
Fibonacci, 100 
overtone, 100 

Musical scales (Cont.Y. 
pentatonic, 98, 99 
well-tempered, 98, 100 

Networks, 360-371, 437-438 
two-dimensional, 209-253 

Dirichlet domains, 220-230 
lattices (see Lattices) 
planar soap films, 209-214 
quasicrystals and Penrose tiles, 

243-248 
random cellular, 214-217 
rigidity, 224-230 
rural market, 217-220 
spider webs, 224-230 

New Jerusalem, 4, 5, 138, 172-173, 201, 
452 

Nonoriented surfaces, 134 
Nonperiodic tilings (see Penrose tiles) 
Normal subgroup, 412-413, 417-418 
Number: 

greatest common divisor, 33, 34 
irrational, 7, 9, 43, 95, 96, 170 
least common denominator, 8 
and mysticism, 2-7 
natural, 7 

proportion and, 7-9, 16-20, 32-34 
rational, 7, 41, 170 
relatively prime, 33, 34 

Octahedron, 258 
and circumscribed sphere, 261-262 
embedding in, 295-296, 304 
and golden mean, relation to, 308 
and interpenetrating polyhedra, 

266-267, 300 
octamast from, 281 
and perovskites, relation to, 280 
and rhombic dodecahedron, relation to, 

302-303 
rigidity and , 257, 272 
sphere packing and, 318 
symmetry for, 284 
truncated, 332-334 

Octet truss, 278-279, 281-282, 350-352, 
361, 369-371 

Octetmast, 281-282 
Odd and even isometries, 394-395, 413 
Open system, 32, 97, 323 
Orderly tangles, (illus.) 312, 313 
Oriented surface, 133 
Origami, 198-199 
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Ornamental symmetry (see Wallpaper 
symmetry) 

Orthoschemes, 287-288 
Ostia, Garden Houses of, 28-32, 97, 101 

Packing of spheres, 317-325 
close packing, 319, 347-350 
packing ratios, 353-355 
relation to octet truss, 350-353 

Palladio, Andreas, 14, 15 
Parquet deformations, 190-194 
Parthenon, 9, 82 
Pattern generation: 

aesthetics of, 443-444 
and groups, 419-420 
fundamental pattern (motif) of, 234, 

236-238, 416 
and hyperbolic geometry, 420-422 
and the kaleidoscope, 415 
and lattices, 234-238 
and symmetry, 430-432 
of wallpaper patterns, 432-445 

Pendant edges and faces, 115, 116, 121 
Penrose tiles, 194-197, 244-248, 

380-381 
Pentagon, 86-89, 103, 202, 175, 194-196, 

323 
Period rectangle, 50, 134-137 
Perovskite, 279-280, 359 
Phyllotaxy (see Plant growth) 
Pick's law, 233 
Pitch, 50, 93, 238 
Plant growth (phyllotaxy): 

and Dirichlet domain, 238-243 
divergence angle in, 91, 238 
and phyllotaxy numbers, 79, 93, 241 
pitch in, 50, 93, 238 
and spacing theorem, 94-97 

Plato, 2, 4, 9, 10, 13, 14, 255, 258, 295 
Platonic polyhedra, 257-264 

angular deficit, 273-275 
circumscribed sphere, 261-262 
combinatorial properties, 268-270 
Descartes' formula, 292-294 
dihedral angle, 275-277 
duality, 264-268 
embeddings in, 303-308, 316-317 
and golden mean, relation to, 308, 

311-312 
hierarchy of, 320-321 
infinite regular, 364-365, (illus.) 

366-367 

Platonic polyhedra (Cont.): 
inscribed sphere, 264-266 
intermediate sphere, 266-267 
juxtapositions, 279-282 
orthoschemes of, 286-288 
rigidity of, 270-273 
Schlegel diagrams of, 263-264 
space-filling properties, 277-279 
with star faces, 288-291 
symmetry, 282-288 
transformations of (see Transforma

tions of platonic solids) 

Poincare plane, 70-73, 420-421 
Point complex, 356, 365-367 
Point symmetry, 406-408, 413-415, 417, 

422 
Pole and polar of a circle, 292 
Polygons: 

convex, 169 
four-sided, 175 
regular, 169, 173-175, 223, 261 
star, 169-173, 201, 289-291 
star-shaped, 169, 171, 183, (illus.) 184 
triangle, 175, 210-212, 221-224, 

413-414 
(See also Hexagon; Pentagon) 

Polyhedra: 
angular deficit, 273-275 
circumscribed sphere, 261-262, 287, 

292, 335-337, 338 
dihedral angle, 275-277 
geodesies, 262, 300-301, (illus.) 302 
inscribed sphere, 264-266, 287, 292 
intermediate sphere, 266-267, 287, 

292, 337 
interpenetrating, 296-297, 337 
juxtapositions, 279-282 
regular (see Platonic polyhedra) 
Schlegel diagrams, 263-264, 331-332 
space-filling (see Space-filling 

polyhedra) 
star, 288-291, 308-309 
vertex figure, 276-277, 289, 364 
(See also Archimedean polyhedra; 

Platonic polyhedra; Prisms and 
antiprisms; Symmetry) 

Principal directions of a cube, 284-285, 
355-356, 370 

Prisms and antiprisms, 328, 341-345 
Projective geometry: 

perspective of, 248-251 
rigidity in, 228-230, 251-252 
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Proper and improper isometries, 
394-395, 413 

Proportion: 
canons of, 1, 16, 17, 24, 95 
Garden Houses of Ostia, 28-32 
and music, 12-16 
Pell's series, 18, 29-32 
principle of repetition of ratios, 19, 53 
Roman, ancient system of, 28-32 
systems of, 16-20 
theta, 9, 18-20, 55, 89 
(See also Fibonacci series; Modulor) 

Pugh, Anthony, 259, 280-281, 310-312, 
329 

Pyramid of Cheops, 5, 76, 85, 301, 340 
Pythagoras, 2, 8-10, 12, 29, 40, 89 
Pythagorean theorem, 39, 68, 205-206, 

285 

Quasicrystals, 234, 243-248, (illus.) 379, 
380-381 

Quotient group, 412 

Radiolaria, 4, 258 
Radome, 185 
Raphael's Crucifixion, 89, (illus.) 90-91 
Rational numbers, 7, 41, 170 
Reciprocal figure, 224-230 
Red and blue series, 21-24 

(See also Modulor) 
Reflections, 181, 304, 392-393, 395-401 
Regular infinite surfaces, 364-365, 

(illus.) 366-367 
Regular maps on plane, 122-124 
Regular maps on torus, 141-142 
Regular polyhedra (see Platonic polyhe-

dra) 
Regular polytopes, 165-166 
Regular tilings, 168, 173-177, (illus.) 

179, 183, (illus.) 184 
Revelations, 4, 138 
Rhombic dodecahedron, 300-303, 338, 

351-353, 356, 357, 371, 374 
Rhombic triacontahedron, 301, 374-381 
Rigidity: 

in spider webs and Dirichlet domains, 
224-230 

in three-dimensional frameworks, 257, 
270-273 

in two-dimensional frameworks, 
154-159 

Rivier, N., 214, 241-243, 369 

Rotations, 391-392, 397-398, 402-404 
Rotocenters, 237-238, 432-437 
Rural market networks, 217-220 

Sacred architecture, 4-7, 54, 138, 453 
Sacred cut, 28, 29, 32 
Schechtmanite, 243, 246 
Schlafli, Ludwig: 

formula, 165, 166 
orthoschemes, 287-288 
symbols, 124, 261, 264, 289, 290, 297, 

300, 337 
Schlegel diagrams, 263-264, 331-332 
Self-similar curves, infinite, 55-63 
Self-similarity: 

and Islamic tilings, 206-207, 445-446 
and the Modulor, 25, 32 
and nature, 48-52 
and origami, 199 
and plant growth, 95, 241 
and principle of repetition of ratios, 

52-55 
of the right triangle, 38-40 
statistical, 62-63 
(See also Fractals) 

Sets, 108-109, 386-387 
Shephard, G. C. (see under Griinbaum, 

Branko) 
Similarity, 35-73 

Archimedes spiral, 44-45 
circle chopper, 41—43 
growth factor in, 36 

and form, 63-65 
in geometry, 52-55 
in nature, 48-52 

line chopper, 41 
logarithmic spiral, 45-48 
mathematics of, 447-450 
similar families, 37-38, 40, 316 
(See also Fractals; Self-similarity) 

Similarity operations, 447-450 
Small stellated dodecahedron, 289, 

(illus.) 290 
Smith, Cyril S., 209, 214-215, 217 
Snelson, Kenneth, 310, 311 
Snowflakes, 4, 406, 408 
Snub figures, 334-335 
Soap films: 

planar, 209-214 
random froths, 214-217, 347, 368-369 
Steiner's problem, 210-214 
three-dimensional, 313-315 
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Space-filling, 189, 285, 297, (illus.) 298, 
329, 351 

properties of, 277-279 
truncated octahedron, 332-334 
Federov solids, five, 371, (illus.) 372 

Space-filling polyhedra, 277-278, 285, 
297-298, 332-334, 347-381 

close packing of spheres, 347-350 
crystal structure, 357-360 
diamond and graphite nets, 365-368 
Dirichlet domains, 356-357 
golden isozonohedra, 377-381 
nets and cubic lattices, 369-371 
networks, 360-361 
packing ratios, 353-355 
regular surfaces, infinite, 362-365 
shape of space, 350-353 
soap froths, 368-369 
three-dimensional lattices, 355-356 
zonohedra, 371-377 

Space frames, 278-279, 351-352 
Sphalerite, 359, 367-368 
Spheres: 

maps on, 335-337 
packing of, 317, 347-350 

Spherical deviation (see Angular deficit) 
Spiral: 

Archimedes, 44-45 
logarithmic, 45-48, 89, 93, 447 
in nature, 48-52 
in nonperiodic tiling, 194 
right-handed and left-handed, 51 
in similarity symmetry, 446-452 

Star polygons, 169-173, 201, 289-291 
Star-shaped polygons, 169, 171, 183, 

(illus.) 184 
Star polyhedra, 288-291, 308-309 
Steiner's problem, 210-214 
Steinitz' theorem, 369 
Stella octangula, 299, 300, 313, 351 
Stereographic projection, 72-73 
Stevens, Peter, 49, 94, 210, 427-428 
Surfaces: 

closed, 133 
genus, 133, 135-137 
homeomorphic, 131 
Mobius strip, 134-137 
multiply connected, 132 
oriented, 133, 134 
simply connected, 132 
torus, 131-133, 134-137 

Symmetry, 405-452 
of a circle, 65-66 

Symmetry (Cont.): 
and design, 430-432 
enantiomorphy, 438-443 
fundamentals, 432-435 
of Islamic tiles, 445-446 
and kaleidoscopes, 286-288, 340, 406, 

(.illus.) 408, 413-418 
mathematics of, 408-410 
nets, 437-438 
plane of, 285 
in platonic solids, 303-308 
rotocenters, 435-437 
of similarity, 446-452 
(See also Pattern generation; Symme

try groups) 
Symmetry breaking, 306-308 
Symmetry groups, 408-415 

of a cube, 283-284, 286-287, 339-340, 
419 

cyclic, 414, 415, 417, 422 
fundamental theorem, 411 
generators, 411 
line (frieze), 422-425 
normal subgroup, 412-413, 417-418 
point (kaleidoscope), 406-408, 413-415, 

417, 422 
quotient group, 412, 418 
similarity in, 450-452 
subgroup, 411 
two-dimensional ornamental, 425-430 
(See also Pattern generation; Wallpa

per symmetry) 
Szilassi map, 141-146 
Szilassi polyhedron, 142-145 

Tensegrities, 310-313 
Tetrahedron: 

atom of structure, 315-317 
circumscribing sphere, 260-261 
edge-to-edge linked, 281 
embeddings in, 303-305 
interpentetrating duals, 266-267 
of methane, 313-314 
of metallic crystals, 357-359 
octet truss, 278, 279 
shape of space, 299, 317-318, 350-351, 

369-371 
soap bubbles, 313-314 
sphere packing, 317-318 
symmetry of, 284 
tetrahelix, 281 
truncation of, 295, 334-335 

Tetraktys, 3,9 
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Thompson, D'Arcy, 48, 63-65, 210, 310, 
314 

Tilings, 167-207 
archimedean (see semiregular, below) 
with circles, 178, (illus.) 180 
duality of, 177 
frieze, 423-425 
on hyperbolic plane, 176 
Islamic art, 200-207 
nonperiodic, 194-197, 243-248 
origami patterns, 198-199 
periodic, 181 
of plane, regular, 173-177 
polygons, 169-173 
regular, 168, 173-177, (illus.) 179 

^-regular, 183 
not edge-to-edge, 183, {illus.) 184 
star-shaped, 183, (illus.) 184 

semiregular, 168, 177-183 
transformation of, 183-194 

augmentation-deletion, 190 
distortions, 188-190 
K-dron, 186-188, 288 
parquet deformations, 190-194 
uniform, 181, 183 
vertex motion, 184-186 

Torus, 134-137 
five brother's problem, 135 
and magic square, relation to, 137 
maps on, 134-135 
(See also Szilassi map; Szilassi 

polyhedron; Csaszar polyhedron) 
Tower of Hanoi, 163-165 
Transformations of platonic solids, 

295-345, 389 
archimedean duals, 335 
archimedean solids, 327-329 
combinatorial properties, 337-339 
geodesic domes and viruses, 323-325 
and golden means, 308-313 
intermediate polyhedra, 296-299 
interpenetrating duals, 299-301 
prisms and antiprisms, 341-345 
rhombic dodecahedron, 301-303 
snub figures, 334-335 
and spheres (see Spheres) 
symmetry in, 303-308, 339-341 
tetrahedron, 313-317 

Transformations of platonic solids 
(Cont.): 

truncated octahedron, 332-334 
truncation, 329-332 

Translation, 390-391, 398-399, 402 
Triangular grid, 141-142, 168, 202-203, 

348-349, 351, 354, 358-359 
Truncated cube, 330-331, 339 
Truncated octahedron, 332-334, 357, 

360, 364, 366, 368 
Truncation, 329-332 

Uniform tilings, 181, 183 
Universal node system, 285 

Valence, 121, 269, 337 
Vanishing point, 251, 252 
Vector, 188-190, 225-226, 235-236, 

275-277, 372-375, 391, 393 
Vector equilibrium, 322, 350, 358 

(See also Cuboctahedron) 
Vector equilibrium principle, 359-360 
Vector star, 188-190, 372-375, 377-379 
Vertex figure, 276-277, 289, 364 
Vertex motion, 184-186, 298 
Vesica piscis, 54, 87 
Viruses, 323-325 
Vitruvius, 16 

Wallpaper symmetry: 
aesthetics of, 443-445 
enantiomorphy in: 

glide lines, 440-442 
mirror lines, 438-440 

fundamental postulate of crystallogra
phy, 432-435 

nets, 437-438 
in patterns, 442-443 
rotocenters, 432-438 

Wenninger, Magnus, 259-266, 289, 335 
Williams, Robert W., 190, 287, 329, 369, 

371 
Wright, Frank Lloyd, 148-153 
Wythoff s game, 96-97 

Zone, 373 
Zonogons, 188-190 
Zonohedra, 371-381 
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Supplements 

S.1 Analysis of the Snub Figures 

Rotge's [1984] investigation of the snub figures was discussed in 
Section 9.5. It was shown here that the icosahedron (3.3.3.3.3), snub 
cube (3.3.3.4.3), and snub dodecahedron (3.3.3.5.3) can be framed by a 
tetrahedron, octahedron, and icosahedron, respectively, in a special 
way. The numbers in parentheses with pattern 3.3.3.q.3 signify the 
sequence of regular polygons that surround each vertex of the snub 
figures, that is, four equilateral triangles and one regular polygon 
with q sides. Each tr iangular face ABC of the framing Platonic 
polyhedron is subdivided as shown in Figure S.1.1. The subdivision 
is based on a crucial ratio r = CP/PB or CP'/P'B. The ratio r is 
directly related to the central angle § tha t is subtended by the semi-
edge of the snub polyhedron. This relation has been shown by Messer 
[2000S] to have the following simple equation, 

r = 2-tan2<|>. (S.1.1) 

Figure S.1.1 Triangle ABC frames 
triangle LMN for r > 0 and L'M'N' 
for r < 0. The twist angles are 8s and 
8/ respectively. 
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LMN is the face of the snub figure when r is positive and L'M'N' 
is the face of snub figure when r is negative. The ratio r is computed 
as the roots of the following equation derived by Rotge' and modified 
by Messer [2000S], 

r 3 - r 2 - / - - l - 2 c o s — = 0 (S.1.2) 

For the icosahedron, q = 3, and Equation (S.1.2) reduces to 

r 2 - r - l = 0 (S.1.3) 

with roots r = § = 1.618...and r = -l/§ = -0.618. . . For the snub cube, 
q = 4, and Equation (S.1.2) reduces to r 3 - r 2 - r - l = 0 with root 
r = 1.839. For the snub dodecahedron, q = 5, and Equation (S.1.2) 
reduces to r3 -r2-r-§ = 0 with the root r = 1.943... Also angle 0s is 
the angle that each snub triangle is rotated ("twisted") relative to the 
framing triangles. Its measurement is given by the simple formula 
derived by Messer [2000S], 

S 
tan9s = r—rr (S.1.4) 

l + 2rsgn[r-1] V^.J..-*; 

where the exponent sgn[#] = 1, 0, or - 1 if x > 0, x = 0, or x < 0 
respectively. Table S.l . l summarizes the results for the three snub 
figures described above. 

TABLE S.1.1 Parameters of the Snub Figures 

Name 

Icosahedron 

Snub cube 

Snub dodecahedron 

r 

1.618... 

1.839... 

1.943... 

6s (degrees) 

22.238... 

20.315... 

19.517... 

The three snub figures within their framing regular polyhedra 
are shown in Figure 9.12(a), (b), and (c). Notice that one triangle face 
lies on each of the faces of the framing polyhedra. The snub cube 
could also have been framed by a cube in which case the square faces 
would lie on the faces of the cube. In a similar manner, the snub 
dodecahedron could have been framed by a dodecahedron with all 
of the pentagonal faces of the snub figure lying on the faces of 
the dodecahedron. As a result, each snub polyhedron relates to a 
particular intermediate polyhedron (see Section 8.2) whose faces 
correspond to the two principal kinds of snub faces. However, unlike 
the intermediate polyhedra, snub polyhedra have extra intercalating 
triangles that surround each principal snub face. For this reason, 
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some polyhedron specialists feel that these snubs should be renamed 
"snub cuboctahedron^ and asnub icosidodecahedron" respectively. The 
icosahedron falls into the snub category since four of its principal 
faces lie on the framing tetrahedron while four others lie on the dual 
tetrahedron. Twelve other triangles occur as intercalating faces. For 
this reason the icosahedron can be considered a "snub octahedron^ 
since the octahedron is the intermediate polyhedron formed by the 
tetrahedron duals or stella octangula. However, current technical 
usage refers to the icosahedron as a asnub tetrahedron" or "snub 
tetratetrahedron." 

Figure S.l . l has been constructed to have CP/PB = rsglllr™11 = 
1.618..., the positive root of Equation (S.1.3). LMN is the triangle face 
of the corresponding snub figure, in this case, the icosahedron. 

If instead r is taken to be the other negative root, r = -0.618..., the 
triangle face L'M'N' of the corresponding snub figure shown 
in Figure S.l.l results. Notice that since P ' is now outside of the 
triangle, the ratio CP7P'S = r^n[r-11 =-1.618... is now negative 
because CP' and P'B are oppositely directed and therefore have 
different signs. The same holds for Q' and R'. Equation (S.1.4) 
yields, 88 = -37.761 deg. Notice that the difference between the twist 
angle for the positive (22.238 deg.) and negative (-37.761 deg.) values 
of r is 60 degrees, the angle of the framing face. The snub figure is 
the Kepler-Poinsot polyhedron known as the great icosahedron {3, 5/2} 
shown in Figure 8.1.2(a). Eight of its twenty equilateral triangle faces 
of the great icosahedron lie on the framing tetrahedron and its dual 
while the other twelve occur as intercalating faces. Its vertex figure is 
a star pentagon. 

Figyr® S.1.2 (a) The great icosahedron is produced 
from r = -1.618; (b) template for constructing the 
facets of the great icosahedron. 
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The great icosahedron is built from the shaded triangles in Figure 
S. 1*2(6). The same template for these triangles also defines the facets 
of the outer surface of all the other stellated figures related to the 
icosahedron. It is constructed from two equilateral triangles drawn 
within a framing equilateral triangle. The points on the edge' of 
the framing triangle cut the edge in the golden section. Details for 
constructing the great icosahedron are found in Wenninger [1971]. 

Another non-convex snub figure will be discussed in the next 
section. 

S.2 Uniform Polyhedra 

A general study of three-dimensional form can be built around 77 
polyhedra with special properties. The defining property of these 
uniform polyhedra is that their faces are regular polygons which meet 
in the same way at every vertex [Coxeter, 1954]. The most symmetric 
of these are the nine regular polyhedra (five Platonic and four Kepler-
Poinsot) because their faces are all alike. By allowing more than 
one kind of face we can derive the set of 13 convex semi-regular or 
Archimedean polyhedra, a family of prisms and anti-prisms, and finally 
53 non-convex, non-regular uniform polyhedra [Wenninger, 1971], 

All but one of the regular, semi-regular, and prismatic polyhedra 
have been discussed in this chapter and the last. Two of the Kepler-
Poinsot polyhedra, the small stellated dodecahedron {5/2, 5} and the 
great dodecahedron {5, 5/2}, were discussed in Section 7.14 while 
the great icosahedron {3,5/2} was introduced in Section S.l. The 
remaining member of the set is the great stellated dodecahedron 
{5/2, 3} shown in Figure 8.2.1(a) (also see Figure 8.21). It has three 
pentagram faces meeting at each vertex. Its outer surface is composed 
entirely of the shaded triangles in Figure S.2.1(6) and built by 

(a) (b) (c) 

Flgyre S.2.1 (a) The great stellated dodecahedron; (b) template to construct,the facets; 
(c) one of the twenty triangular pyramids used to construct the great stellated dodeca
hedron. 
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cementing the triangular pyramids of Figure S.2.1(c) to the faces of an 
icosahedron. 

Peter Messer describes his feelings about the significance of the set 
of 53 non-convex uniform polyhedra. 

"The members are so beautiful that my eyes almost hurt when beholding any one 
model representation. To feel one in the hand is bliss. Such models appeal to our 
innate sensory and intellectual longings for symmetry and order as we seek 
refuge from our too familiar and chaotic three-dimensional world. Endless inspira
tions and intertwined'insights await the curious mind that peers into the depths 
of their st]ructure.,, 

One of the 53 is illustrated in Figure S.2.2. It shows yet another 
snub figure whose triangle faces are also twisted (r = 1.399) relative to 
the triangle faces of another framing polyhedron having reflection 
planes. Its technical name is "great snub icosidodecahedron?'? an 
example of a non-convex uniform snub polyhedron having the vertex 
cycle 3.3.3.5/2.3 (see Section S.l). Twenty of its triangle faces are„ 
framed by the great icosahedron {3, 5/2} while its twelve pentagram 
faces are framed by the faces of the great stellated dodecahedron 
{5/2, 3}. 

Another of the 53 is illustrated along with its dual in Figure 
8.2.3(a) and 8.2.3(c). This polyhedron has the vertex cycle: 10.5/2.10.3 
in which the pentagram is retrograde. It can be thought of as a 
truncated form of the great stellated dodecahedron with the embossed 
stars of the great stellated dodecahedron taken from their planes and 
turned over to fill the spaces between the stumps remaining after 
truncation. The outer facets are defined by the shaded faces of the 
decagon in Figure 8.2.3(6). Details for constructing it are given by 
Wenninger [1971]. Its dual is shown in Figure S.2.3(c). 
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Figure S.2.3 (a) A non-convex uniform polyhedra with vertex cycle: 10.5/2.10.3; (h) tem
plate to construct the outer facets; (c) the dual. 

Messer [2000S] has derived the following formula to determine the 
dihedral angle BD between a pair of regular w-gonal faces {%} and {n2} 
of any uniform polyhedron, 

QD =arccos tan ̂ ) cot 180 
Tit 

f 
± arccos tan cj> cot 

v 

180 
m (S.2.1) 

where # is the central angle subtending the semi-edge. The plus sign 
is used when {rti) and [n2) follow the same circular direction around 
the polyhedron vertex; the minus sign is used when one face follows a 
circular direction opposite to the other face. In the latter case, we can 
confirm that one face is relatively retrograde to the other by 
examining the polyhedron's vertex figure. Here we find that the 
corresponding two sides of the vertex figure do not enclose the center 
of the circumscribing circle. The problem in using Equation (S.2.1) is 
that the angle <|> is, in general, difficult to determine. Of course for 
certain snub figures such as the one in Figure S.2.1, Equation (S.1.2) 
can be used to find r and then Equation (S.l.l) used to find #. As for 
solving such metrical quantities in general ways for the uniform 
polyhedra, Messer has derived more complex formulas not presented 
here. 

Finally, Equation (7.C.1) continues to hold for all uniform 
polyhedra, 

e + BD = n radians or 180 degrees (S.2.2) 

where e = 2f and BD is the constant dihedral angle between the faces 
of the corresponding dual figure. 
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S.3 The Dorman Luke Construction of Dual Faces 

The following is an algorithm [Messer, 2000S] for calculating and 
drawing the exact vertex figures of uniform polyhedra (see Supple
ment S.2) from which the Dorman Luke construction of the dual face 
follows as outlined in Section 9.7. This algorithm is limited to vertex 
figures having three or four sides. Calculations are based on uniform 
polyhedra having edge length 2 units. 

1. Let the cycle of regular n-gonal faces about the uniform polyhedron 
vertex be {«i}, {n2}, {ns}, {/i4}; one less if three faces. The faces can 
be star shaped. Then the sides of the s tandard vertex figure 
become: 

a = 2 cos — ,b = 2 cos — ,c = 2 cos — ,d = 2 cos — 
Ui n2 n3 n 4 

where n radians equals 180 degrees. 
2. Now the most general vertex figure under consideration is a 

cyclical quadri lateral (a,b,c,d) whose circumradius R is well 
known: 

_ _ 1 \(ac + bd)(ad + bc)(ab + cd) 

4 \ (s-a)(s-b)(s-c)(s-d) 

where the semi-perimeter of the vertex figure is s = . 

3. The above relation nicely reduces to a triangle by setting d = 0. 
Thus for the scalene triangle case (a,b,c) we get the simplification, 

_ abc 

4-y]s(s-a)(s-b)(s - c ) 

Isosceles triangle case (a,a,b) and equilateral triangle case (a,a,a) 
are just special cases of the general triangle relation. 

4. By setting d-b, the general cyclical quadrilateral is reduced to the 
t rapezoid-shaped ver tex figures t h a t occur among uniform 
polyhedra. 

The standard non-crossed isosceles trapezoid (a,b,c,b) gives, 

ff_M b +ac 

2\(s~a)(s-c) 
The crossed isosceles trapezoid (a,b,c,b) crosses at the 6-sides. In 
this case we make the smaller trapezoid base, say "a", negative as 
it flows retrograde to the other three sides. Thus, we convert to 
(-a,b,c,b) and use the formula for the non-crossed isosceles trapezoid. 
The polyhedron shown in Figure S.2.3(a) has such a vertex figure in 
which the pentagrams are retrograde. 
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The rectangle (a,b,a,b) and the square (a,a,a,a) are just special 
cases of the trapezoid relation. 

In conclusion, the circumradius R of the vertex figure is the same 
as the in-radius R for the corresponding dual face. Simply draw a 
circle with radius R, then with a compass mark off the various chord 
lengths in the cycle (a,b,c,d) to complete the vertex figure. 

For all uniform polyhedra, the following simple relationship occurs 
for the vertex figure circumradius R, angle (|> at the polyhedron center 
that subtends a semi-edge, and 0, the constant dihedral angle of the 
dual polyhedron, 

Q 
R = cos<b = sin— and so 2<b + 0 = rc 

2 

S.4 Buckminsterfullerene: The Third Form of Carbon 

Buckminsterfullerene was discovered in 1985 by Richard E. Smalley, 
Robert F. Curl, and Harold W. Kroto. In the Smalley apparatus a 
laser is aimed at a rotating graphite disk in a helium-filled vacuum 
chamber. The rapid, intense heating of the graphite surface by the 
laser enables many of the C-C bonds in the graphite to rupture. Small 
clusters of carbon atoms cool and collide in the He atmosphere 
yielding new bonding arrangements of C atoms. As the result of 
analysis by a mass spectrometer and a nuclear magnetic resonance 
spectrometer, sixty atom clusters of the carbon atoms were found to 
be the most prevalent. This C molecule known as Buckminster
fullerene was discovered to have the configuration of a truncated 
icosahedron or soccer ball as shown in Figure S.4.1. Each of the four 

A molecular model of soccer ball CM. Each carbon atom takes up a position 
at the vertex of a polyhedron with 12 pentagonal faces and 20 hexagonal 
faces, with each pentagon surrounded by five hexagons. A modem soccer 
ball has the same pattern of pentagons and hexagons. This perfectly 
symmetrical, all-carbon structure represented a whole new concept in 

molecular architecture. 

Figure S.4.1 Buckminsterfullerene, C • 
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carbon valence electrons are shared by single bonding with two 
adjacent carbons and double bonding with another. The great stability 
of C is the result of the formation of a series of hexagonal rings, 
much like benzene rings, and other rings of five carbon atoms. In 
addition to Buckminsterfullerene, a family of fullerenes, also known 
as "buckyballs" have also been synthesized in the laboratory having as 
few as 20 carbon atoms and as many as 84. 

Research on the fullerenes progressed rapidly after 1990 when 
methods of synthesis were discovered that enabled more than only 
trace amounts to be formed in the laboratory. It was also discovered 
tha t the molecules could be made to cluster together into face 
centered cubic (fee) crystal lattices. The molecule was also able to 
form a cage capable of capturing outside molecules. This property was 
successfully used to create high temperature superconductors. The 
molecule was discovered to have an extraordinary ability to scavenge 
electrons resulting in its application in biology as an anti-oxidant for 
possible use in the battle against the HIV virus. In addition to 
buckyballs, Sumio Iijima, at the NEC Corporation in Tsukuba, Japan 
created nanotubes of carbon atoms whose lengths can be millions of 
times their diameters. These tubes, which are made of rolled up 
sheets of graphite, are stronger than steel and have exciting potential 
applications, such as the formation of tiny components for quantum 
computers, and the spanning of 22,000-mile long fibers to build an 
elevator from the ground to the geosynchronous orbit [Chang, 2000S, 
2001S], [Collins, 2001S]. When the sheets of graphite are rolled up 
evenly, the nanotube behaves like a metallic conductor, whereas 
if it is rolled up askew, like a "misbuttoned shirt" it acts like a 
semiconductor. Recently the NEC Corporation has placed buckyballs 
into the nanotubes to create objects that resemble miniscule peapods. 
By enclosing metal atoms within the buckyballs, scientists are able to 
modify the electrical properties of the surrounding tubes. By heating 
the peapods to 2,200 deg., the enclosed buckyballs break apart and 
then coalesce into smaller enclosed nanotubes, thus creating double-
walled nanotubes. 

One of the most successful applications of buckyballs has been 
achieved by subjecting them to microwaves which results in breaking 
their bonds and ejecting carbon pairs. The carbon pairs then condense 
onto a surface of silicon dioxide, forming tiny diamond crystals a few 
billionths of a meter in size. The crystals pile up to form a thin film 
suitable for coating machine parts. It is ironic that this molecule that 
was c rea ted from g raph i t e , finds one of i t s most successful 
applications by decomposing it to diamond. 

There is now a vast literature on this wonderful molecule. Jim 
Baggott 's book Perfect Symmetry [Baggott, 1994S] is a nicely 
accessible example. 
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FIgyre S.5.1 Hyper-geodesic surfaces (a), (b) a hyper-spherical polytope; (c), id) a hyper-
torus; (e) a hyper-cylinder; (/*) a curved hyper-labyrinth. 

S.5 New Morphological Discoveries of Haresh Lalvani 

1. Haresh Lalvani has created a new class of hyper-geodesic surfaces, 
shown in Figure S.5.1, composed of two-dimensional and three-
dimensional Penrose tilings, themselves projections from five and 
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six dimensions as described in Section 10.14, and mapped out on a 
variety of surfaces including faces of polyhedra and cells of a 
polytopes. A polytope is a higher dimensional polyhedron whose 
"faces" are themselves "polyhedra" of lower dimensions. Lalvani's 
hypersphere shown here in Figures S.5.1(a) and (b) is one cell of a 
hyper-spherical polytope. Other hyper-geodesic surfaces shown 
here include a hyper-cylinder [Figure S.5.1(d)], hyper-torus [Figure 
S.5.1(c)] and a curved hyper-labyrinth [Figure S.5.1(e)]. 

2. Lalvani has created families of saddle zonogons and saddle 
zonohedra shown in Figure S.5.2. For example, in the top row, 
he takes a five-cell (a three-dimensional projection of a five-
dimensional cube) and removes appropriate edges to form various 

Figure S.5.2 Saddle zonohedra. (a) Edges removed from a five-cell; (6) edges removed 
from a four-cell; (c) space-filling with four-cell saddle zonohedra derived from a non-
regular diamond lattice; (d) a space-filling tiling with saddle zonogons derived from a 
zonogon tiling. 



484 Supplements 

3. 

saddle zonohedra. Saddle zonohedra can be packed with them
selves or other saddle zonohedra to fill space. The second and third 
rows shows saddle zonohedra derived by removing edges from a 
four-cell (a 3-dimensional projection of a four-dimensional cube) 
and the space-filling of one of these cells. This space-filling is 
shown in two different states and can also be derived from non-
regular diamond lattices (see Section 10.10). The two-dimensional 
equivalent leads to saddle zonogons and their tilings as shown 
with one example in the bottom row. 
Lalvani has discovered new classes of hyperspace labyrinths 
(see Section 10.9). Two examples of a curved version of one of these 
is shown in Figure S.5.3. It consists of a packing of distorted 

(a) 

Figure S.5.3 Two new classes of hyperspace labyrinths. Two packings with distorted 
truncated octahedra (a) four-sided polygons with convex edges; (b) four-sided polygons 
with concave edges. 

Figure S.5.4 An example of a 
labyrinth in hyperbolic space. 
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truncated octahedra with saddle hexagons and 4-sided polygons 
having curved edges as an extension of Kelvin's tetrakai-
decahedron (see Figure 10.23). The example in Figure S.5.3(a) has 
4-sided polygons with concave edges. Both examples can fill space 
non-periodically in a quasi-crystalline manner. He has also 
discovered a whole class of labyrinths in hyperbolic space. An 
example is shown in Figure S.5.4. 

4. Lalvani has extended Pearce's universal node system and Baer's 
zome system (now recreated as the Zometool) to non-regular and 
irregular polyhedra (Figure S.5.5). The top row shows a distorted 
cube, a rhombohedron, with 13 axes, corresponding to the 13 axes 
of rotational symmetry of a cube, similar to Pearce's system shown 
in Figure 7.25, while the bottom row illustrates a distorted 
icosahedral system with 31 axes corresponding to the 31 axes of 
rotational symmetry of the icosahedron or the dodecahedron. The 
system can then be used to create built form in a manner similar 
to those constructed with Pearce's and Baer's systems. Lalvani 
suggests that similar nodes for building systems are possible from 
any irregular polyhedron. 

(a) (b) 

(c) (d) (e) 

Figure S.5.5 A universal node system based on (a), (b) a distorted cube showing 13 axes; 
(c), (d), (e) a distorted icosahedron and dodecahedron exhibiting 31 axes. 
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5. Lalvani's imaginative hyper-Escher pattern, reminiscent of Escher's 
well-known "Day and Night" is presented in Figure S.5.6. In the 
example shown, the metamorphoses take place along four different 
directions. 

Figure S.5.6 Lalvani's hyper-Escher pattern 
remiscent of Escher's "Day and Night". 
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