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1

Preliminaries to a Study of

Musical Acoustics

Starting an extensive book on a closely knit subject is akin

to beginning a journey, since it carries a certain feeling of

anticipation and perhaps trepidation as the author and the

reader search for ways in which to work together. For the

author the journey will be through territory he has visited

before, most of which he has explored thoroughly. For some

readers, almost everything will be new; a few may feel at

times overwhelmed by the new things crowding about them

that seem familiar and even trivial to those who have been

there before. The author must hark back to his own first

visits to the territory of his subject as he tries not to

introduce too many new words and ideas all at once. His

ultimate aim must be to give enough guidance on a limited

number of carefully chosen subjects that the interested

reader will eventually be able to explore new territory on his

own. As you read on in this book, constant attention to two

things can add much to the success of our travels together

through the subject of musical acoustics: (1) your active

participation is needed to make the joint exploration

meaningful, and (2) retrospection will be encouraged as we

return several times to things seen or heard earlier for closer

examination from a more mature viewpoint.

1.1. Musical Acoustics: The Meeting

Place of Music, Vibration Physics,



Auditory Science, and Craftsmanship

This book is addressed most directly (though not

exclusively) to people having a reasonable playing

knowledge of music who would like to learn something of

the ways in which music as an art form intertwines itself with

our understanding of vibrating objects, with the study of

auditory perception, and with the craft of the instrument

maker. The focus of the book is on the vibrations of objects

and of the air which surrounds them, but the particular

manifestations of vibration physics that are chosen for

discussion are those which play a significant role in actual

music-making. Because music is intended to be heard, we

must give considerable attention to the way in which our

auditory nervous system functions as it picks out musical

patterns from the complex acoustical signals that reach our

ears. In the parts of this book dealing with vibration physics

and practical music, I shall be quite explicit in telling how

and why various phenomena take place. The perception

aspects of our subject will be dealt with somewhat

differently. I will tell what it is we hear when various kinds of

sound are presented to our ears, but will not describe how

the vibrations of an eardrum are led through the middle and

inner ear to produce a myriad of nerve impulses that travel

by many pathways to the central nervous system. Nor will I

detail how these impulses come to act upon one another in

several ways simultaneously, in a continuous process that

can span a number of successive sounds to provide us with

recognizable patterns of sensation. In other words, in this

part of the subject we will confine ourselves to a description

of phenomena, without much concern for the ways in which

they come about.

The manner in which each topic is introduced, the order of

presentation, and the choice of the topics themselves have

all been predominantly influenced by my experience with

musicians and instrument makers as we have worked



together over the past two decades. Much of the material in

this book is of recent origin, a considerable fraction of it

being the result of my own observations and calculations, or

of my analysis of the recent work of others. While I have

tried everywhere to make clear the reasoning behind each

assertion and to present examples of the data which support

it, it must be understood that the reasons and examples

shown here are merely illustrative and constitute only a

small part of the basis for my conclusions. Almost everything

in this book has had the benefit of extensive rehearsal in

both spoken and written form. Over the years I have been

blessed with a number of extremely capable students and

laboratory guests. The opportunity to sharpen up the

various ideas by talking with these people and with

interested colleagues in physics and engineering has been

immensely valuable. More recently I have had to deal with

the expository problems connected with teaching various

methods of adjustment to craftsmen or explaining the

reasoning behind my activities as I trimmed up someone’s

trumpet, flute, clarinet, oboe, or bassoon. These experiences

have added a certain intensity to the more relaxed

classroom atmosphere of the courses and lecture series in

musical acoustics I have given.

One question that immediately arises in the mind of a

prospective reader of a book on acoustics written by a

physicist concerns the amount of mathematical knowledge

that will be required of him. If you will leaf quickly through

the book you will notice that I have rigorously confined

myself in the text to the simplest of arithmetic—addition,

subtraction, multiplication, and division; a number may

occasionally be squared or carry a square root sign.

Numerical illustrations of the various calculations are

supplied in almost every case, partly as a way to show what

is going on and partly as a convenient way to supply

ourselves with numbers for later use.



While the level of overt mathematics has been kept to the

lowest possible, I do not at all wish to leave the impression

that the book makes similarly low demands on your ability

to follow a line of reasoning or on your ability to do a little

courageous speculating. It will perhaps reassure many of

you to learn that reasonably diligent efforts on the part of

musician-students in my musical acoustics course have

always rewarded them with a good understanding of the

subject. Their greater familiarity with musical instruments

seems to offset certain slight advantages possessed by their

scientifically trained classmates who (except for those who

are in the life sciences) are likely to be a little ill at ease with

logical reasoning carried on without the help of

mathematics.

Those of you who come to this book already supplied with

a good knowledge of engineering acoustics or of physics and

mathematics will sometimes find my presentation a little

strange or at least unfamiliar. At times the strangeness

comes from the fact that musical vibrations can have

somewhat different properties from the vibrations with

which you are familiar, or that different aspects of these

vibrations come to the fore as dominant. Sometimes the

feeling of unfamiliarity may come from my going quickly

over something that you considered difficult because you

learned it late in graduate school, and other times I will labor

mightily over points that you found obvious in high school.

Remember that all of this is new to my major audience, and

enjoy with me the fact that what an intelligent musician

finds straightforward in vibration physics is conditioned

greatly by his intensive experience with things that

oscillate. Remember also with me that perhaps one of the

reasons he chose music as a profession is that his high-

school mathematics was taught in such a way as to frighten

him, whereas yours attracted you! Another reason for the

unfamiliarity you may feel in this book comes from the fact



that you may not be used to taking as careful account of the

properties of ears as we are forced to do in a musical

context.

There is one other group of prospective readers to whom I

should address a note of comment and explanation—those

of you who have some knowledge of modern

psychoacoustics. Perhaps the main thing that will attract

your attention (and maybe your concern) is the fact that I

seem to attribute to the ears of musicians and musical

listeners a far greater ability and achievement than might

seem justified by the careful laboratory experiments in

hearing that have been carried on during the past forty-five

years. There are a number of reasons for this apparent

discrepancy, reasons which are themselves of considerable

importance to all of us as we begin our exploration of

musical acoustics. In the first place, skilled experimenters

measuring the properties of ears have almost always taken

great pains to supply their auditory signals to their subjects’

ears in the most sanitary fashion possible. This calls for the

use of carefully calibrated earphones constructed in such a

way as to exclude all outside sounds. This exclusion not only

of noise but also of the distracting and hard-to-control

reverberations of sound in the room is necessary in certain

circumstances. In musical surroundings the human auditory

apparatus exploits the possibility of hearing and rehearing

the echoing sounds of the instrument. Musical sounds are by

their very nature highly organized collections of acoustical

components which are grouped into patterns by the

composer and the player. The emission of sound by musical

instruments is of such a nature (especially in a room) that a

few missing or out-of-place pieces of sensory input have

little effect on our ability to detect or recognize their

relationships. A further difference between the capabilities

shown by subjects of a psychoacoustical laboratory

experiment and by musicians practicing their profession



arises from the fact that we are comparing the performance

of a heterogeneous group in unfamiliar surroundings with

the accomplishments of a group of people who by talent,

training, and experience have become quite expert at what

they are doing. However, this is an expertise which we

should not expect them to bring into the laboratory unless

great care is taken to test them in musically relevant ways.

Perhaps you will be stimulated to extend and clarify the

nature of some of the musical-perception phenomena I

describe and thus join the growing number of people who

see this as an area of enquiry that promises many rewards to

our understanding.

1.2. The Organization of This Book

Now that I have completed a fairly extended discussion of

how various groups of my readers may find themselves

reacting to this book, it is time for me to outline its general

structure. It will then be possible for me to suggest some

ways in which you can use the book to extract the fullest

measure of understanding from it.

The general principles that governed the writing of this

book may be summarized compactly in a set of numbered

statements of a sort which will be used for similar purposes

throughout this work.

1. Use is made of a carefully chosen minimum of technical

terms beyond those commonly used in music. Most technical

terms are italicized on their first appearance and defined

there either in a formal way or by means of an illustrative

example of their usage.

2. This technical terminology is normally identical with

that used in other branches of physics or engineering.

Occasionally there will be small differences, these being



identified and the reasons for them explained. It has been

necessary to define a very limited number of terms that are

not used elsewhere; special attention is called to these and

an explanation is given of why they are needed.

3. Fundamental ideas are introduced whenever possible in

the setting of everyday experience (at least that of

musicians), or else new concepts are developed by making

use of ideas that have already been dealt with thoroughly in

earlier parts of the book. Many of the fundamental ideas are

initially presented in simplified form, their fuller

development taking place as we go on through the book. I

have tried to prevent the initial simplification from having

possible misinterpretations.

4. Great care has been taken to keep a clearly marked

distinction between mechanical phenomena in an

instrument or in the room (which are the special province of

a physicist or engineer) and the human auditory response to

these phenomena (which is the primary concern of a

perception psychologist). For example, the word loud is

never used to denote a vigorous oscillation; the word is

reserved as a description of the perceived nature of this

oscillation. In similar fashion care has been taken to keep

specifically musical terminology from confusing itself with

terminology used for other purposes.

Let us now turn our attention to a description of the

various chapters and of their relationships. While musical

instruments and musical sounds are dealt with constantly in

chapters 2 through 6, the main effort here is to give the

reader an introduction to the way one goes about studying

things acoustical and an understanding of some of the basic

ideas of vibration physics and their perceptual correlates.



Chapters 7, 8, and 9 are concerned with the behavior of

some explicitly musical objects (e.g., plucked and struck

strings, kettledrum heads, and glockenspiels). Here we are

getting ready to think about guitars, pianos, etc., by

providing ourselves with some of the applications of ideas

developed earlier. In chapters 2 through 9 we confine our

attention to vibrations that are set in motion by impulsive

excitations such as striking or plucking.

In chapters 10, 11, and 12 we begin the study of the

behavior of systems that are set into motion by repetitive

forces, such as when one pushes a child on a swing. This

part of the book widens its concerns to include the

acoustical phenomena that manifest themselves as sound in

a room. These chapters deal in part with the production of

sound in a room, its spread, and its detection from the point

of view of physics. They also provide us with a solid

foundation of knowledge about what our hearing

mechanism can do as it copes with such sounds. As in earlier

chapters, most of the illustrations of the various ideas are

chosen from musical practice, along with a certain amount

borrowed from the audio industry, with its concern with

microphones and loudspeakers.

Chapters 13, 14, and 15 are devoted primarily to a

description of the manner in which our ears “put together”

various sounds in the comparison of pitch and of loudness.

Also discussed are the ways in which the properties of

certain classes of sounds allow the ear to combine them into

relationships that are recognized in music. We will find that

a great deal of what shapes formal music (e.g., harmonic

and scale relations) is strongly influenced by the fact that

we commonly listen to music in a room rather than outdoors,

where as a matter of fact a musician may feel quite

uncomfortable and insecure.



The rest of the book applies the principles developed

earlier to an explanation of the nature and behavior of the

major types of musical instruments. Chapters 16, 17, and 18

take up the keyboard instruments, which are constrained to

produce tones having rigidly fixed pitch. The pipe organ is

touched upon only as the simplest example of such

instruments and as a means for showing the existence of

certain tuning problems and how they may be dealt with.

Pianos, harpsichords, and clavichords, on the other hand, are

discussed in more detail; the impulsively excited vibration of

their strings is described and account is taken of the way the

string reacts back on the exciting hammer or plectrum, as

well as of the way in which the strings “talk” with the

soundboard and so also with the room. The practices of

instrument makers in proportioning strings, hammers or

plectra, and soundboards to one another are described and

explained, with examples ranging from the latest in pianos

back to harpsichords of the seventeenth century. Notice that

the choice of keyboard stringed instruments as our starting

point for the systematic study of instruments is a repetition

of our earlier choice of impulsively excited systems as the

first type to be dealt with on an introductory level.

Chapter 19, on the human voice as a musical instrument,

introduces us to the family of sustained-tone instruments

having adjustable pitch. The voice makes a good

introduction because it has a virtually autonomous sound

source (the larynx) whose output is shaped by the vocal

passages to produce the various vowel sounds, etc., before

being transmitted into the room. Studying the larynx by

itself enables us to learn the general principles governing

the maintenance of self-sustained oscillations, undistracted

by the subsequent modification of the resulting sound by

the vocal tract, whose operations are also susceptible to

study in isolation. Once these physical systems are

adequately described it becomes possible to consider how



their properties can be exploited for musical purposes, an

exploitation which is of course strongly influenced by the

way we perceive sounds in various contexts.

The brass and woodwind families of instruments are taken

up next, in chapters 20, 21, and 22. The nature of these

chapters is quite similar to that of the previous ones dealing

with musical instruments. The sound source is examined,

this time along with the air column by which it is controlled,

if not enslaved. The nature of the internally generated sound

at various dynamic levels of playing is discussed, along with

modifications to this sound that occur as it leaves the

instrument for the listening room. Once again we find that

the interplay of source, room, and ear has a great deal to do

with the way in which an instrument is used for music. One

additional subject is touched on in these three chapters: the

scientifically guided means that have been developed for

the diagnosis and correction of discrepancies in the

construction of the wind instruments. Some of these

techniques are available to the player himself, while some of

them stay within the province of the instrument maker or

repairman. These adjustment techniques are interesting not

only because of their direct usefulness to the musician, but

because they provide us with examples of the way in which

one can learn to exploit his musical, auditory, scientific, and

tool-using skills to unravel and apply information about the

acoustical events that take place within an instrument.

Chapters 23 and 24 are devoted to an analogous

description of the structure and behavior of the violin and of

its immediate relatives.

The final chapter serves almost as a coda in which we

examine some musically peculiar sounds such as the

“multiphonics” which have excited the recent interest of

composers and woodwind players, the wolf tones that

sometimes bother string players, and certain sounds



produced by the brasses. In all of these examples the sound

production processes are very similar to one another, being

an elaboration and offshoot of the processes that generate

the more ordinary sounds of these instruments. In a similar

vein, the perception processes that take place when we

listen to these sounds turn out to be an elaboration of those

we have studied throughout the rest of the book.

1.3. A Brief Operating Manual

This book is written in a very close-knit fashion, with each

part depending very much on what comes before and also

preparing the way for what is to follow. The efficacy of your

reading will, as a result, be considerably enhanced if you try

to keep some awareness of what you have already covered

and what is coming.

At many places in this book references are made back to

earlier sections or to earlier diagrams. Your choice of

whether or not to interrupt your reading to go back will

obviously be governed by several things. If you have no idea

of what the reference is about, you may be missing an

important piece to the puzzle. You should also be aware that

a great deal more is hiding in the earlier material than was

apparent on your first reading. You will come to understand

why things were said in a certain way, and why certain

things were not said. As to references forward, it would be a

source of unending frustration if at every turn I were to

include a description of every future use of an idea or fact

under discussion. For this reason you will find almost no

allusion to later parts of the book, even where a set of

summarizing statements is manifestly incomplete.

At the end of every chapter you will find a section labeled

“Examples, Experiments, and Questions.” This section is a

little free-wheeling and allows you to exercise your ingenuity

and imagination upon the ideas which have been presented



in the chapter. Some of the suggested experiments are

extremely easy to do, some quite difficult. There are puzzles

and problems of all degrees of challenge, and there are also

simple descriptions of various phenomena that serve to cast

light on the text material, but which would fit nowhere else

in the formal structure of the chapter. Even if you do not

wish to try to do the experiments or to solve the problems,

you should read them and the examples, considering them

to be an integral part of the text. Go after this book in

somewhat the way you should treat everything else to be

learned in the world—grab hold anywhere, strive for

understanding by any means at your disposal, look for

successive unfoldings of the truth, and constantly test your

understanding by trying to go back and forth between

application and implication.

The problem of providing up-to-date, accurate, and

intelligible reference material suitable for readers of a book

of this sort proves to be severe, though the situation gives

promise of improving in the near future. The problem is

particularly acute when one is trying to meet the needs of

nontechnical readers who have studied only the first few

chapters; this is one of the reasons why the number of notes

grows rapidly as we approach the end of the book. You will

find the references collected in a group at the end of each

chapter. Notes referring to books and journal articles usually

include a few words of explanation and comment, which

serve to tie the references to the text and to each other. The

articles and books are generally chosen not only for their

direct contribution to something in the text, but also as an

entryway (via their own sets of references) to the current

literature on the subject and to the names of its leading

contributors. For this reason, no separate bibliography is

provided.



2

Impulsive Sounds, Alone and in

Sequence

If one strikes the top of a table with his fist, knocks on a door

with his knuckles, or taps on a cup with a teaspoon, easily

recognized sounds are produced. Our everyday language is

full of nouns referring to what we will term impulsive sounds.

Let us list a few such words before we begin to think about

them acoustically: snap, crack, tap, rap, knock, bump, and

thump. Perhaps you have noticed that this list forms a

sequence; noises whose names appear early in the

sequence sound more abrupt and are generated by harder

objects striking one another than are the sounds named

later in the list. Our language also has a vast number of

adjectives that describe such sounds. Interestingly enough,

many of these come from the names of particular sound

sources, sources that typically produce sounds with these

special characteristics. Thus mankind has noticed that there

is a strong common element in the sounds made by hitting

metallic objects, or by striking a block of wood, whence such

adjectives as “tinny” and “woody.” Vivid aural sense

impressions are suggested by words like “glassy,” “tinkling,”

“hollow,” and even “soggy.”

The correlation between impulsive sounds and their

sources is quite durable in the sense that additional,

distracting noises do not spoil the sense impression; their

recognizability survives transmission over the crudest

telephone connections and most ill-favored of loudspeakers,



nor does it change when one experiments in rooms of

different size and shape. It is this dependability and undis-

tractability of human response to impulsive sounds that

brings us to the fundamental questions of chief concern to

us in this book. What is the physical nature of any given

recognizable sound as it comes through the air to our ears?

How does the mechanical motion of its source give rise to

the sound in the air? In what way was the source set in

motion? What is the nature of perception, or, to say it

another way, how do our ears and our nervous system

process the sounds that come to them? In what way does

the human mind produce a distillation and synthesis of

those properties of the sound that are in some way

interesting or important to it?

We could begin our exploration of musical acoustics in

many ways, each of which suggests some interesting facet

of the subject. We could, for example, seek the common

elements (physical and perceptual) that are found in sources

having the same verbal description. We could on the other

hand make changes in the production, transmission, or

perception of some particular sound, to see what effect

these have. Another approach would be to alter the context

in which a given sound is produced or detected. These

alterations might be either musical or mechanical. For

example, a sound that is heard as a pitchless buzz when

listened to as part of a laboratory experiment may be

perceived as an integral part of a chord when it is sounded

as one voice in a musical performance. A physicist’s

example of the effect of a change in mechanical context is

found in experiments dealing with the set of three strings

that belong to a given note on the piano. Each of these

strings vibrates differently when all three of them are struck

together from how it behaves when the other two strings of

the set are removed or blocked.



There are also many possible tools that we can use in our

investigations. In addition to the full panoply of laboratory

equipment used to measure various physical quantities, we

have also the powerful help of computers which can be used

to aid both the synthesis and the analysis of sounds.

Whatever tools we employ, however, the human ear must

remain our constant guide and most reliable witness. On the

one hand, it is as sensitive as any laboratory mechanism; on

the other, it is attached to the best of devices for the sorting

and correlating of information—the nervous system and the

mind. For musical acoustics, the ear is the final arbiter for

yet another reason: music is meant to be heard, and so our

researches must be built around sounds as we hear them.

At the beginning of our study of acoustics we will depend

heavily on our knowledge of familiar sounds as an

introduction to new concepts. Later on we will find that a

cultivated pair of ears can be often used in conjunction with

our technical knowledge of music and of acoustics to

provide us with precise numerical information about the

physical properties of musical instruments. There are many

occasions when the skilled researcher is able to obtain

otherwise unavailable numerical information by listening to

the changes produced in an instrument’s sound when small

changes are made in the manner of playing it. Similarly

instructive are experiments in which small changes are

made in the instrument itself, as by the use of lumps of wax

or pieces of masking tape attached to it at some critical

point. The researcher often finds out a great deal by noticing

also how such changes affect the feel of the instrument in

relation to the player—e.g., warm, edgy, muffled, bright,

friendly, harsh, etc. In many cases these observations are

made with the help of a musician who is playing the

instrument under investigation. This points up the necessity

for people doing research in musical acoustics to cultivate

good communication with members of the musical



profession; practicing musicians offer a prime source of

information about where the questions lie and where the

answers may be sought. Ideally, a researcher should be able

to play any instrument he is investigating. The more actual

playing experience he has, the more efficient and accurate

he is likely to be in tracking down his instrument’s nature

and habits.

A musical acoustician must of course have a fairly good

understanding of the neurophysiological processes that take

place when he uses his hearing. This understanding is

necessary if he is to make proper use of his sensory

information. In exactly similar fashion, he must understand

his electronic and mechanical research apparatus. The

student of musical acoustics needs at least a smattering of

the same understanding. It helps all of us to have some idea

of both the usefulness and the limitations of our equipment,

natural and man-made. Our ears and our machines are not

waiting for a chance to lie to us, but they are perfectly

capable in their own blind fashion of misleading their naive

users.

One cannot expect to acquire a thorough understanding of

musical acoustics (or of anything else) by a single-minded

attempt to learn all by a single route. Success cannot be

achieved through the use of only a single type of

equipment, or of only one kind of experiment, or through the

exclusive pursuit of sounds in the concert hall or in the

laboratory. The skillful and productive researcher (or

student, if there is really a difference) is one who knows

when to stick to a given approach and when to change it. He

also knows how to put together ideas coming to him at

many levels of abstraction. He learns to enjoy the

contradictions that such synthesis exposes, as well as the

agreements. In one case he has been handed the challenge

of a new question to resolve, in the other he is told of his

success in answering the most recent one.



2.1. Sequences of Impulsive Sounds

Suppose one takes a stick and taps slowly and regularly on a

table top. Each tap has its own characteristic sound in the

sense of being an impulsive sound having fairly short

duration. Let us now focus our attention on the new things

that take place when such taps become members of a

regular sequence. First we need to know how to describe

such a sequence in terms of how fast the tapping is

repeated. If the time interval between successive taps is 1/5

of a second, in the time of one second we would have 5 sets

of tap-plus-time-interval. In this case, then, what we will call

the tapping rate, or repetition rate, or tapping frequency of

the sounds is found to be 5 per second. Similarly, if the

inter-tap time is 1/3 of a second, simple arithmetic shows

that the repetition rate is 3 per second. In every case the

number that gives the tapping rate is the reciprocal of the

inter-tap time interval. We can of course go the reverse

direction in our calculations; for example, given that a

certain sequence of taps occurs at the rate of 23 per second,

we deduce that the inter-tap time interval is 1/23 = 0.0435

seconds.

Digression on Terminology: Rate.

We have arrived at our first piece of technical terminology:

rate. The word “rate” in Physics almost always answers

questions such as, “How many items are there per unit

time?” Suppose for example that we count 45 taps in a

period of 15 seconds. The number of taps taking place in 1

second is then found as follows:



In similar fashion one chooses a water pump for a summer

cottage on the basis of the rate at which it can raise water

from the well; a common size for a small cottage is 10

gallons/minute. We might imagine a nineteenth-century

Englishman who finds it convenient to describe the progress

of turtles in their cross-country migration by saying that

they travel at the rate of so many furlongs/fortnight. The

metronome markings familiar to most musicians are also

rate indications. The metronome number tells the number of

ticks per minute.

If we have a set of evenly spaced noises, what happens if

we vary the time interval between successive sounds, so

that they repeat many times a second or only occasionally?

A simple experiment which anyone can do will give us an

easily variable set of impulsive sounds to help us answer

this question. Take the corner of a small plastic card (or use

your thumbnail) and pull it along the teeth of a comb where

they emerge from the solid part of the comb. If desired, the

corner can be made to jump slowly from tooth to tooth so

that the individual ticks can be heard one by one. If one

traverses the length of the comb somewhat more quickly

with the point, the separate ticks can still be heard, but the

listener is increasingly likely to describe the sound as a

buzz. In other words, we tend to perceive a moderately rapid

sequence of ticks as being a new sound in its own right to

which we give a new name—buzz. When the point is pulled

along the comb still faster, we notice that the buzz becomes

a slightly harsh tone with definite musical pitch. We also

notice that as we draw the point along the comb’s teeth

faster and faster, the pitch of the resulting noise becomes

higher and higher.



A physicist speaking within the narrowest and most naive

confines of his subject would say that we have provided

ourselves with a means for generating a sequence of

identical ticks having an adjustable repetition rate. He might

want to suggest various elaborations on the experiments.

Some years ago he might have suggested using a toothed

wheel instead of the comb, the wheel being turned by a

crank or by a motor of adjustable speed. Today he might

propose the use of an electronic pulse generator having

adjustable repetition rate, attached to the input of a hi-fi

amplifier and its loudspeaker (sec. 2.4 of this chapter deals

briefly with electronically controlled repetition rates). The

experimenter’s teenage son might point out that a piece of

insulated wire draped over the center wire of an automobile

engine distributor and led into the neighborhood of the car

radio antenna or a pocket transistor radio will cause the

radio to emit a sequence of pops whose repetition rate

depends on engine speed. All of these more sophisticated

mechanisms generate a variable sequence of impulsive

sounds, but for our purposes the device of comb plus edge

of card or fingernail is every bit as useful, and it has the

advantage of simplicity and availability.

If we experiment with some sort of generator that

produces ticks at an adjustable rate, we will find that as

human beings we perceive the sequence of ticks in different

ways, depending on the repetition rate, as summarized in

table 2.1. A warning is in order here concerning tables such

as this and, in general, the relation between descriptions

drawn from different disciplines. While many physicists’

descriptions have their counterparts in the realm of

perception, we must not demand or even expect any sort of

simple parallelism between such descriptions. The

parallelism between the physicist’s words when he says, “I

am increasing the repetition rate,” and the musician’s when

he says, “I hear a tone of increasingly high pitch,” should be



taken as an interesting observation rather than as an

obvious consequence of common logic. Similarly, the

change when one’s perception of the separate ticks at low

repetition rates becomes an entirely different kind of

perception when the ticks combine into a buzz, and again

when the buzz smoothes out into a tone, should be taken as

an observation of fact and as a stimulus to deeper

investigation.

Table 2. 1

Relation between Repeti t ion Rate and Perceived

Sound

Impulse

Repeti t ion Rate
Perceived Sound

Less than about

20/sec

Separate impulses having slow to

fast tempo

Roughly 20/sec to

150/sec

Buzz (this shades into the other

two categories

Above about

100/sec

Tone of progressively higher pitch

Digression on Terminology: Pitch.

I have used the word pitch several times in the preceding

paragraphs without really telling what its precise meaning

is. As a matter of fact, it is an exceedingly difficult word to

define properly, although we can settle upon an

unambiguous way of using it for present purposes. If we



experiment with sequences of continuously repeating

impulsive sounds, we find that the pitch we assign to a

sufficiently rapid succession of impulses depends almost

completely on the repetition rate and hardly at all on the

nature of the special sound belonging to each individual

impulse that makes up a given repetition series. Let me put

this another way. If we conduct an experiment in which the

ear is presented first with a tone from one source of

repeated impulses and then with a tone from another

source, we find that the source having the faster repetition

rate of the two will be perceived as having the higher pitch.

Furthermore, we normally hear the two pitches as being

very nearly equal when the repetition rates are equal,

2.2. A Scale of Reference Pitches

Everywhere in the course of our further work in this book we

will need to be able to specify the pitch of the sounds that

concern us. We find that perceived sounds need a pitch

specification in addition to the repetition rate specification

for two reasons. One reason is that equal alterations of pitch

are not directly associated with equal alterations in the

repetition rate. The second reason is that some sounds have

definite pitch even though they may lack a repetition rate at

all, or they might possess several interlaced repetition rates.

We are in no position at this early stage in our

investigations to weigh various alternative ways in which

pitch can be specified. We can, however, provide ourselves

with a set of reference sounds having definite repetition

frequencies, with the idea of using the set as a system of

pitch standards in very much the way we use a tape

measure with carefully spaced marks along it as a scale for

the measurement of lengths.

The world of music provides us with the particular

sequence of repetition rates that we will use for reference



purposes (at this point in the book we do not necessarily

know the reason for this particular choice of rates). Let us

make a preliminary set of definitions in the following way.

The various tones of what is called the equally tempered

chromatic musical scale have definite pitches. These tones

also have definite names. One system for naming these

tones is based on the tone whose pitch nominally matches

the low-est C of the piano. This C is named C1 and the

sequence runs up the scale thus: C1, C1#, D1, D1#, . . . , B1.

The tones of the next higher octave are labeled with the

subscript 2; that is, C2, C2#, etc. The tones of the next

octave higher yet will have the subscript 3, and so forth.



Fig. 2.1. A Reference Scale Relating Pitch, Repetition Rate,

and Musical Note Name

We can use the note names from our reference scale to

label the matching pitches produced by our sequences of

impulsive sounds. Figure 2.1 shows in diagrammatic form

the repetition rates (frequencies) that give rise to the

pitches associated with the musical notes extending from C4



to C5 in the middle of the piano scale. This figure will

continue to be useful to us throughout this book since it can

serve as a ready reference from which the frequencies

associated with all the notes of the scale may be obtained.

It is necessary to give the numbers only for a single octave

of our reference scale, because it turns out (for reasons we

will eventually discover) that the frequency associated with

any given named note may be found with the help of the

diagram by use of the following prescription: for every

octave one goes up the scale, the frequency doubles, and

for every octave one goes down, the frequency becomes

half of its former value. Since the frequency associated with

A4 in the middle of our diagram is 440 repetitions /second,

the next A up the scale, A5, has a frequency of 880

repetitions/second, and A6 is found to be associated with an

impulse rate of 1760/second. Going down an octave from A-

440, a pulse train whose pitch matches A3 repeats at

220/second.

2.3. Repetition Rates of Rhythmic

Patterns

So far we have been dealing with sequences of uniformly

spaced identical impulses. In our quest of further

understanding let us now add some complexity. Suppose

that we give a percussionist a tin can to strike with his left

drumstick, and a block of wood as the target of his right-

hand stick. If we ask that both hands strike in synchronism

at the rate of 3 taps/second (metronome marking 180), our

ears are supplied with a new, composite, impulsive sound.

Perhaps one could make up a name for this sound, but more

likely the remarkable abilities of the human nervous system

would permit the listener to “analyze” the sound into its

components: a tap on a block of wood and a simultaneous

one on a tin can. Aside from the new sound of each impulse,



nothing is changed. Slow tapping rates are perceived in

terms of individual impulses; more rapid tappings advertize

the fact that the individual sounds are part of a sequence

which would convert to a buzz and then to a tone of some

characteristic color and pitch if the rate could be increased

sufficiently.

If our drummer is instructed to strike at the same tempo,

but to have his left hand anticipate the right by a tiny

interval, we would have what he calls a close flam, which he

would write in the manner shown in figure 2.2. A physicist or

engineer might consider writing out the same pattern

diagrammatically along a time axis in some way such as the

one shown in figure 2.3. Here the o’s stand for impulses of

the left-hand sort and the x’s represent impulses generated

by the right hand. The musician, the physicist, and the

casual listener will have no trouble agreeing that the

repetition rate is exactly the same now as it was when the

two kinds of impulse were precisely superimposed.

Furthermore, the repetition rate for both these cases is

exactly what would be deduced if the drummer simply

stopped using his left hand at all! In other words, we all

agree that the word “repetition” is to be taken literally. When

the player uses both hands he must go through his entire

ritual (left and then right) if we are to count his activity as a

repetition. Notice that it would really have made no

difference to this result if we had asked our drummer to

reverse his usual habits, and to play his flam “right before

left.” The resulting sense impressions would be recognizably

different, of course, but we would still consider the repetition

rate to be unchanged.



Fig. 2.2.

Fig. 2.3.

We are now in a position to think about a somewhat more

subtle version of the same situation. Suppose our

percussionist is told once more to keep the same 180

metronome tempo, but we ask that his right hand strike

slightly earlier than midway between the left-hand strokes,

as indicated in the upper part of figure 2.4, or slightly later

than the midpoint, as shown in the lower part. This makes

little significant change. The repetition rate is still the same

and our ears are still able to associate the left- and right-

hand impulses into pairs, either left-before-right or right-

before-left.

If now the right-hand taps are moved so that they fall

exactly midway between the left-hand taps, we still consider

the repetition rate to be unchanged whether we approach

the question as musicians, listeners, or practitioners of some

kind of physico-mathematical logic. This is because the two

kinds of taps have different sounds. We are still able to tell

them apart, and to recognize the sound pattern in the way

the taps are arranged, even though the symmetry in time of

the pattern has caused us partially to lose the ability to

associate a given right-hand tap with its immediate left-

hand predecessor or with its successor. As before, the

repetition rate is found from the number of times per second

the complete pattern is repeated, not from the total number

of separate taps taking place in each second.



Fig. 2.4.

Our experiment has one more variation that must be

investigated before we go on to other things. This time we

will provide our percussionist with two identical targets for

his drumsticks, so that the left-hand and right-hand taps

have exactly the same sound. We will also assume that both

hands are equally strong so that the taps are of the same

loudness. Under these conditions, a repetition of all our

earlier experiments gives us results that are exactly the

same as before, except for one special case. As long as the

right-hand taps come somewhat before or somewhat after

the midpoints in time between the left-hand taps, the

repetition rate is clearly perceived as being 3/second.

However, if the right-hand taps fall exactly halfway between

the left-hand ones, we suddenly perceive the repetition as

taking place at the rate of 6/second! Ordinary logic also

requires this, since we count the rate of repetition of a given

pattern. When two identical sequences of taps are perfectly

interlaced, we have a pattern in which everything repeats at

twice the rate at which each sequence separately generates

sounds.

With normal ears in normal surroundings there will be a

narrow range of “almost-centeredness” (of the right-hand



taps relative to the left-hand ones) for which the doubled

repetition rate will still be heard, especially if the two

sequences have slight random irregularities in their timing.

When the two sequences are slightly farther off from being

perfectly interleaved, our perceptions are somewhat

ambiguous: we seem to have the choice of hearing the

sound as being associated with paired taps at the old

repetition rate or as being due to a uniform series of equally

spaced taps at double the original rate.

2.4. Electronically Controlled Repetition

Rates

If one has a pair of electrical pulse generators at one’s

disposal, it is possible to repeat all of the drummer’s

experiments we have investigated in the previous section.

Whether the rates are set at a few per second, or at several

tens of pulses per second (in the “buzz” range of

frequencies), or at higher frequencies yet where we hear

tones of definite pitch, the phenomena persist in the forms

that we have already discussed. However, in the high-

frequency experiments, a musician will find himself

describing his perception of evenly interlaced pairs of

identical impulses in a way different from his reaction to the

drummer’s experiments.

In the previous section, the repetition rates beaten out by

the drummer were heard in terms of tempo. When the pulse

generator is set to give us sufficiently high repetition rates,

we may expect similar phenomena to be expressed in terms

of pitch. At the point where the impulses from one generator

are interleaved so that they fall exactly halfway between the

impulses from the other generator, we perceive the pitch of

the sound to be unchanged as long as the two generators

produce distinctly different-sounding impulses. If on the

other hand we arrange the two generators so that they

produce identical pulses and again have the impulses from



one generator fall exactly halfway between the impulses

from the other generator, a musician will find himself

describing his perception of the interlaced pairs as an

upward pitch jump of an octave, and this signals the

doubled repetition rate belonging to this special case.

Let us now run through the entire set of experiments that

were done by the drummer, this time using an electronic

source as the basis for our thinking. We will examine the

phenomena from a slightly different point of view, partly to

clarify certain of the fundamental ideas and partly as a first

introduction to the use of what are known as block

diagrams.

In a block diagram of the sort we are going to use, one

draws a labeled box to represent each of the various

functions, and then draws lines to show how signals, after

being processed in accordance with the label of the box, are

passed on to the next part of the system. Figure 2.5 shows

the block diagram for the problem at hand. To begin with, at

the left of the diagram there is a box representing the

electronic pulse generator that puts out the impulses which

ultimately determine what we might call a tempo for our

experiment. This pulse generator can be set to provide any

desired repetition rate. It makes short, sharp, electrical

impulses which are then sent to two impulse shapers, one of

whose output signals eventually produce the sounds

corresponding to the beats of the drummer’s left hand. The

other shaper gives rise to impulses which are converted by a

loudspeaker to give sounds corresponding to those made by

the drummer’s right hand. The right-hand, or number 2,

shaper is not, however, supplied with pulses directly from

the repetition rate generator. On the contrary, the signal to

it comes from the repetition rate generator via an adjustable

delay circuit which can be set to produce any desired

amount of lag between the output of shaper number 2 and

that of shaper number 1. The signals from these two shapers



are then combined in the summing circuit and fed through

an audio amplifier to a loudspeaker.

In figure 2.6 we have a set of horizontal parallel lines, each

of which stands for the passage of time. The top line has a

series of equally spaced points marked on it which stand for

the times of occurrence of the individual pulses from the

repetition rate generator. The inter-pulse time T shown on

the diagram can be used to calculate the repetition rate.

The second line shows the timing of the impulses coming

out of shaper 1. As one can see from this diagram, the

timing of the impulses from shaper 1 coincides exactly with

that of the initiating pulses. In other words, whenever there

is a pulse from the repetition rate generator, a suitably

shaped impulse is generated by shaper 1.

Fig. 2.5. Block Diagram of an Electronic Pulse Generator



Fig. 2.6. T = inter-pulse time; D = delay time. Line 1,

impulses from repetition rate generator; line 2, impulses

from shaper 1; line 3, delayed impulses from shaper 2; line

4, combined signals from shapers 1 and 2.

The third line of figure 2.6 shows the timing of the pulses

coming from impulse shaper 2. The diagram also shows that

each of these impulses arrives later than the impulses

produced by shaper 1 by an amount labeled D, the delay.

The combined signals from both of these impulse shapers

are fed to the loudspeaker to produce a sequence of signals

of the sort indicated on the fourth line of figure 2.6. The

basic repetition time T and the left-right pulse delay time D

are also shown on this line (fig. 2.4 is an earlier example of a

diagram of this sort).



When we use the apparatus shown diagrammatically in

figure 2.5, it gives us a chance to vary the delay D that

controls the time of arrival of pulses from shaper 2 in

relation to the pulses from shaper 1. When the delay control

is set at zero we have a situation that is analogous to the

case in which the left and right drum signals happened

simultaneously. Turning the delay dial slowly can give us the

entire range that our drummer had at his command: exact

coincidence, left-before-right in varying amounts, the middle

point where the beats are all equidistant from each other,

and right-before-left in varying amounts. As one might

expect, when the delay time D is exactly equal to half the

inter-pulse interval determined by the repetition rate

generator (when D = T/2), we will hear a doubling of the

rate, if the two pulse sharpers produce identical Signals. If

the repetition rate is fast enough to give a sense of pitch,

our ears will perceive this doubling as a jump upward of one

octave.

This octave jump (the perceived correlate of the doubled

repetition rate) takes place over an extremely narrow range

of mis-centering of one pulse train relative to the other. On

each side of the narrow range in which a pure upper octave

is heard is a region in which the listener hears two sounds

simultaneously, one an octave above the other. As exact

interleaving of the pulse trains is approached, the lower of

these tones weakens and disappears. (In these experiments

using identical pulses it is important for the two generators

to be fed into the same loudspeaker for the experiments to

work properly, for reasons having to do with room acoustics

and the way in which we perceive sounds produced in a

closed space.)

In this chapter we have devoted our efforts to an

exploration of some of the more elementary phenomena that

are associated with one’s hearing of sequences of impulses.

We have come across some rather curious effects, some of



which are familiar and some not so commonly known. We

have found that the physicist’s notion of a “rate” is a useful

concept to use in organizing our thinking about the various

phenomena we have encountered. Everything so far is

based on the everyday notion of an impulsive sound, which

we have taken as a starting point without inquiring exactly

what it is like either from the point of view of the physicist or

of the psychologist. In the next few chapters we will be able

to meet impulsive sounds of greater musical interest, such

as those produced by glockenspiels, bells, guitars, and

pianos. A study of these instruments will lead us toward an

understanding of the producers of sustained sounds such as

the woodwinds, brasses, strings, and the human voice.

2.5. Examples, Experiments, and

Questions

1. It is often helpful for one to be able to go back and forth

in one’s mind between the description of an impulse

sequence expressed in terms of its repetition rate and the

description of the same impulse sequence expressed in

terms of its pulse time.

(a) Calculate the pulse repetition rates corresponding to

an interpulse time T = 2.0, 0.2, 0.02, and 0.002 seconds.

(b) Use the results of your calculations to permit

classification of the way in which each pulse sequence is

perceived; i.e., is it heard as a buzz, as a tone, or as a

sequence of pulses?

(c) Use figure 2.1 to verify that the name of the note

corresponding to the pulse sequence that has the highest

pitch is a little higher than B4.



2. A musically trained person is asked to tap out the two

rhythmic patterns shown in figure 2.7. Remember that if he

does this properly, a listener in the next room will be able to

recognize the time signature and to pick out the primary

and secondary accented beats in the bar. Why is the

repetition rate (as actually played) 30/minute (equal to

0.5/second) in the first example and 40/minute (equal to

0.66/second) in the second? There are several implied

connections here among the time signature, the location of

the bar lines, and the metronome markings. Do they appear

to be universally applicable or are they part of our

particularly simple special case?

Fig. 2.7.

3. Two musicians are asked to tap out the rhythmic duet

shown in figure 2.8. A casual listener should have no

difficulty in recognizing it as being in waltz time. Each

musician is now supplied with his own portable electronic

sound source whose loudspeaker generates a single popping

sound whenever he presses a button. The two sources are

identical in their construction, and each player can only

control the instant at which his instrument emits its impulse.

Once again the listener will recognize the rhythmic pattern.



Let us replace the two musicians by an electronic

repetition rate generator set to produce signals exactly 1/3

of a second apart. This generator is connected through some

sort of distribution device which is programmed to send one

out of every three impulses to the first source so that it is

stimulated to emit a pop. The distribution circuit sends the

remaining two impulses to the second source. In short, we

have arranged the impulse generator to be a sort of

conductor who calls forth a pop from one source on the

down beat, and pops from the other source for the other two

beats of the bar. The two-part “music” is therefore being

played with the utmost of electronic exactitude.

It is instructive to seek reasons from your everyday

experience (since we have provided no explicit information

on the subject so far) as to why the listener might be

expected still to recognize the waltz-like nature of the

rhythm when it is played by our electronic system. In a

similar vein you might seek an explanation for the fact that

the 3/4 rhythm pattern will disappear if the repetition rate

generator is arranged to send all of its impulses to a single

sound source, or loudspeaker.

Fig. 2.8.

4. The buzz of an ordinary electric alarm clock has a

repetition rate of exactly 120/second over most of North

America, and exactly 100/second in Europe. One does not



ordinarily perceive this sort of a buzz as having a very

clearly defined pitch, at least in the context of an early

morning awakening. However, it does provide an accurate

and easily obtainable pitch reference. Figure 2.1 can be

used to find the note names most closely associated with

these two buzzing frequencies, as well as to find qualitative

descriptions of how much the pitches of these buzzes differ

from the reference values. That is, it is possible to devise

statements like “a 100/second buzz has a pitch about 1/4

semitone above X2.” While you are at it, work out the pitch

interval in semitones (a number and a fraction) separating

the two alarm clock buzzes.

5. The clapper of a telephone bell itself is driven by an

electrical signal that has a repetition rate of 20/second.

Normally there are two bells that are struck alternately

during each repetition of the clapper’s motion. As a

preparation for our future work, attempt to make a clear

description of what (at present) you suspect is going on

when a listener assigns a pitch to the sound coming from the

telephone bells. Recall that one can learn to recognize the

sound of his own telephone, even though the ringing current

is of the same sort everywhere.

6. A clarinetist playing the note written D5 can lower the

pitch to C5 by pressing a lever with either his left or his right

little finger. The first part of figure 2.9 shows one of the

normal ways in which a C-to-D trill is played (using the right

little finger for the C). The second part of the figure shows

another way in which the trill can be done. Work out the

repetition rates for the two ways to trill, and comment on

some of the reasons why the second version presents a

rather astonishing appearance to the casual onlooker. If you

are a woodwind player you might also think about the

relative practicality of the two patterns in various musical

contexts.



7. Make use of figure 2.1 to find the change in repetition

rate that is associated with the following semitone changes

in pitch: C4 to C4#, G4 to G4#, B4 to C5. Notice that the

frequency changes associated with these nominally equal

(semitone) changes in musical pitch are not equal. Although

we are not yet in a position to discuss the reasons why the

musical scale referred to in this diagram is called equally

tempered, it is not difficult to do piano keyboard

experiments that tend to verify the fact that the perceived

pitch changes associated with striking adjacent keys are (at

least in the middle of the piano) roughly equal. The point of

this problem is to underline once again the distinction

between the mechanical attribute (frequency) and its

perceived correlate (pitch). Equal increments, or changes, in

what we perceive to be the pitch of successive sounds do

not come from producing equal increments in the physical

frequency of the repetitions.

Fig. 2.9. A Clarinet Trill with Peculiar Fingering

Return now to figure 2.1, using it as a help to determine

the frequency change associated with the C5 to C5#

interval. Compare this with the change belonging to the C4

to C4# interval. Attempt to deduce some sort of

generalization about the relation of the frequency changes

required to produce the same musical interval (a semitone in

this case) in different octaves.



3

Simple Relations of Sounds and

Motions

In chapter 2 we noticed that the impulsive sounds that

result from striking various objects tend to be recognizably

different from each other. We noted further that something

surprising happens when we strike an object repeatedly in a

steadily accelerating rhythm: we first perceive the string of

impulses as a sequence of isolated events; as the blows

arrive more rapidly the sound becomes more like a buzz;

eventually, as the tempo gets even faster, the sound

transforms itself into a tone of definite pitch. We may ask

whether the buzz or tone perceived in response to a rapid

succession of impulses from a source will somehow be

recognizably different from that arising from a different

source even when the repetition rates are the same. It is a

matter of experimental fact that we usually can distinguish

between the acoustic impulses produced by striking

different objects, whether the repetition rate is fast or slow.

Another thing to consider in seeking the physical basis for

our ability to distinguish between the sounds from different

sources is simply the strength of the impulse. We find it

intuitively obvious (i.e., it is unconsciously assumed) that

striking an object vigorously produces a loud version of that

object’s characteristic sound, while a soft blow produces a

weaker but otherwise very similar sound. While the relative

loudness of sounds gives us one way to distinguish between

them, there must be yet other features of these sounds that



permit us to tell them apart. Since our ears deal with

changes in repetition rate and loudness in a manner that is

essentially the same for all impulsive sounds, we will need to

look further into the details of the impulse itself if we are to

answer the question posed in chapter 2: how do we

distinguish between different categories (tinny, woody, etc.)

of impulsive sound?

3.1. Mechanical Motion of Sound Source

and Eardrum

If an empty coffee can is held by the fingertips while one

beats it with a spoon, the can will be felt to vibrate at the

same time that the tapping sound is heard. This impulsive

vibration is stronger the closer the fingers are to the struck

bottom. It is also easy to notice that the metal of the can’s

bottom can be made to bend slightly under the pressure of

the fingers. A physicist might play around with several

informal observations of this sort and then try to summarize

the situation to himself:

1. Pressing on the can with my thumbs bends it.

2. Striking something exerts forces on it of limited

duration.

3. These two remarks are consistent with my fingers’ sense

impression of momentary deflections when the coffee can is

struck.

4. Whenever I sense a momentary deflection of the can

with my fingers, my ears hear an impulsive sound.

5. I suspect that the production of sound is associated with

the motion of its source.



Digression on Developing a Theory.

The foregoing numbered sentences are intended to

illustrate typical early steps of a physical theory as it learns

to walk in the real world. Notice that it leans on real things

some of the time and sometimes it staggers ahead to a

rather bold generalization based upon nothing more than its

creator’s hunch. This is the hard part of theory-making. All

of the high-powered formal machinery of physics can only

work on a new idea after it has gotten past this early stage.

The point of our example of the physicist and the coffee

can is to emphasize the fact that sounds are produced by

the mechanical motion of some object. Let us continue our

informal exploration of the physical nature of sound. Most of

us have noticed the rattling of windows when an airplane

flies overhead. Many have similarly felt the vibrations of a

guitar body in response to the sounds produced by a singer

or by musicians playing nearby. With the help of a second

empty coffee can, we can confirm these observations in a

form most directly useful to our present purposes. Lay a

finger lightly on the bottom of one can and notice the

impulsive vibrations of this metal can that take place

whenever a friend strikes the bottom of the other can. It may

be necessary for the two cans to be quite close to one

another for this experiment to work, but care must be taken

to assure that the two cans are not in direct mechanical

contact with one another or with some solid object that

could transmit a vibration directly from one can to the other.

This simple experiment shows that an impulse can somehow



be transferred promptly from one object to another that is

not in direct contact with it.

The fact that a mechanical object is set into momentary

vibration whenever we hear an impulsive sound suggests

(correctly) that our eardrums move when sound impulses

impinge upon them. We will not concern ourselves in this

chapter with the mechanisms whereby the air in a room is

able to transmit a disturbance from a struck object to our

eardrums, but we will devote considerable care to the ways

in which these transmitted disturbances may be described

and analyzed. We will also have to save till the later

chapters of this book any consideration of the fact that once

the eardrum is set in motion, there is a complex chain of

transmitted vibrations extending beyond the eardrum back

into the inner ear. Here it turns out that the mechanical

vibrations stimulate nerve endings which give rise to coded

trains of electrical impulses that are used to carry

information deeper yet, into the central nervous system for

processing and for recognition as sounds of various kinds.

3.2. The Representation of Motion

Let us see how we can go about making a diagram to

represent the motion of some object observed over a period

of time. Not only will this permit us to use compact yet

accurate diagrammatic descriptions of various kinds of

acoustical motion, we will also find it possible to adapt such

procedures to the representation of many other ideas

besides the motion of bodies.

Consider the following simple motion of someone’s hand:

the hand is first raised vertically from its original position

and held there briefly; then it is brought straight down

smoothly but quickly to a point slightly below the starting

point; finally, the hand is returned slowly to the place of

departure. It has required a lengthy, compound sentence to



describe this motion, and it may take the reader one or two

readings plus a hand-waving rehearsal before he can be

confident that he has understood it. But a diagram can

present the identical actions in a manner that is much more

easily and directly understandable.

Let us now see how the up-and-down hand motion

described above can be represented graphically in a

diagram. Hold a piece of chalk in your hand and press it

against a blackboard; now walk along parallel to the

blackboard while your hand moves up and down in the

prescribed motion. The chalk line in figure 3.1 represents

the resulting diagram traced out in such a walk. If you walk

at a steady pace while drawing the line, horizontal distances

from the starting point measured along the blackboard can

be used to represent the passage of time during the up-and-

down motion of your hand. For reference purposes a

horizontal dotted line has been drawn in to indicate the

initial (and final) height of the moving hand. In chapter 2 we

have already used horizontal lines of this sort to indicate the

passage of time, with various circles and crosses drawn

along them to show the instants at which various events

have taken place. In very much the same way we can think

of any particular point along the chalk line as representing

the event corresponding to a given time, with the distance

of that point from the reference line indicating how far

above or below the starting position the hand was at that

instant.



Fig. 3.1.

In figure 3.2 we see our chalk line redrawn, now provided

with vertical and horizontal scales from which

measurements can be made. We see that the person who

traced this line walked for slightly more than 3/4 of a second

before his hand began to rise, and that 1.25 seconds after

starting, the hand had very nearly reached its maximum

height of 2 feet. We notice that the hand did not move

vertically at all from the point at about 1.3 seconds until

about 1.6 seconds (a time interval of 0.3 seconds), at which

time it began a rapid fall to a position 1.3 feet below the



reference line, reaching this point at a time t = 1.75

seconds. Following this rapid fall came a slow rise which

hardly reached the reference height even 4 seconds after

the start of the walk.

After a little practice in using graphs of the sort shown in

figure 3.2, you should be able to extract a great deal of

information from them at a glance. For example, we see that

the hand initially moved upward and then moved below its

initial position. The above-reference portion of the motion

lasted about 3/4 of a second. We notice that whenever the

graph slopes upward, the hand was moving upward. There

are two parts of the diagram that show this, from 0.75 to

1.25 seconds, and for all times later than t = 1.9 seconds.

Similarly, whenever the hand was moving downward, the

graph slopes downward. The more rapid the physical motion

in either direction, the steeper is the corresponding slope.

The fact that the graph takes a sharp drop from + 2.0 feet to

— 1.3 feet in about 1/10 of a second implies that the hand

was moving downward with extreme rapidity during this

part of the motion.



Fig. 3.2. Graphical Representation of Motion

We can quite easily find the speed of the downward hand

motion shown in figure 3.2 by using the concept of rate

discussed in chapter 2. One might measure the rate of

motion (the speed) of a hand in some units such as

feet/second (seeking to answer the question, “How many

feet does the hand move in one second?”). From the graph

we find numbers for the following arithmetic:

I might remark in passing that this speed could be restated

as being equal to 22.5 miles/hour, a vigorous but by no

means unobtainable speed for a downward chop of the

human hand.

3.3. Displaying Motion: The Strip Chart

Recorder and the Oscilloscope

One is not always restricted to the plotting of graphs by

means of chalk on a blackboard. The laboratory strip chart

recorder (see fig. 3.3) has close kinship to our elementary

method and also provides us with an easy entryway into an

understanding of many other devices. The chart recorder

has a pen whose position along a track is determined by an

externally provided electrical signal. This pen is the exact

analog of the chalk, the leftward and rightward

displacements of the pen position corresponding exactly to

the upward and downward displacements of our hand. A

motor drive pulls a long paper chart off a storage roll and



past the pen point at a steady rate. This motion of the paper

chart past the pen as time goes on serves the same purpose

as walking past the blackboard. In both cases the recording

medium (blackboard, chart paper) and the recording device

(chalk, pen) are moving steadily relative to each other so

that a wavy line is traced out which is a record along the

medium of the motion of the recording device in time.

Fig. 3.3. A Strip Chart Recorder

Many chart recorders are provided with adjustable speed

drive, so that a given impulsive pattern can be displayed

more or less stretched out along the chart paper. This gives

a chance to display more clearly the short-time or the

longtime character of the disturbance under study. The

recordings described in the next section will give us a good

illustration of the usefulness of this option.



Fig. 3.4. Strip Chart Recording of Temperature Changes in a

Pan of Water

Figure 3.4 shows an easily understood example of the use

of a strip chart recorder, in which the changing readings of a

kind of thermometer probe are recorded over a period of

several minutes. Reading from left to right, the trace shows

the following changes. During the half-minute interval from

A to B the probe was immersed in a mixture of cracked ice

and water. The levelness of the trace during this time shows

that the temperature did not change. At the time B we see

an upward jump in the trace, signalizing the transfer of the

probe out of the ice water into a pan of ordinary tap water.

Once again the temperature reading remained constant for a

while, until a fire was lit under the pan. From C to D (a time

of about 65 seconds) the temperature rose fairly steadily,



causing the trace to follow an upward-slanting line. The fire

was removed for the half-minute between D and E, leaving a

horizontal trace that indicates an unchanging temperature.

Between E and F the heat was once again applied and the

water came to a boil. It is a property of freely boiling water

that its temperature cannot change, and we see evidence for

this in the flatness of the curve between F and G. At the time

marked G (5 minutes and 35 seconds after the beginning of

the trace at A) the fire was removed and a small piece of ice

dropped into the hot water next to the thermometer,

brushing it momentarily. This cooled the thermometer

strongly for an instant before the ice floated away to begin

melting rapidly. The abrupt downward spike on the trace at

G and its subsequent recovery to a somewhat lower height is

the visible record of these happenings. A second and much

larger piece of ice was then dropped in, producing once

more a sharp downward spike (shown at H) followed by

partial recovery and then progressive cooling as the two

pieces of ice melted and so reduced the water temperature.

The electrocardiograph is a particular example of a strip

chart recorder which many people have seen, even if they

have never been in a physics laboratory. In this device the

stylus traces out the pattern of electrical signals associated

with the action of one’s heart. This pattern repeats in step

with the repeated beating of the heart and the details of

each repeated pattern give the doctor information about the

workings of the heart muscles and nerves.

The modern oscilloscope is another, purely electronic

cousin to the strip chart recorder. If required, the

oscilloscope is able to display disturbances that take place

millions of times more rapidly than those that can be fed to

a mechanical device. We will make use in this book of

oscilloscope displays whenever they are convenient.



3.4. Oscilloscope Display of a Particular

Clang

The clangs produced when one strikes the bottom of an

ordinary aluminum skillet with various objects provide us

with an ideal set of examples on which we can practice the

understanding that has been gained so far. The clangs will

also bring to light a number of new things that will prove to

be of use to us, not only when we study percussion musical

instruments such as the glockenspiel and the piano, but also

when we consider the bowed string and wind instruments.

Furthermore, the rough clang of a skillet is a sound which

conveniently brings to our attention certain things about the

way we hear that ultimately provide the common elements

that shape organized music all over the world.

The top part of figure 3.5 shows an oscilloscope picture of

the vibratory motion set up in the diaphragm of a

microphone held near the skillet when it is struck once. We

get an overall view of the impulsive nature of the

disturbance. On the left half of the picture we see a

complicated up-and-down pattern of the trace that dies

away toward the right. The left-hand edge of the picture

corresponds to the instant the skillet was struck. Even

though we are unable in this photograph to make out any

detail of the motion, it is possible to get a clear idea of the

overall trend of the vibration. The initially large disturbance

becomes progressively weaker as time goes on, as shown by

the decreasing height of the pattern at later times. By mid-

scale, the whole vertical disturbance has dwindled almost to

nothing and the trace of the moving spot of light (the “pen”)

runs smoothly along the reference axis, making a horizontal

line. In this photograph the vertical lines of the grid

represent successive time intervals of 50/1000 seconds (or,

more conveniently said, 50 milliseconds). Using this

information permits us to observe that the particular



impulsive sound we are studying decays to almost nothing

in about 250 (5 times 50) milliseconds. Horizontal lines of

the grid have no particular meaning here for us beyond

serving as references against which we can compare the

magnitude of the disturbance during the time it decays to

nothingness.

The middle part of figure 3.5 shows the same decaying

impulse; this time, however, the time axis has been chosen

to give an interval of 10 milliseconds between the vertical

grid lines instead of 50 milliseconds. A moment’s thought

will show that this change is equivalent to stretching out the

upper picture in the horizontal direction to a fivefold extent

and then only showing the earliest one-fifth of it. Having

arranged a fivefold increase in our ability to see fine

temporal details, we are able to discover that the

microphone diaphragm is moving rapidly back and forth in

an irregular manner. However, even with the speeded-up

time scale, we are still unable to make out the detailed

nature of the motion.



Fig. 3.5. Oscilloscope Traces of a Skillet Clang

The lowest part of figure 3.5 shows the initial part of the

microphone diaphragm’s motion on an expanded time scale

such that each division of the reference grid corresponds to

an elapsed time of 1 millisecond (1/1000 second). Now at

last it is possible to make out details of the motion and to

see that the diaphragm is moving back and forth in an

extremely irregular and complicated manner.

At first sight it would seem that the behavior of our struck

skillet is hopelessly complex and beyond the ability of a

rational being to comprehend. As a matter of fact, we

already have available a considerable amount of useful

information (once we realize how to extract it), and a further

study of this skillet clang in the next chapter will allow us to

understand the essentials of the motion.



Returning to the top line of figure 3.5, we find that careful

inspection of it will yield further information. Not only can

we see that the entire motion has died away in a time

interval of the order of 250 milliseconds (as pointed out

before), we can also notice a further detail in the nature of

the decay process. Notice that at the beginning of the

vibration the up-and-down excursion of the oscilloscope

trace covers the region extending from almost two divisions

above to nearly two divisions below the reference axis.

Similarly, we notice that 50 milliseconds later on in the

decay, the trace is confined to a region reaching from just

short of one division above to almost one division below the

axis. That is, the extent of the motion has fallen by very

nearly one-half during the course of the first 50

milliseconds. In like manner, the scale of the motion seems

to have fallen by a half once again in the time interval from

50 to 100 milliseconds.

Digression: A Guess at the Nature of the Decay

Process.

In order for a practicing scientist to have Something to

guide his thinking when he is ready to become more formal,

he must train himself to be quick at noticing details of the

sort we have been describing. His mathematical mills can

do nothing if they lack grist for the grinding. At the present

stage of our observing and thinking we might surmise that

the decay process is one in which the magnitude of the

back-and-forth excursions (complex as they may be) dies

away perhaps by equal fractional amounts in equal intervals

of time. If an experimentalist has observed the simpler

though very similar oscilloscope trace that records the

sound produced by an empty bottle from which the cork is

suddenly withdrawn, he will be tempted (if he is even



marginally competent as a scientist) to make a further and

recognizably more speculative surmise: that all decays of

the motion associated with impulsive sounds have the

property of decaying by equal factors in equal times. If he

has something definite in mind, our scientist is in a position

to devise experiments to test the basic correctness of his

surmises.

So far, we can say that our skillet clang decays away in a

time of the order of 250 milliseconds and that perhaps the

decay follows a fairly regular trend, in that it appears to die

away by equal factors in equal times. The lower and middle

parts of figure 3.5 can now be examined for what they can

tell us. It is at once apparent that whatever the nature of the

vibration, the microphone diaphragm moves back and forth

many times during the decay time. Our observations of this

impulsive sound can be summarized in two brief statements

at this stage of our investigation:

1. In this disturbance, which is of impulsive character,

there is clear evidence for a great deal of irregular back-and-

forth motion of the microphone diaphragm, and therefore of

the listener’s eardrums. This is true despite the fact that we

perceive the clang of a skillet as a single impulsive sound.

2. The overall duration of the complex motion is of the

order of 250 milliseconds (1/4 second). The motion is violent

at first and dies down rapidly. There is also reason to surmise

that the decay takes place in such a way that the extent of

the motion falls by equal fractions in equal intervals of time.



Inspection of the lowest segment of figure 3.5 shows that

the finer changes in the diaphragm’s motion (as evidenced

by kinks, offsets, and bends in the trace) take place at

intervals whose durations are typically of the magnitude of

two or three tenths of the 1-millisecond distance between

successive reference lines. We also notice that the gross

reversals of the motion take place in times of the order of

1/2 to 1 millisecond. That is, these kinks and reversals take

place at a rate of 1000 to 2000 per second. We find

confirmation for this observation in the middle photograph.

Here the finest details of the motion are obscured and what

have just been referred to as the gross features of the back-

and-forth motion have become compressed into what look

like irregularly spaced vertical lines. We can count 10 to 20

such lines within the space between successive time

reference lines and we recall that the latter are spaced 10

milliseconds apart. The reversal rate may then be estimated

by our usual method:

We can complete our summary description now by adding

the following two statements to the pair made earlier:

3. The gross behavior of the vibrational motion involves

reversals that take place at a rate of the order of 1000 to

2000/second.



4. The finest details visible in the motion take place in

such a way as to imply alterations in the motion that take

place at a rate that is in the range of 3000 to 5000/second.

This carries the analysis of a skillet clang as far as is

possible on the basis of what has been outlined so far in this

book. We have also provided ourselves with some surmises

upon which we can hang our future investigations. As

remarked earlier, chapter 4 will carry us deeper into the

study of mechanical vibrations and the audible sounds that

may arise from them. We will continue to use the

information contained in figure 3.5 (the oscilloscope tracing

of a skillet clang), together with information gained from

further experiments on the skillet, as the background

material from which we will develop our understanding of

struck and plucked musical instruments such as the guitar,

the piano, and the harpsichord. At this point you may find it

helpful and interesting to look ahead at the diagrams

associated with section 2 of chapter 10, to see simpler

examples of traces that can be unraveled by the method

sketched out here.

3.5. Examples, Experiments, and

Questions

1. In order to get your ear accustomed to listening to

various kinds of sounds, and in order to demonstrate the

wide variety of sounds that can be elicited even from a

skillet, it is worthwhile to strike the skillet at a variety of

spots over its surface with a fairly hard object. It is

convenient to use the more-or-less rounded plastic butt end

of a ball-point pen as a hammer. A good technique is to

strike the skillet with the pen using a hand motion similar to

the one used in dotting an i or making a period at the end of



a sentence, holding it lightly so as to let the pen bounce

away freely from the skillet at each blow. Verify that the

sounds are different depending on the place on the skillet

the striking point may lie.

2. To continue the experiment, tap the skillet with a rubber

eraser tip slipped over the end of the pen. Investigate in

similar fashion the sounds produced by bouncing your

knuckle off the skillet, and then try the same thing using

your fingertip. At this stage of your observations it is an

interesting (though perhaps difficult) undertaking to devise

preliminary surmises about the gross nature of the

oscilloscope patterns to be expected for sounds generated

by hammers of varying hardness. (For example, how would

the number of fine-grained reversals of the trace be

expected to change as the hardness of the hammer is

changed?)

3. Listen once again to the impulsive clang from a struck

skillet or other similar object, this time with your ear quite

close to it. Notice that after the main clang has died out,

there often remains a low-pitched humming sound which

may persist for a while. Having observed this, you may wish

to go back and revise the hypothesizing in section 3.4 about

the nature of the decay process characteristic of vibrations

of a struck object.

4. Now that we have gained somewhat more insight into

the nature of clanging sounds, it is useful to go back to

question 5 of chapter 2 concerning the nature of the sounds

emitted when a telephone bell is ringing. Compare the

surmises you made earlier about this sound with the ones

you would make having worked this far through chapter 3.

5. Obtain a cheap loudspeaker (uncased) and observe the

motion of its cone (diaphragm) when a flashlight battery is

connected across its terminals. The cone moves forward

abruptly and comes to rest in its displaced position as long



as the battery is left connected if the battery polarity is

arranged one way. A similar abrupt displacement takes place

in the opposite direction if the battery polarity is reversed.

Notice that one hears a click or pop only while the cone is in

motion. Notice also that the click sounds very much the

same at the moment the battery is connected as it does

when the connection is broken. Notice in addition that one

gets unsteady scraping and popping sounds when poorly

made electrical connections produce unsteady deflections of

the cone.

6. Connect the two terminals of the loudspeaker via a

shielded cable to the “mike” or “mag phono” input jack of an

ordinary record player. Under these conditions, instead of

having its cone displaced by an electrical current sent

through its windings, the loudspeaker is functioning as a

microphone: displacements imposed on the cone give rise to

electrical signals which can be amplified and themselves

used to drive another loudspeaker. When you tap or scrape

on the cone of the “microphone” with a fingernail, the record

player’s own loudspeaker will emit tapping and scraping

sounds. Follow the logical chain of phenomena for this case,

proceeding from the small motions imposed on the first

(microphone) loudspeaker by your finger to the motions of

the second (record player) loudspeaker, and thence to the

audible motions of your own eardrum. If the volume control

of the amplifier is turned up high enough, the system may

howl or scream. What is the probable causal chain giving

rise to this self-sustained acoustical disturbance?

7. The wavy line marked on a strip of chart paper by the

pen of an electrocardiograph makes a good example of the

representation by means of a graph of signals that vary with

time. The tracing shown in figure 3.6 was made from the

electrical signals from a human heart. Mark a suitable time

scale on the chart to make the repetition rate of the graph

match the rate at which your heart is beating. Attempt then



to categorize the variations taking place during each

heartbeat into major and minor alteration rates in a way

similar to our analysis of the waveform recorded from a

microphone that was “listening” to the clang from a struck

skillet.

Fig. 3.6. An Electrocardiogram



4

Characteristic Frequencies and

the Decay of Composite Sounds

In chapter 3 we examined the microphone signals arising

from the clanging of a skillet, thereby meeting a first

example of the complex way in which a struck object can

vibrate. In the course of experimenting with hitting the

skillet at different points with hard and soft objects you may

have noticed that it is sometimes quite difficult to assign a

pitch to the sound produced when something hard strikes

the skillet. On the other hand, the pitch is generally easy to

settle upon when the pan is struck by something soft, such

as a fingertip. We will have to wait until chapter 5 for a

proper discussion of the question of pitches resulting from

complex sounds. It is nevertheless worthwhile here to

organize our thoughts on the subject by doing a little

speculation on the implications of what we have learned so

far.

4.1. A Preliminary Speculation on the

Pitch Behavior of Skillet Clangs

In chapter 2 we met the notion that definiteness of pitch is

normally to be associated with the definiteness of some sort

of repetition rate. We are therefore led to speculate as

follows about the sound of a skillet struck by soft and hard

objects: perhaps when the skillet is struck by a soft object it

is set into a fairly repetitive motion, giving us a good pitch

cue of the sort we first noticed in connection with the



ringing of a telephone bell, whereas blows on the skillet from

a hard object may give conflicting suggestions to the

repetition-rate machinery of our ears by somehow exciting

several repeating motions that manage to take place

simultaneously.

The idea of several simultaneous repetition rates being

imposed on the motion of a microphone diaphragm or on an

eardrum may at first seem strange or even inconsistent. We

are forced, however, to accept it on the simple evidence of

our ears. For instance, if two widely spaced notes are struck

on the piano or if a singer and a pianist each produce a tone,

our ears have no difficulty in perceiving the two

superimposed sounds as separate entities. Presumably,

then, our eardrums can in fact move in some way that

involves two separate repetition rates.

4.2. Repetitive Properties of an

Impulsive Motion

We return now to the question of whether it is conceivable

that an impulsive sound is repetitive in its own right: the

answer is yes. Invoking our knowledge that the production

of sound involves mechanical motion, we must seek an

example of impulsive mechanical motion of such large scale

that we can see it, and moving slowly enough that we can

follow its repetitive motions. Such a motion is the repetitive

rocking of the water surface in a filled drinking glass that

has been bumped. The surface tilts back and forth in a

smoothly oscillating motion that dies away in the course of

time. We notice also that the repetition rate of this motion

appears to be reasonably constant.

Similar repeated motion can be observed directly by

experimenting with a tuning fork. If the tuning fork is struck

with a knuckle at a point lying between 1/2 and 1/4 of the

way down from the end of the tines, it will give a beautifully



clear sound of definite pitch. We can also feel the vibrations

in the fingers that are holding the fork by its stem. Hold a

vibrating tuning fork so that the part of one of its tines that

is near its root is in the gentlest possible contact with the

surface of a table (see fig. 4.1). A harsh buzzing sound is

produced which is quickly quenched. This buzzing sound is

due to rapidly repeated blows struck on the table top by the

vibrating tine. The pitch of this manifestly repetitive

sequence of tiny blows is exactly the same as the pitch of

the normal smooth tone of the tuning fork. The impulsive

blow from our knuckles on the fork has in fact set up a

repetitive swinging motion of the fork tines, just as a blow

on the water glass set up a much slower swinging motion in

the water.

Fig. 4.1.

4.3. Several Simultaneous Repetition

Rates



Use the tuning fork once more, and this time strike it near

the tip of one tine instead of part way down. As we are led to

expect from experiments with the skillet, the sound is

different now: instead of a single, smooth sound of well-

defined pitch (the tuning reference sound that is the sole

purpose of the design of the tuning fork), we seem to hear

two (or more) pitches simultaneously. One of these pitches is

the one perceived earlier, while the other one is very much

higher and is clearly heard as a separate entity. For example,

the tuning fork I use at home (designed to sound A4, which

has a repetition rate of 440/second) is found to have its

higher pitch lying between the notes F7 and G7 of a piano. In

other words, if there is indeed a repetition rate associated

with this upper pitch, it lies in the neighborhood of

3000/second, as we can calculate with the help of figure 2.1.

Digression on the Higher Sounds from Tuning Forks.

Experiments with a number of tuning forks made by

different. manufacturers and having different physical

shapes show that the higher sounds produced by the

different forks have no recognizable pitch relations one to

another even though the lower (main) sounds are accurately

alike in pitch. We have here another example (albeit a

subtle one) of the fact that objects of different shape

produce different sounds when they are struck. It is also

sometimes possible to adjust some one attribute of the

sound without regard to the others.

There have been strong hints so far that a mechanical

object can in fact be driven in such a way that one can

identify several repetition rates in the motion. Examples of



objects that are driven at several rates are actually very

easy to find. For example, we notice that if one taps on the

side of a glass full of water with a fingernail or spoon, a soft

tinkling sound is heard and small ripples are seen on the

water surface. If the tapping impulse is strong enough to jar

the glass sideways on the table, we see that ripples will

again appear on the water surface, but the surface will also

be rocking back and forth in the way we described earlier.

Furthermore, the tinkling sound we hear (associated no

doubt with the rapid repetition rate of some motion of the

glass and the water) is not altered by the presence of the

slower rocking motion. We have therefore observed at least

one special case in which two repetition rates are

simultaneously visible as a consequence of an impulsive

excitation, and we are entitled to suspect that the tuning

fork is a second example.

4.4. Experimental Search for Vibrations

Having Several Repetition Rates

The observations and speculations that have been described

in the earlier parts of this chapter should suggest that we

might see a fair amount in oscilloscope traces obtained from

a microphone placed near a tuning fork. For one thing, the

normal function of a tuning fork is to serve as a pitch

reference, and we have come to associate this pitch with a

definite single repetition rate. Simply by altering the manner

in which the fork is struck, we will be able to choose

between the simple (normal) sound of the fork and one that

appears to have two widely separated by clearly marked

pitches. With luck we will obtain a picture of greater

complexity in the latter case than in the former, which may

well provide clues to what is going on.

The top line of figure 4.2 shows the oscilloscope pattern

associated with the motion of a particular A-440 tuning fork

when it has been struck by a soft hammer at a point lying



between 1/4 and 1/2 of the way from the end of one tine.

The horizontal axis covers a time duration of many seconds,

and the distance between successive reference lines on the

grid corresponds to one second of elapsed time. Aside from

the greatly increased time scale, this pattern looks like a

particularly smooth version of the decay pattern shown for a

struck skillet in the upper part of figure 3.5. Close

examination of the decay pattern for the tuning fork shows

that the extent of the vibratory motion (as measured by the

vertical height of the oscilloscope pattern) dies away

precisely in accordance with the guess made in section 3.4

of chapter 3. We find that the motion falls away by a factor

of 1/2 for each 3.5 seconds of elapsed time.

The middle part of figure 4.2 shows the same tuning-fork

decay pattern displayed now with reference lines whose

spacing represents a time interval of only 1/1000 second (1

millisecond). Here we can see the nature of the

microphone’s diaphragm motion in all its simplicity. The

oscilloscope trace is a smooth, sinuous line, with an exact

and well-defined repetition time. Curves of this sort, which

are very important in acoustics, are known as sinusoids.

There are no irregular details in the pattern; it is not possible

to make catalogs, as we did for the skillet clang, of the

approximate range of rates at which the dominant motion

reverses direction or of the approximate frequency with

which small irregularities occur. We see only a single, simple,

repeating pattern whose dying away is so slight as to be

almost invisible. Close inspection of the pattern shows that 4

repetitions of the back-and-forth motion take place in the

time corresponding to 9.1 reference divisions. The repetition

rate (as determined by our admittedly rough measurement)

is therefore:



Fig. 4.2. Oscilloscope Traces of Sound from a Tuning Fork

The lowest part of figure 4.2 shows the trace (on the same

time scale as before) of the sound produced when the same

fork is struck at the end of a tine by something fairly hard.

Once more we observe a basic pattern of repetitive motion

that takes place 440 times per second, except that the

recorded trace is made to appear wavy, as though it had

been drawn by someone with a severe but extremely regular

palsy. Examination of the repetition rate of the tremor itself

shows that it matches the repetition rate (approximately

2660/second) belonging to the higher pitch sound produced

by this particular fork. Here is a clear indication that the



microphone is responding to disturbances that take place at

two different repetition rates.

Fig. 4.3.

4.5. Patterns Made by Adding Two

Different Repeating Motions

Let us make sure we know how to interpret displays of the

sort shown at the bottom of figure 4.2. That is, let us find the

relation between two traces that separately represent two

distinct types of motion and a third trace that is produced

when the pen moves under the influence of both

disturbances acting at the same time. Suppose that the

blackboard pattern shown in figure 3.2 (in chap. 3) is to be

retraced by a person having a palsied hand. The top part of

figure 4.3 shows the sort of wavy line he would draw if he

attempted to walk along beside the blackboard with the

intention of drawing a straight horizontal line. The lower

part of the figure shows what would be the result of his

attempt to reproduce the trace shown in figure 3.2. We see



that the actual trace made on the blackboard is drawn

alternately above and below the desired smooth curve, the

extent and direction of the discrepancies being exactly

equal to the extent and direction of the motions due to the

palsy. In general, then, we realize that it is possible to “add”

the graph of one sort of disturbance to the graph of a

different disturbance in order to work out a representation of

the composite motion arising from the two disturbances

when they take place simultaneously.

Figure 4.4 shows how one can make use of a draftsman’s

divider to carry out the addition of two graphs to produce

their composite or sum. The top part of the figure shows the

pattern traced out in time by one of the disturbances (call it

disturbance A). The trace belonging to the second

disturbance (B) is shown in the lower part of the figure,

along with a curve marked C which gives the combined

motion. The diagrams also show how a pair of dividers is

used to transfer the magnitude of disturbance A (at each

given instant of time) down onto the curve B in a way that

adds disturbance A to disturbance B. One simply moves

along the diagram marking out sufficient points to permit a

careful sketching of the resultant curve C.

We can see that a pattern similar to the trace for the

doubly ringing tuning fork shown in the bottom of figure 4.2

might also be accomplished by a palsied man drawing a

sinusoid, or by using dividers to add together a sinusoid

with a repetition rate of 440/second and another sinusoid

whose rate is around 3000/second.

4.6. Composite Motions of a Skillet

Our experimental study of microphone signals produced by

a struck tuning fork has strengthened the plausibility of the

various surmises made earlier in the chapter and leads us to

suspect that the oscilloscope traces shown in figure 3.5 are



in fact the resultant of several oscillations of a simpler type,

all of which begin at the instant when the skillet is struck. In

today’s world it is relatively easy to test this hypothesis,

making use of electronic equipment which is able to

transmit selectively signals of specified repetition rate from

microphone to oscilloscope while it ignores electrical

disturbances of any other repetition rate. Such an electronic

device, called a band-pass filter, is usually provided with

control knobs. One of these is used to set the “center

frequency,” which is the repetition rate that is transmitted

through the filter with least attenuation. Another determines

the “bandwidth,” or the range of frequencies above and

below the center frequency that are transmitted almost

equally well. For present purposes we will imagine that

signals having repetition rates that are close enough to the

filter’s center frequency to lie within its bandwidth will be

transmitted without alteration. Signals having repetition

rates lying outside this “pass band,” or range of perfect

transmission, are similarly presumed to have been

eliminated completely from the filter’s output.



Fig. 4.4. Addition of Two Graphs Using a Pair of Dividers



Fig. 4.5. Band-Pass Filter Setup for Studying Skillet Clang

Figure 4.5 shows how a band-pass filter may be connected

between the microphone and the oscilloscope in order that

we can search among the sounds from a skillet for

characteristic frequencies of a sort found earlier in the sound

produced by a tuning fork. A convenient way to proceed is

to set the filter band-width control to 50/second, so that the

filter will pass signals whose repetition rates lie in the range

25/second above and below the value set on the center

frequency knob. One then varies the center-frequency

setting slowly, while striking the skillet over and over.

Whenever the filter has its center frequency set so that

some vibrational component of the microphone signal has a

repetition rate lying within the filter bandwidth, the

oscilloscope trace takes on an appearance of the sort shown

for a tuning fork in the upper two parts of figure 4.2.



When the band-pass filter is used to study the microphone

signals from the skillet that we used in discussing figure 3.5,

oscillations are found that take place at rates of about 260,

1055, 1630, 1750, 2505, etc., repetitions/second. In every

case the oscilloscope patterns associated with these

repetition rates are of the smooth, sinuous type of the sort

observed from a tuning fork. Each of these patterns has its

own decay time, but in the special case of our skillet all but

the first of the listed signals are audible over their halving

time of 25 milliseconds. It is easy to understand now why

the simple observation of the unfiltered clang from the

skillet showed a similar decay time.

Digression on Some Irregular Components of the

Skillet Clang.

In addition to the group of frequencies listed above for the

skillet clang, there are certain other center-frequency

settings of the filter that give oscilloscope displays of

appreciable magnitude, but the patterns are rough and

irregular looking, We cannot ignore these irregular patterns

mixed in among the expected ones, but it is reasonable to

postpone consideration of them, particularly since they are

not produced invariably on every blow. That is, they seem to

appear or disappear at random, from tap to tap of the

skillet. Meanwhile we can stay alert to any clues concerning

what is going on. Possible hints may be expected from our

observation that blows from a soft hammer tend not to

produce these “extra” irregular signals and that with a hard

hammer they appear at fairly well-defined settings of the

filter center frequency.

4.7. The Characteristic Oscillations of a

Struck Object



Sounds produced by striking or plucking a wide variety of

different objects can be analyzed to show in every case that

the microphone signal is made up of a collection of sinuous

oscillations of exactly the sort we have met in our study of

the tuning fork and the skillet. Each object has its own

characteristic collection of these oscillations, with each

oscillation having its own frequency. Regardless of the

source, all the oscilloscope patterns have exactly the same

shape when we look at them swing by swing. Furthermore,

all of these characteristic oscillations die away in a similar

manner. Suppose for example that the magnitude of one of

these oscillations is observed to decay to half its original

value by the end of the first 1/10 second of its motion; we

find then that during the second 1/10 second the motion

decreases once again by half. This means that at the end of

the first 2/10 second of the oscillation the motion has

decayed until its magnitude is reduced by 1/2 × 1/2 = 41/4

of its original size. Similarly, by the time 3/10 second has

elapsed the pattern has shrunk to 1/2 × 1/2 × 1/2 = 11/8 of

its original size, and so on. We can therefore characterize

the whole dying-down process in our example by saying that

the oscillation has a halving time of 1/10 second. Some

other oscillation of the same object might (in the same

sense) be said to decay with a halving time of 1/100 second,

and yet another with a halving time of 10 seconds. In every

case, each of our smoothly decaying oscillatory patterns is

found to have a definite halving time, regardless of how the

object is struck (provided of course that the hammer is not

left jammed against it in such a way as to kill off the

oscillation).

4.8. The Formal Description of a

Decaying Sound

The sinuous oscillatory patterns produced by striking or

otherwise impulsively exciting an object always have a well-



defined repetition rate, a particular manner of decay, and a

certain shape when looked at swing by swing. These

patterns represent motions which we will refer to as being

damped sinusoidal oscillations, that is, oscillations of a

certain sinuous shape which die away (are damped)

eventually. A given damped sinusoid is completely specified

when one gives a) its repetition rate (usually called the

frequency of oscillation), b) the initial amplitude (the initial

distance of excursion each side of the reference line), and c)

the halving time (T1/2), which gives us a way to state the

amplitude of the motion at any later time in terms of the

initial amplitude.



Fig. 4.6. Amplitude Halving Time of a Damped Sinusoid

The top part of figure 4.6 is a drawing of one of our newly

defined damped sinusoidal patterns. The letters A, B, C, ...

show the instants at which the magnitude of the oscillation

has fallen by successive factors of 2. The time interval

between any adjacent pairs of these instants is what we will

formally call the halving time. The diagram also shows one

example of the repetition time, after which the oscillatory



motion repeats itself exactly (except for its inevitable

decaying away). The lower part of figure 4.6 shows an

example of several damped sinusoidal oscillations, all

having the same frequency, initial amplitude, and halving

time as the sinusoid in the upper diagram. For present

purposes we will not need to distinguish between them.

However, we note that they differ only in the way they are

started out at t = 0. Once a sinusoid is started, its course

later is completely determined by our three specifications.

We will have a continual need to deal with decaying

oscillatory patterns of the sort we have been studying. They

are found in the sounds produced by guitars and

harpsichords as well as in those from pianos and from bells.

We also find them (albeit more deeply buried) in the

reverberations of a concert hall. It is because of their

continual presence in what we hear that we have taken the

trouble to provide ourselves with a terminology to describe

various features of these patterns. All of these matters will

be taken up again in considerable detail in chapter 10.

4.9. Examples, Experiments, and

Questions

1. A hacksaw blade clamped firmly at one end in a vise

makes a good vibrator on which to practice many of the

ideas contained in this chapter and the earlier ones.

Plucking the blade at the free end with a fingertip will start

it vibrating back and forth at a frequency easily followed by

the eye at the rate of about 5 repetitions/second. After an

initial twanging sound has died out, the blade moves back

and forth almost silently, with an amplitude that gradually

decreases.

As a first experiment, hold a board or a screwdriver where

it can be lightly struck in a series of taps by the end of the

blade as it oscillates. Listen to this tapping as though it were



in unaccented 4/4 time, and beat time on the table with a

pencil in step with every fourth blade tap. These two sets of

synchronized tapping rates can be used together with a

metronome (or stop watch) as a means for measuring the

actual frequency at which the hacksaw blade is swinging.

Once you have acquired the knack of beating time in

synchronization with the blade’s own taps, it is possible to

shorten the projecting length of the blade and repeat the

frequency measurement for the more rapidly oscillating

blade. Keep shortening the free length of the blade until it is

no longer possible to keep step with it by pencil tapping at

the one-for-four rate. It may then be possible to shift the

rhythmic relationship to one in which the pencil taps once

for every 6 or 8 swings of the hacksaw blade. This will permit

accurate measurements of the blade’s vibration rate to

somewhat higher frequencies. Notice how usefully the

rhythmic abilities of the human nervous system can be

exploited as a means for extending the range of physical

measurements done with the simplest of apparatus. With a

little practice one can learn to measure vibration rates thus

to an accuracy of 1 percent or better. Whatever the level of

sophistication attained in our laboratory equipment, its

usefulness can be extended or its accuracy improved if its

workings can be tied in with our perceptual machinery.

2. The next experiments on our clamped hacksaw blade

call for it to be struck with a screwdriver blade or other hard

object at various points along one of its flat sides. As in the

experiments with skillet clangs, you should attempt to single

out the pitches of the various twanging sounds that may be

produced. Work out, with the help of figure 2.1, the note

names and repetition frequencies associated with these

pitches. You may well find this easier to do than was the

case with a skillet. Compare now the arrangement of

vibrational frequencies given in this chapter for a particular

tuning fork with those given for the skillet and those you



have deduced for the hacksaw blade. Try to construct an

orderly speculation about the relative ease of identifying

clang pitches for objects having widely or closely spaced

frequencies for their sets of damped sinusoids.

3. Clamp the hacksaw blade to leave a progressively

shorter free length, and pluck the free end. Notice that as

the blade is shortened the vibration rate goes up. When the

length is sufficiently short, the back-and-forth vibration

begins to become audible and to have a definite pitch.

Notice also that the pitch rises rapidly as the blade’s free

length is shortened. You might find it interesting to

construct an analogue to figure 2.1 in which the frequency

values are replaced by numbers giving the free lengths of

hacksaw blade whose twanging frequencies are associated

with the various note names. Be sure to clamp the blade

tightly, at right angles to the vise jaws. It will be necessary

to measure very carefully, since small length changes

produce large pitch changes.

4. Because the effects of combining one motion with

another will be important to us all through the book, you

may wish to practice on one or two examples. Thus curve B

of figure 4.7 may be added to curve A in the way that was

discussed in section 4.5 and illustrated in figure 4.4. Just to

get you started, part of the resultant curve C is also shown

at the left end of the diagram.



Fig. 4.7.



Fig. 4.8.

5. In figure 4.8, segments of three sinusoidal curves are

shown, each with its own amplitude and frequency. These

curves are labeled A, B, and C. They may be used to provide

additional practice in sketching out the sum of two curves as

well as an introduction to some of the ways in which the

resultant may be interpreted. To begin with, sketch out

carefully the resultant curve produced by adding curves A

and B. Label this new composite curve with the letter D. Now



find the result of graphically adding curves C and D. This will

have the same general appearance as curve D except in its

middle portion (marked by the letters P and Q on the time

axis). Now compare this middle segment of your curve with

the bottom photographic trace of figure 3.5. If you reread

the description of the reversal rates of this curve, keeping

the appearance of your latest computations clearly in mind,

it will help to put a number of ideas in a new perspective.

6. You may have available some electrical facilities which

can be used for conveniently exploring some of the ideas we

have met so far. Connect a variable frequency electronic

oscillator that produces an electrical output of continuous

sinusoidal form (that is, one in which the halving time is

indefinitely long) to the input of an audio amplifier and its

associated loudspeaker. If possible, connect the oscillator to

the input terminals of an oscilloscope so as to display the

pattern characteristic of an undamped sinusoidal

disturbance. Vary the oscillator frequency setting over the

range of 200 to about 1000 repetitions/second, keeping the

loudness at a very low level. Listen to the sound produced

by the loudspeaker. Notice first of all that the tone is almost

exactly like that produced by a tuning fork. Observe that as

the numerical frequency setting on the oscillator dial is

raised, the pitch rises. Notice also that when the amplitude

of the oscillator signal is made larger, the sound becomes

louder. Do not, however, permit the amplitude of the

sinusoidal oscillator signal to become so large as to

“overload” the amplifier, since there is some risk of

damaging the amplifier, the loudspeaker, or your ears. Later

in the book we will be able to deal with the changed sound

that results from overloading.



5

Pitch: The Simplest Musical

Implication of Characteristic

Oscillations

In chapter 4 we learned that essentially any object can be

impulsively set into motion. When this motion is analyzed, it

is always found to consist of a collection of damped

sinusoidal oscillations; each of these oscillations has its own

frequency and its own halving time. We can observe the

details of the motion of an impulsively excited object by

placing a microphone near it. The microphone diaphragm

moves in response to the motion of the struck object, giving

us an electrical signal that can be easily studied. The

frequencies and decay times of the microphone signals are

directly related to the frequencies and decay times of the

oscillations of the struck object. Using an oscilloscope and a

band-pass filter, we can determine that the motion of our

struck object is made up of a characteristic set of oscillations

of sinusoids. However, it takes only the briefest of additional

experimentation to discover that the relative strengths (the

initial amplitudes) of the various sinusoids making up this

motion are not characterirtic of the object. Not only do these

amplitudes depend on the nature of the hammer and the

striking place, but they depend also on the position of the

microphone relative to the object.

Our studies with microphone and oscilloscope show that

when a tuning fork is struck in a suitable spot by a suitably

soft hammer, only a single sinusoidal oscillation is excited,



and its perceived pitch can be related directly to the

oscillation frequency by using the musical convention

described in figure 2.1. Striking the tuning fork with a

harder hammer excites two or more of the characteristic

vibrations of the fork. Our hearing mechanism in this case

finds it possible to distinguish these two or more vibrations

from each other and to assign separate pitches to them. The

higher oscillations are so weakly excited in normal use and

their pitches are so much higher than that of the lowest

vibration that we have no trouble labeling the fork with the

musical note name that is conventionally associated with its

lowest characteristic oscillation frequency.

5.1. Perceived Pitch of a Composite

Sound I: Rectangular Bars

The rectangular steel bars of the glockenspiel provide us

with a further example for our study of the pitches

associated with sounds from impulsively excited objects. We

will begin with an examination of the sounds from the bar

that gives the instrument’s lowest note, C6. Here, just as in

the case of the tuning fork, the pitch name agrees exactly

with the frequency of the lowest characteristic sinusoidal

vibration, 1046.5 oscillations /second. The hardwood mallets

used to strike the bar also excite the second, third, and

fourth characteristic vibrations which (in my particular

glockenspiel) have frequencies of 2810, 3906, and 5494

oscillations/second.

Inspection of a glockenspiel or its close cousins, the

xylophone and the marimba, shows at a glance that the

longer bars give lower pitched notes than do the shorter

bars. We notice, however, that the “kind” of sound from one

bar is very much the same as that from the next one. One is

led to ask what is the common element among the sounds

produced by bars tuned to different pitches. Many people

will automatically say that there is something characteristic



of the sound of a bar, whether it is made of wood, brass, or

steel, or perhaps even of plastic. This suggests that the

shape of an object somehow determines the tone, so that we

should measure the characteristic frequencies of a shorter

bar and see how they are related to those belonging to the

longer bar. When this is done, we find that many of the

ratios of the characteristic frequencies of one bar are

somewhat similar to those of any other bar of the set. Let us

assign the alphabetical letter names P, Q, R, S, ... in order to

the first, second, third, etc., characteristic frequencies of our

bar. This sort of labeling helps us keep track of the various

frequencies without risk of confusion with the letter names A

through G which are given to notes of the musical scale. For

the particular bar that concerns us here, the ratios may be

written out as follows:

Conventionally one summarizes frequency ratios of the sort

shown above by a statement such as: “The characteristic

frequencies for this particular bar are related to the lowest

one by the numbers (ratios) 1.00, 2.68, 3.73, 5.25, . . .”

Digression: The Discrepancy between Measured and

Textbook Frequency Ratios. The frequency ratios



characteristic of a precisely rectangular bar made of uniform

material and floating freely in space may be calculated in a

straightforward way by mathematical methods which have

been known since the first half of the nineteenth century,

although the operation is beyon.4 the scope of this book.

Using that somewhat simplified calculation would give us

ratio numbers which are reported in most textbooks as

1.000, 2.756, and 5.404. Much of the difference between

the textbook ratios and those shown above is explained

when proper account is taken of a mounting hole that is

drilled in the actual bar and the grinding away of the

underside of the center of the bar which is done for tuning

purposes. The very severe discrepancy between our

measured ratio for R/P and the textbook value has a

different explanation. The traditional calculation has

neglected to include one of the characteristic vibrations of

the bar, so that the third textbook ratio actually refers to the

fourth member (SIP) of our set of measured ratios. Once the

frequencies are properly assigned, the discrepancy has only

the usual small value associated with the holes and the

tuning process. We will continue our study of bars in chapter

9 and at that time will learn the nature of the missing

oscillation and the reason for its mathematical

disappearance (see sec. 9.1).

There seems to be little added complication when we go

from the sound produced by a tuning fork to that produced

by a metal bar. The lowest characteristic frequency for the

bar (which is incidentally the one that is most strongly

excited in normal playing) determines the playing pitch, and

the weakly sounding and far-distant higher components

merely add pungency and brightness to the sound. The

hardwood bars of the xylophone give us, at the level of our



present investigation, very little that is different from what is

found from a study of metal bars. The chief differences are

found in the greatly shortened characteristic halving times

belonging to the damped oscillations of a wooden bar and in

the possible addition of one or two extra frequencies arising

as a consequence of the nonuniform character of wood (the

presence of grain makes the transverse and longitudinal

properties of the wood quite different from one another).

5.2. Perceived Pitch II: Small Clock

Chimes

We turn our attention now to a different sort of “musical

instrument” in which the relations between the frequencies

supplied to our ears and the pitch we assign to the sound

are less easily interpreted. A favorite way for makers of

grandfather clocks to simulate the huge bells of a tower

clock is to make use of slender steel rods which are thinned

down near one end where they are anchored in a massive

block. There is one such rod supplied for each note of the

chime tune, and each rod is struck by a leather-faced

hammer driven by small gears and levers. The lengths of

these rods are graduated. The length and the amount of

thinning of each rod are adjusted to give the needed notes

(usually a conventional musical scale) and a tone suggestive

of bells.

Let us consider what goes on when we strike one of the

rods in a particular set which I had occasion to examine.

First we will set down the lower few members of the list of

characteristic frequencies belonging to this rod:

P = 5 to 10 oscillations/second 

(inaudible) 

Q = 180 oscillations/second 



Ra = 525 oscillations/second 

Rb = 530 oscillations/second 

S = 1063 oscillations/second 

T = 1772 oscillations/second

If one plays a tape recording of the sound of this rod

struck in isolation from its brothers and asks a group of

musically inclined listeners to find the corresponding note

on the piano, one gets two sets of responses. Some listeners

say that the sound has a pitch lying somewhat above F3 (or

somewhat below F3#), and some assign the pitch at a little

above C5. In either case the listener tends to be aware of the

other pitch that is identified by some members of the group,

and he is also aware of the very high-pitched sound

belonging to what is labeled T (near A6), but despite these

distractions he feels quite comfortable that his own

assignment is the most reasonable one. Neither group of

listeners has any hesitation in saying that the set of rods of

which this is a member will sound a well-tuned musical

scale.

At first glance either one of the two pitches assigned to

the rod’s sound seems plausible. If you consult figure 2.1, it

seems quite clear that Q lies about halfway between the

frequencies conventionally associated with F3 and F3#.

Similarly, both of the closely spaced frequencies that we

have called Ra and Rb imply a pitch slightly above that

assigned the name C5. We are now faced with some

difficulties. First of all, why does no one assign the pitch

name in accordance with the frequency of the fourth

vibrational type (the sound labeled S)? Secondly, why does

no one assert that the pitch is truly to be given as being a

trifle above A6, as is implied by T standing by itself?



Our first reaction to the questions posed above is to ask

whether it is not true that the initial amplitudes (and hence

the loudnesses) of the vibrations that are attracting our

attention are not extremely large compared with those

belonging to the other vibrations. If this were to prove

correct, then we would find an easy way to understand the

responses of our listeners. One group would fasten its

attention on the lower one of the predominant sounds, and

the other group would express a preference for the paired

upper one. Actual measurement of the amplitudes of the

various characteristic sinusoids recorded on the tape shows

that our projected explanation is totally unusable. If we

compare the strengths of the various sinusoids in my

particular recording to those belonging to Q, taking the

latter to be of unit size, the list is as follows: 1.0, (10.0 and

6.3), 22.0, 44. 7 . That is, the vibration labeled Ra has 10

times the initial amplitude of the Q oscillation, while Rb has

an initial amplitude 6.3 times larger, and so on. These

measured amplitude relations show that some of our

listeners assign the pitch in agreement with the lowest

frequency audible component in our sound despite the fact

that higher frequency components of the tone are many

times stronger. Other listeners assign the pitch to agree with

the next two paired (closely matching) characteristic

oscillations even though the fourth and fifth members of the

collection are again very much stronger. In no case does

anyone assign the pitch on the basis of the very strong

fourth vibration (S) or the even stronger fifth one (T).

At this stage the thoughtful reader may be led to ask

whether the halving times of the various vibrations are not

able to give a clue as to what is going on, the idea being

that perhaps one’s ear assigns pitch to agree with that

implied by long-persisting characteristic oscillations,

whether or not they are loudly produced. The answer to this

question is easily found. Measurement shows that the



halving times of all the oscillations are roughly alike.

Furthermore, one finds that our two sets of pitch

assignments are not changed when the halving times are

drastically altered by holding one’s finger, or, better, a wad

of cotton, lightly against the rod near its anchorage while it

is being struck.

Our investigation of people’s pitch assignments for the

sound of rods in a clock chime has shown us that their

relation to the physical nature of the sounds is not explained

at the present point in our study. However, we have had the

opportunity to become familiar with the way in which one

investigates an acoustical phenomenon by means of

physicists’ experiments intertwined with listeners’

experiments, under the guidance of temporary hypotheses

and speculations that are based on our understanding so far.

At the end of this chapter we will be in a position to

summarize the behavior of our hearing mechanism when it

is supplied with composite sounds. We will find that pitch

assignments are made in part with the help of information

concerning the relations between the frequency components

and not simply on the basis of the frequencies themselves.

Meanwhile let us look at some more examples of the

behavior of ears confronted by clangorous sounds.

5.3. Perceived Pitch III: Bells

For centuries music has been made by striking church bells

of different pitches, and it will serve our acoustical purposes

to inquire into the arrangement of the characteristic

vibration frequencies they produce. Not only are these

sounds interesting in their own right, they will also help us

in our thinking about the sounds produced by the rods of a

clock chime which we examined in the previous section. This

is especially worthwhile because the clock chimes were

invented as a simple way to get sounds that roughly imitate

those from real bells.



Musical bells are made in all sizes from small hand bells to

large church bells weighing as much as fifteen tons. It is

significant that regardless of their size, musical bells have a

shape very similar to that shown in figure 5.1 . This is a

shape that has developed over several centuries to give

what is considered an appropriate sound.

In the latter part of the nineteenth century, Lord Rayleigh,

a distinguished British physicist who contributed

enormously to our understanding of acoustics, made a study

of eight tuned church bells which were used together in his

own parish church at Terling.1 It is interesting that the bells

of the Terling Peal were used as a set even though they were

cast in various years between 1623 and 1888. Bells of this

sort give the listener a well-defined sense of pitch, and the

members of this set are acceptably similar in the nature of

the sounds they produce. An inter-comparison of the

characteristic oscillations of some of these bells will teach us

a great deal about how they vibrate and how we hear them.
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Fig. 5.1.

Because each of these bells was intended to sound a

definite note of the musical scale, we expect that the

characteristic frequencies of one bell will be quite different

from those of another bell in the set. Since each of the five

bells we will consider possesses a half dozen characteristic

frequencies that are of interest to us, we could easily

become lost in a welter of numbers if no way can be found to

simplify our handling of this mass of data. Let us devise an

artifice that puts them all upon a common basis. Many

people have noticed that a phonograph record which was

recorded so as to give proper reproduction at a turntable



speed of 33 ⅓ r.p.m. will, when played at 45 r.p.m., produce

its music transposed up by an amount which a musician

would say is a trifle more than a perfect fourth. That is, every

note in the music is transferred in pitch to a spot that is

slightly more than five semitones farther up the musical

scale. Similarly, playing this same record at 78 r.p.m. is

found to transpose the music by about 2⅔ semitones more

than an octave. This suggests that we imagine our bells to

be recorded and then played back on an adjustable-speed

phonograph or tape machine, using carefully chosen speeds

which make all the bells sound at the same perceived pitch.

Let us choose the playback speed to be such that all bells

sound at a pitch that listeners agree on calling C, and it will

be the one termed C4, found at the middle of the piano. You

may recall that this pitch is conventionally associated with a

repetition rate of 261.6/second. A band-pass filter can be

used to measure the characteristic frequencies present in

the played-back sounds. The five rows of table 5.1 give

Rayleigh’s measurements converted to a common basis of

perceived pitch by making use of my own electrical

synthesis of these sounds plus a record-and-playback

procedure similar to the one described above. The

correctness of my pitch adjustments was confirmed by a

group of about twenty musically experienced listeners.

A glance at the column giving the first (lowest)

characteristic frequency (P) for each bell shows that none of

these frequencies seem to match the expected

261.6/second oscillation rate. The pitches implied by the

first oscillation frequencies of the bells are scattered over a

range of about a semitone and a half above the expected

frequency. In a similar fashion we notice that the pitches we

would assign to the second characteristic frequencies (Q) of

these bells randomly cover a range of almost two-and-a-half

semitones.



It is a common experience among musicians to make an

error of an exact octave either way in comparing the pitches

of unfamiliar sounds with the notes of a piano. We are

therefore led to ask whether the second characteristic

frequency (Q) is not close to the frequency associated with

C5. Again we find that none of the bells have frequencies

that lie close to the 523/second oscillation frequency that is

normally associated with C5.

Table 5.1 Frequencies of a Set of Church Bells
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Continuing our examination of the table, we find that the

third characteristic frequencies (R) of these bells agree only

crudely with one another. Their pitches would agree within

about a semitone if they could be excited independently of

the other bell sounds. We do not, however, find any obvious

relation between the R sounds from our bells and the

frequencies belonging to the various musical Cs, nor do we

find any for the more scattered frequencies for S, so we turn

our attention to the column listing the fifth characteristic

frequency for each bell. Here again we find a random spread

of a little more than a semitone.

The first conclusion we can draw from our examination of

the sounds of church bells is that accurate tuning of their

pitch does not require exactitude in the adjustment of each

one of the various characteristic frequencies. Further

experiment shows also that the amplitudes of the various

components in the sound may be drastically varied with

only small alterations in the perceived pitch. Students of

musical perception have not, unfortunately, given much

attention to bell-like sounds. They have however made

extensive studies of simpler sounds which have the same



curious properties. We will return at the end of the chapter

to describe the general habits followed by our ears in

assigning pitch to composite sounds. At the moment,

however, we must satisfy ourselves with simply noticing that

the bells have called our attention to the possibility of

sounds whose pitches are not connected in some obvious

manner to the frequencies of their components. Our

experience with the clock chimes has also illustrated the

general fact that the pitch assignments made by our ears

are quite insensitive to the relative amplitudes of the

various components. By the way, comparison of Rayleigh’s

measurements with those made on over one hundred bells

manufactured recently in Germany shows that our

observations are a fair representation of the basic properties

of bells as they exist today.2

Let us turn our attention now to the sounds which arise

from musical strings such as those of a piano or a guitar. For

these sounds we find that there are indeed easily detected

numerical relationships between the characteristic

frequencies and the repetition rates by means of which we

have agreed to measure pitch. These numerical relationships

turn out to give us clues to an understanding of what is

going on when we listen to the more mysterious sounds of

chimes and bells.

5.4. Frequency Components of the

Sounds from a Plucked or Struck String:

Guitars and Pianos

The piano is a very familiar musical instrument whose sound

is impulsively excited; a similar close cousin is the guitar.

From our present preliminary point of view, the differences

between struck piano strings and the plucked strings of a

guitar or a harpsichord are only matters of detail. In all three

instruments a tightly stretched string is abruptly set in



motion and afterwards left free to oscillate in the ways that

a_e characteristic of this particular kind of elongated

vibrator.

We at once discover that the lowest characteristic

frequency (P) of a string is almost exactly that

corresponding to the conventional repetition rate that we

assigned to a note of the same pitch. Because a guitar is

particularly easy to experiment with, we will begin by using

a band-pass filter to sort out the various damped sinusoidal

oscillations characteristic of the strings of a guitar.

I have made several sets of measurements on my

daughter’s nylon-stringed guitar which will serve very well

as the basis for our preliminary study of the vibrations of

strings. In order to make it easier for us to discover the

common features among the vibrations of the set of six

strings, we will once again make use of the artifice of

recording the sounds of all the strings at one speed and

playing them back at another one, so as to transpose them

all to the same pitch. For arithmetical convenience, we will

record and play back in such a way that the first

characteristic frequency (P) of every string is translated to

the common value of 300 oscillations/second. The results of

one set of measurements of the guitar are displayed in table

5.2. In the left-hand column we find the string number and

note name for each string as it is found on the guitar. All of

the frequencies under the heading P are given as

300/second, in accordance with our recording prescription. A

glance at the column marked Q shows immediately that the

second characteristic oscillation frequency of every string is

very close to 600/second. Similarly we notice that R always

lies very near to 900/second, while S and T are closely equal

to 1200 and 1500 oscillations /second. If our table had been

extended further we would observe the continuation of this

simple-appearing behavior. In every case the characteristic

frequencies of our guitar strings are found to be very nearly



whole-number multiples of the lowest frequency that is

characteristic of each string. For example, for the G string

the ratios P/P, Q/P, R/P, . . . are 1.000, 2.007, 3.009, 4.015,

5.014. Notice how much more orderly these frequency ratios

appear than do the ones listed in section 5. 1 for the

glockenspiel bar. Before we become too charmed by the

simplicity inherent in this whole-number relationship, we

should try to determine whether the discrepancies between

the simple whole-number relation and the measured

frequencies of the strings are the result of experimental error

in the measurement (so that they may be ignored here), or

whether they are the manifestation of further complexities

that we will perhaps need to study later. When the string

frequencies are carefully re-measured by various

techniques, we find that these discrepancies truly belong to

the guitar and its strings. However, we do observe that re-

tuning the instrument to a slightly higher pitch will

rearrange the discrepancies.

Table 5.2 Measured Values of Components of a Set of

Guitar Strings

e9780486150710_i0033.jpg

In table 5.3 we see two examples of the effect of tuning

the guitar up from its earlier pitch to one about half a

semitone higher. We see here an alteration in every case of

the discrepancy between the whole-number relation and the

measured frequencies. One also finds that installation of a

set of new strings or even a drastic change in the weather

will cause a similar rearrangement of the measured

discrepancies. When the frets are used in the usual way to

get various pitches by altering the length of string which

can vibrate, once again it turns out that the characteristic



frequencies produced by the string display the same general

pattern of whole-number regularity plus discrepancy.

Analogous measurements of the strings of a piano show

that the frequency ratios are extremely close to being whole

numbers (integers) through the middle part of the keyboard.

The discrepancies observed for strings in the top and bottom

two octaves of the piano range are found to be large.

What departure from the integer relations one observes

can itself be resolved into two parts: (1) a smoothly varying

progressive increase of the successive ratios above the

integer values, and (2) small, randomly appearing but

perfectly definite fluctuations above and below these

smoothly modified numbers.

Let us distill the results of our preliminary investigations of

impulsively excited strings into a few sentences. Careful

measurements of the lowest, second, third, etc.,

characteristic frequencies (P, Q, R, ...) for strings mounted on

musical instruments show us that there are two major

features to be recognized in the sounds:

1. The upper characteristic frequencies are found to be

almost exactly whole-number multiples of the first one.

2. Small departures from the whole-number ratios are

commonly observed.

We will find that both aspects of the behavior of strings are

of musical importance. At the present moment we should

notice some of the remarkable implications of the first of

these observations.



Table 5.3 Effect of Re-tuning on a String’s Characteristic

Frequency Relationships
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5.5. Sounds Having Whole-Number

Frequency Ratios

Let us imagine that we have available to us a hypothetical

string which, when plucked or struck, vibrates in a family of

characteristic damped sinusoidal oscillations whose

frequencies are arranged in an exact whole-number relation;

that is, Q is exactly 2P, R = 3P, S = 4P, and so on.

Digression on the Numerical Labeling of Natural

Frequencies.

We can express this whole-number relationship between

oscillation frequencies very compactly as follows. If we use

the letter n to stand for any one of the integers—that is, n =

1, or 2, or 3, etc.—and if the characteristic frequencies are

given the serially numbered names f1, f2, f3 instead of our

alphabetical names, then the nth one of these frequencies

can be referred to as fn. The desired integer relation

between the successive string frequencies can be written in

a mathematically tidy fashion as follows:

fn = nf1

One reads this mathematical sentence thus: “f sub-n is



equal to n times f sub-1, ” meaning that the nth frequency is

n times as large as the first one in the set.

In the language of chapter 2, we can say that the repetition

rate for any one of our idealized string’s sinusoidal

oscillations is a whole number times the repetition rate

associated with its lowest frequency oscillation. Let us look

into what happens when account is taken of the fact that the

string is actually vibrating with a whole set of integrally

related frequencies.

Suppose that for conceptual simplicity we assign an

imaginary drummer to each characteristic oscillation of our

string, giving him the job of tapping with a repetition rate

equal to that measured for his “own” string oscillation. The

whole-number relation between the string frequencies then

requires that the drummer assigned to keep time with the

second characteristic oscillation should beat twice as fast as

drummer number 1. Similarly drummer 3 taps three times as

fast as drummer 1, and so on. The upper four lines of figure

5.2 show the timing of the successive taps produced by the

first four of our set of drummers. The bottom line of the

diagram shows the resulting rhythmic pattern that one

would hear. Every drummer strikes in unison with the blows

of drummer 1, giving a strongly marked beat, and drummers

2, 4, ... strike at the midpoints between these accented taps,

giving a somewhat less accented tap. The important thing to

notice is that the repetition rate of the complete rhythmic

pattern produced by the composite set of tappings is exactly

the same as that of the lowest frequency member (see sec.

2.3, “Repetition Rates of Rhythmic Patterns”). Musicians

should not find this idea hard to understand if they compare

my explanation above with what they would expect from a

rhythmic pattern written out as in figure 5.3.
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Fig. 5.2. Pattern Made by Tapping Rates Having a Whole-

Number Relation

Let us look now at some examples using sinusoidal

disturbances instead of drumbeats. The top two parts of

figure 5.4 show sinusoids whose frequencies differ by a

factor of two. If our simplified string could be excited by

some means that sets into motion only the first two of its

characteristic oscillations, then the oscilloscope picture

produced from a microphone in its neighborhood would look

something like the curve shown in the third part of the

figure. This curve is produced by the addition of the two

curves immediately above it. Notice that the repetition time

of the somewhat spiky composite curve (and hence its

repetition rate) is exactly that of the f1 component at the top

of the diagram. The bottom part of the figure shows the

result of combining additional sinusoids, so that the curve is

that belonging to the sum of the first six oscillations in our

specially chosen set.
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Fig. 5.4. Combination of Sinusoids Having a Whole-Number

Frequency Relation
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Fig. 5.3.
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Fig. 5.5. This figure is identical with the upper three sections

of figure 5.4 except that the second component has been

displaced. Note that the repetition time is unaffected by this

change.

Figure 5.5 shows a slightly modified version of the upper

three sections of figure 5.4. This time the f2 component is

“slid over” in time so that it no longer has every second

upward excursion coincident with every upward excursion of

the f1 component. We notice that the summation of these

two oscillations gives a resultant pattern whose shape is

different from the one obtained before, but once again we

see that the repetition time is equal to that of the lowest

frequency (f1) oscillation.

Adding components whose frequencies are in whole-

number relationships has shown us something that will

prove to be very important to our understanding not only of

the physical basis of tone color but also of the special

relationships between notes which underlie formal music all

over the world. Let us set down some of the properties of the

class of sounds that would be made by our hypothetical

strings.

1. No matter what the strength of excitation of the various

oscillations, the repetition rate for the whole signal as it

reaches a microphone (or our ears) would be exactly that of

the lowest frequency sinusoidal component that is

characteristic of the string.

2. Because the net repetition rate of the vibration is

independent of how or where the string is struck, one would

always get the same perceived pitch sensation for the string

sound. This means that the pitch is unambiguous.



Digression: Sounds with Only Even Harmonics.

In the strictest of logic, one might ask about a possible

inadequacy of item 1 above. Imagine an ingenious

excitation method that fails to excite the odd-numbered

oscillations, so that only f2, f4, f6, ... are present. These may

be written out as follows:

f2 = 2f1 = 1 × (2f1) 

f4 = 4f1 = 2 × (2f1) 

f6 = 6f1 = 3 × (2f1) 

etc.

This shows that our new set of frequency components is

itself constructed out of integer multiples of a new basic

frequency whose value is (2f1). The repetition rate is

therefore doubled, and the whole game begins again. We

would perceive this altered sound as having a pitch one

octave higher than the normally excited one.

As a practical matter, it is not particularly difficult to

arrange peculiar excitations of the sort described in the

preceding paragraph, and if one were to meet such a

situation it could easily be recognized as such with the help

of simple auxiliary experiments. One would need only to

pluck or strike the string at random spots once or twice in

order to find out the true nature of the string.

There is something intellectually very attractive about the

apparent simplicity of sounds made up of components



having integer frequency ratios, and it is easy to devise

lengthy numerological games based on their presumed

properties. Before we fall into this trap, however, it would be

advisable to find out whether such sounds can in fact be

generated. If such sounds can be generated, we then must

ask whether our ears and nervous system deal with them in

a way that corresponds at all with experiencing the sounds

from real strings. The first question can be answered

affirmatively in two ways:

1. A truly uniform slender string of suitable material,

stretched tightly enough between sufficiently rigid supports,

will produce sounds whose components have frequencies

that are in very nearly perfect integer relation. The sounds

from such a string differ only subtly from those produced by

a string vibrating under less formalistic conditions. That is,

nothing drastic happens to the perceived sound as long as

the string has nearly integer frequency relations.

2. We find that there is a large class of familiar sound

sources that normally produce sounds whose frequency

components are found to be related in the precisely whole-

number manner that we postulated for our hypothetical

strings. Examples of sources of this kind are very common.

The human voice is the most familiar one, while the

woodwind and brass instruments join with the violin family

to provide orchestral examples. These diverse sound sources

have one common element in their nature that sets them

apart from the bells, chimes, and strings we have considered

so far. Instead of simply ringing (and decaying away) in

response to an impulsive stimulus, all of these instruments

are capable of producing sustained sounds. They are devices

that are capable of converting the steady flow of air from a

man’s lungs, or the steady motion of the bow in his hand,



into the oscillatory vibrations which give rise to the sound

we hear. We shall see in a later chapter that only under very

special circumstances can such devices be persuaded to

maintain steady oscillations whose frequency components

are not in an exact whole-number relation to the basic

repetition rate.

It turns out that the vast majority of our musical listening

experiences are with sounds whose frequency components

are in exact whole-number relation, or very nearly so. It is

not surprising, then, that the formal structure of music

(wherever it has developed over the world) is strongly

influenced by the properties of sounds each of which has

whole-number relations among its components. We also find

that many subtleties in music arise through the slight

inharmonicities which are present in the tones of some

instruments.

This book has opened with an investigation of impulsive

and heterogeneous sounds from struck objects, not only

because of the simplicity of initial exposition but also as a

means for underlining the special nature of the sound-

producers that man has selected for his musical activities. It

is time therefore to return to the sounds of bells and chimes

in order to compare them with the sounds of plucked or

struck strings.

5.6. The Pitch of Chimes and Bells: Hints

of Pattern Recognition

We have found that the characteristic frequencies that make

up any one sound from any one of the commoner orchestral

instruments are arranged as exact (or very nearly exact)

integer multiples of a certain basic frequency. It is this basic

frequency component that determines the repetition rate of



the sound we hear and also, as we have learned, its musical

pitch. Let us use this knowledge to help ourselves gain some

understanding of the way in which we assign pitches to

chimes and bells, whose characteristic frequencies do not

arrange themselves in whole-number relationships.

Digression on Terminology:

Some Partials Are Harmonic.

It will save a great deal of circumlocution if we provide

ourselves with some terminology carefully chosen for the

description of the various components making up the sound

we are dealing with. First of all, in any sound made up of

sinusoidal components, we will continue to assign

identifying letters from the latter part of the alphabet, or

serial numbers, assigning them according to their order,

beginning at the lowest one. That is, we will call these

frequencies P, Q, R, . . . or f1, f2, f3, ... Sometimes it will be

useful to refer to these components as the partials of the

sound in question. When this word is used, we will

understand that no particular relationship is to be assumed

between the frequencies of these partials; their frequencies

may or may not have a whole-number relationship. These

components will still be referred to by their serial numbers

as first partial (referring to the component labeled P or f1),

second partial (also known as Q or f2), etc.

We turn now to the special case of sounds in which the

frequencies of the various sinusoidal partials are whole-

number multiples of some basic repetition rate. The

sinusoidal component whose frequency matches that of the

repetition rate will be referred to as the fundamental

component, and its frequency as the fundamental



frequency. It is often referred to also as the first harmonic.

The partial whose frequency is exactly double that of the

fundanzental will be said to have a frequency which is the

second harmonic of the fundamental frequency. Similarly we

will say that sinusoidal oscillations running at three times

the fundamental frequency are vibrating at the third

harmonic of the fundamental frequency.

We will have to be very strict in our terminology or

endless confusion can result. The word harmonic is to be

used only when we mean to imply an exact whole-number

frequency relationship. To help make things dear, we may

notice that the partials of a guitar string have frequencies

which are very nearly, but not exactly, harmonics of the

frequency of the first (lowest) partial.

We learned earlier in this chapter that musically

experienced people won’t necessarily agree on what pitch to

assign to the sound of a grandfather clock chime. In the

context of our present understanding of musical sounds, we

may wonder whether the frequencies of the chimes’ partials

can be recognized by our nervous system as belonging to

two differently organized sequences of harmonics. That is,

can we find hints of a series of harmonics whose

fundamental corresponds to the approximate F3 that some

listeners hear? Similarly, can we detect signs of a harmonic

series whose fundamental implies the pitch just above the

C5 perceived by others? In our earlier investigation of this

sound we recognized that the second partial has a

frequency consistent with one of these pitch assignments

while the two closely spaced partials (which were labeled Ra

and Rb) are associated with the other one. Our earlier

difficulty stemmed from our inability to dispose of all the



other partials making up the tone; could these be members

of harmonic series based on the assigned pitches?

Figure 5.6 shows the frequencies of all the partials up

through f4 (S) laid out as dots along a frequency scale.

Above the frequency axis of this diagram we see a pair of

arrows located at frequencies corresponding to a

fundamental, belonging to the note C5, and its second

harmonic. The fundamental arrow is pointing at the pair of

Rs, while the arrow for the second harmonic points almost

exactly at the measured S. It seems possible, then, that our

ears can seize on the relationship of these two strong

components and accept them jointly as the two lowest

members (fundamental and second harmonic) of a set of

partials belonging to a sound whose pitch is near C5.
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Fig. 5.6. Assignment of Pitches to Sound from a Clock Chime

Below the frequency axis we find in similar fashion a set of

arrows indicating the frequencies making up the set

(fundamental and its harmonics) belonging to the sharp-

pitched F3 which we associated with the measured f2 (which

was labeled Q earlier). This time we find that the arrows

corresponding to the fundamental, the third, and the sixth

harmonics point very nearly at the dots indicating the

measured components Q, R, and S.

Our search for integer relations among the frequency

components of a struck chime rod has been reasonably

successful, in that it gives results that seem consistent with

the hypothesis that our ears assign pitch (when possible) on

the basis of any whole-number sequences they can find.



We turn our attention next to the bell sounds, to see

whether they give any support to our hypothesis that pitch

is assigned on the basis of approximately whole-number

frequency relationships. The individual lines of figure 5.7

show the frequencies of the first five partials for the first five

bells in the Terling Peal, laid out by means of dots on a

frequency axis in exactly the same way as was done for the

chime rod. The dashed vertical lines appearing on the

diagram indicate the fundamental repetition frequency and

its harmonics belonging to a reference sound whose pitch

matches that of the bells as made uniform by a variable-

speed recording device.

Inspection of the line corresponding to bell 1 shows that

the first partial (marked P) has a frequency quite close to

that assumed for the fundamental. Furthermore, we see that

partials 4 and 5 agree extremely well with harmonics 3 and

4 of the pitch reference tone. We note that partials 2 and 3

do not seem to agree with any member of the reference

harmonic series.
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Fig. 5.7. Frequency Components of Bells Adjusted to the

Same Pitch

Skipping now to bells 3, 4, and 5, we find that partials 1,

2, 4, and 5 agree quite well with the fundamental and

harmonics 2, 3, and 4 belonging to our pitch reference.

Partial 3 never seems to fit in. Bell 2 does not show such a

clear-cut relation, although the frequencies of partials 1 and

4 are roughly equal to those of the fundamental and third

harmonic of our reference sound. Interestingly enough, most

listeners feel quite uneasy about assigning pitch to this bell,

even though they find no difficulty with the other ones.



Looking over the data we come to realize that for a bell to

have a reasonably well-defined pitch (so that it can be

matched with a normal sort of tone having harmonic

partials), our ears do not demand any particular set of

component frequencies from it. That is, our ears do not

demand that the same (only approximately harmonic)

partials serve identically as the “pointers” in the sounds for

all the bells. All that is required is a sufficient number of

sufficiently consistent clues. The frequencies of the skillet

clang listed on p. 43 are similar to these bell sounds in that

they are not harmonically related.

5.7. Another Pitch Assignment

Phenomenon: The Effect of Suppressing

Upper or Lower Partials

In the previous section of this chapter we found ourselves

thinking about the ways in which our ears respond to sounds

fed to them from bells and chimes. We noticed that the act

of assigning pitch to sounds of this kind appeared to involve

the detection of an approximate regularity in the frequency

pattern of the partial components of the sound. Let us turn

our attention now to a different kind of stimulus for our ears.

This time we will experiment with the effect on pitch of

removing one or more components from a collection of

sinusoids whose frequencies are harmonically related.

We have already seen that a sound made up of sinusoidal

components whose frequencies are whole-number multiples

of some fundamental frequency (for example, the musical

tone A3 which is made up of components whose frequencies

are 220, 440, 660, 880, ... oscillations /second) forms a

complex disturbance whose mathematical repetition rate is

exactly equal to that of the fundamental component. It takes

only a moment’s thought to realize that since every one of

the components “comes out even” at this repetition rate,



one should be able to add or delete components from this

collection without altering the repetition rate, at least as far

as the physicist is concerned.

It is easy to verify in the laboratory that lopping off the

higher frequency members of our collection of harmonics

does not alter the perceived pitch of the sound. In a less

rigorous fashion we can all verify the correctness of this

observation by playing with the treble tone control knob on

a high-fidelity amplifier as some music (or preferably a

single note) is played. Changing this knob serves to

strengthen or weaken the higher harmonics of the tone as it

is projected to our ears by the loudspeaker. We certainly are

aware of alterations in the sound, but pitch changes are not

among them. We have already met a prime example of the

fact that pitch can be independent of changes in harmonic

content. The single-frequency sound produced by a properly

struck tuning fork serves perfectly well as a pitch reference

for an oboist whose instrument generates a tone containing

a dozen or more harmonics.

The stability of our pitch perceptions as the higher

harmonics are removed from the tone is perhaps to be

considered obvious on the face of it. The fundamental

component by itself appears able to define the pitch. One

might be tempted to say that the higher harmonics have no

particular role, that they are merely present and do not

provide conflicting cues. Let us check up on this apparent

simplicity by performing new experiments in the laboratory,

progressively removing not the higher components but the

lower ones, beginning with the fundamental. Suppose that

once again we start with a sound constructed of a

220/second fundamental sinusoid plus (for example) the

next five partials whose frequencies are 440, 660, 880,

1100, and 1320/second. If we electronically remove the

220/second fundamental component from this collection,

our ears will nevertheless assign the pitch in accordance



with a 220/second repetition rate. If we eliminate the second

harmonic component (440/second) as well as the

fundamental from our tone, we still have no hesitation

assigning the pitch exactly as before. As a matter of fact,

removal of all the components except the highest two in our

collection of six will still leave us with a sound to which we

unhesitatingly assign the original pitch.

We have everyday experience which provides informal

confirmation and generalization of this astonishing result.

We are familiar with the fact that music remains perfectly

recognizable when it is played on an inexpensive pocket

transistor radio. The ordinary pitch relations of music remain

exactly the same whether it is heard “live,” or via a good

high-fidelity system, or over a small radio. One can follow

the various voices without difficulty on even the smallest

radio. On such a radio, a downward running scale on the

piano, for example, can be followed easily to its lowest note,

which has a frequency of 27.5/second. This is true even

though the small radio is hardly able to emit an audible

sinusoid below a frequency of about 200/second

(approximately G just below middle C on the piano)! As a

result, the radio itself is operating on all of the bass

instruments in exactly the same way as did our laboratory

apparatus. In short, our experiments indicate that the ear is

able to assign pitches and even recognize other musical

relationships upon the basis of only a few harmonically

related partials from each of the various instruments.

Furthermore, we seem to have found that the pitch

assignment made by our ears in this case is that which

agrees with the pitch of whatever fundamental component is

implied by the exact whole-number relationships between

the frequencies of the sound components that are supplied

to them.



5.8. Pitch Assignments and Frequency

Patterns: Summary and Conclusions

In earlier sections of this chapter we found ourselves

thinking about ways in which our ears respond to the signals

fed to them from bells and chimes. We were led to suspect

that the act of assigning pitch to a collection of component

frequencies is one in which our nervous system copes with

elaborate and irregular-seeming sets of signals, managing to

separate traces of the “interesting” patterns from a welter of

detail. Let us review the phenomena before giving a

description of what the ear and the nervous system are

doing in all these cases.

1. The tuning fork and the glockenspiel bar appear fairly

simple to understand. There is no harmonic relation between

the characteristic frequencies, these frequencies are far

apart, and we simply hear two or more sounds having

different pitches.

2. The sounds from plucked and struck musical strings

give us an almost equally simple-appearing example since

they provide us with a large number of partials that are

arranged in an almost exact integer relationship. The

frequency pattern of the partials so closely matches its

exactly harmonic prototype that it is a little hard to imagine

the complexity of the pitch assignment process that is

actually going on.

Digression on the Repetition Rates of Almost-

Harmonic Components.



Some people find it quite shocking to realize that because of

the slight departures from integer relationships, a

mathematician would calculate that the actual repetition

frequency for all the Partials taken together for any one of

the guitar strings of table 5.2 is of the order of 1 or

2/second, while we cheerfully assign it a pitch that matches

a truly harmonic sound whose overall oscillation

(fundamental plus harmonics) repeats at a rate close to

300/second.

3. The clock chimes provide an example of a set of sounds

among which several quasi-harmonic patterns co-exist.

Figure 5.6 has led us to suspect that the musician who hears

the pitch as being just above F3 is responding to the fact

that the frequencies of the partials Q, Ra and Rb, S, and T

roughly approximate the fundamental, 3rd, 6th, and 10th

harmonics of a whole-number series whose basis is near 180

oscillations/second. These partials are not adjacent to one

another, but there are enough of them to lay out a

recognizable pattern. Similarly, listeners who hear the chime

as being pitched at C5 are responding to the fact that Ra and

Rb taken together look like a slightly fuzzy fundamental

component to go with an almost precise second harmonic

provided by S. The fifth partial (T) does not fit the pattern

and is clearly heard as a separate entity. The loudness of the

various components has little influence on the way in which

pitch is assigned here.

4. Observations made on the sounds of church bells add to

our suspicion that the ear somehow picks out an

approximately harmonic relationship between the various

component frequencies, and assigns pitch accordingly.

Deliberate experimental alteration of the amplitudes of the



various components shows clearly that our pitch assignment

is not sensitive to the relative strengths of the various

partials. We pay attention (for pitch purposes) only to the

frequencies.

5. Experiments involving the total suppression of all but

two or three of the partial components of a sound having

partials with harmonically related frequencies show in yet

another way that pitch is assigned on the basis of an implied

complete set of harmonic partials.

Everywhere in our experiments we have found indications

that our nervous system processes complex sounds coming

to it by seeking out whatever subsets of almost harmonically

related components it can find. Each of these subsets then

has a “best fitting” collection of true harmonics selected for

it in the processor, and pitch is assigned on the basis of the

repetition rate of these fitted components. Julius Goldstein

and his co-workers have recently shown that the brain

operates upon its sensory data in a manner closely

analogous to the procedures followed by statisticians when

they make estimations according to “the method of

maximum likelihood.” The better the heard components

agree among themselves regarding the degree of

harmonicity in their relationships, the quicker and more

certain we are in our pitch decisions regarding them.3

Having met an apparently simple (i.e., mathematically

expressible!) way in which the human nervous system

operates while making pitch assignments, we should

recognize the fact that we are constantly performing

neurological tasks of a much more difficult sort on the

stimuli coming to us from all of our senses. We have already

noticed that the characteristic sounds of various struck



objects can be recognized under the most unpromising

conditions of recording and reproduction. We perform

immensely more complicated tasks of the same sort when

we recognize pieces of music when they are played on a

cheap pocket radio, or when we carry on conversations in a

noisy restaurant. We are able to perform equally well with

our eyes. There is no difficulty in recognizing a friend from

his distorted image in a fun-house mirror or a political figure

from his caricature on the editorial page of a newspaper. No

problem is posed by a five-year-old’s simple line drawing of

a house even though no house was ever built whose lines

really follow those in his picture. We somehow relate the

gross arrangement of lines in the drawing to the simplest

aspects of the visual pattern that one can in fact receive

when looking at a house.

The human nervous system displays a most remarkable

ability to extract the essentials from a distorted or

incomplete set of sensory data. In each case, we seem to be

comparing signal patterns from the world around us with a

collection of stored concepts from our earlier experience.

Depending on how experienced we are and on what we plan

to do once the relation of a new pattern to an old one is

found, we demand more or less accuracy in the matching of

details between the two patterns before we say that we have

“recognized” the new one. Study of the neurological ways in

which we accomplish these recognitions has been a very

active business during the past few decades, and

considerable progress has been made in understanding how

it is done.4 We will return to these perceptual matters in

later chapters, when we take up a study of the instruments

themselves and of the physical basis of music.

5.9. Examples, Experiments, and

Questions



1. One can make a rather plausible imitation of the sound

of a church bell by playing certain combinations of notes on

a piano. Let us consider the musical example given at the

top of figure 5.8. For present purposes we will take the

sound associated with the C4 key to have exactly harmonic

components whose fundamental has a frequency of

261.6/second. Similarly, the D5# written note will be taken

to mean a collection of sinusoids whose fundamental

component oscillates at 622.25/second. The second part of

figure 5.8 shows these frequency components by means of

dots arranged in order along a line. Taking the first five of

these components one by one, we see that they give a

reasonably good match to the partials of the bells in the

Terling Peal (see table 5.1 and fig. 5.7). Bell makers

distinguish between two main kinds of bell. In one type the

third partial (R) is found to lie among its neighbors in the

place we have found it; in the other sort of bell, R lies

higher, so that in the piano imitation one would replace D5#

by E5.

It is interesting and worthwhile to speculate on why

composers of piano music will often imitate bell sounds by

writing combinations such as those indicated in figure 5.9.
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Fig. 5.8. A Piano Imitation of a Church Bell
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Fig. 5.9.

2. The ways in which our ears operate to assign pitch on

the basis of frequency patterns can be studied by asking a



listener to identify various little tunes played with sound

sources containing components that are carefully chosen to

be in some sort of harmonic relationship implying a

fundamental frequency. Let us play such a perception game

on paper by searching for the familiar tune which is hidden

in the following sequence of eight composite sounds

(assume that the duration of each is one beat):

Frequency Components for Notes of Hidden Tune

e9780486150710_i0043.jpg

The rules of the game we are playing tell us that in every

case the components set down for a given note are in fact

exact harmonics of the fundamental frequency normally

associated with the pitch of that note.

Most of us are not very good at recognizing patterns

among numbers written out on a printed page. However, we

are often able to recognize them when they are expressed in

pictorial form. Suppose the components of each of these

sounds are laid out along a frequency scale of the sort used

in figure 5.6. It is usually not difficult then to figure out what

fundamental frequency is implied by the components. Figure

5.10 shows an example of such a lay-out constructed for the

first note in our little ditty. Heavy dots are drawn at positions

corresponding to the frequencies of 392, 1176, and 1568

oscillations per second. If one squints a little at the diagram

so that only the circles are easily seen, it is not hard to

realize that they are evenly spaced members of a sequence

having a missing component just below 800/second. In other

words, we are dealing with a frequency pattern made up of

the fundamental, plus its third and fourth harmonics; the

second harmonic is missing. Once we have discovered that

the component at 392/second defines the fundamental



frequency, it is not difficult to look it up in figure 2.1 and

discover that we are listening to a peculiar form of the note

G4 just above piano middle C. The rest of the notes can be

worked out in an exactly similar fashion. Notice that in this

exercise we are using our eyes to find a visual regularity, in

a manner chosen to be the exact analog to what our ears

would be doing to recognize the tune if it were to be played

from the tabulated set of frequencies.
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Fig. 5.10.

3. A flute player having a good instrument and a well-

developed embouchure can smoothly vary the strengths of

the odd-numbered sinusoidal components of his sustained

tone relative to the strengths of the even-numbered

components (while keeping the overall loudness of the

sound roughly constant). This ability permits him to

illustrate a number of features of our pitch perception

process. For example, he can produce the note A4 (just

above piano middle C) whose fundamental component

oscillates at 440/second, along with significant amounts of

the first half dozen exactly harmonic components which lie

at 880, 1320, and 1760/second (and so forth). The pitch of

this tone is well-defined. As the player alters his manner of

blowing and progressively weakens the odd partials relative

to the even ones, the pitch continues where it was, even

when only the slightest traces of the odd-numbered 440 and

1320/second components are left in the tone. Beyond a

certain point, however, the listener comes to realize that he

is listening to a flute that is no longer playing A4, but rather

the note A5 an octave higher, having therefore a

fundamental at 880/second, with second and third



harmonics located at 1760 and 2640/second. If the player is

sufficiently skillful, the listener is unsure exactly when the

transition takes place, and if several listeners participate

they are not likely to agree on the time of transition. If the

player continues his blowing in the manner that is heard as

an A5 and then gradually reverts to his original sound, our

listeners will continue to hear A5 even when considerable

amounts of 440 and 1320/second components have been

reintroduced. Eventually the pitch is re-assigned back to A4,

with the same indefiniteness in the listeners’ choice of the

transition time.

Here we have an example of a definite frequency pattern

smoothly turning into a different one, with the possibility of

traveling between the two patterns. Our ears will recognize

one of them when it is clearcut, and will retain this

recognition through a considerable region of overlap before

they are forced to notice the other pattern. How one reacts

to the overlap region depends on the context in which it is

heard. In the present case the context is dominated by the

previously heard definite sound. If the listener were, on the

other hand, asked to listen to a regularly repeated sequence

of alternating A4 and A5, the flute player could slip in a

borderline tone and it would be cheerfully accepted as being

the expected member of the alternating octave sequence.

4. When a flute player snaps closed the keys on his

instrument, he can produce a series of hollow popping

sounds whose pitches are approximately equal to those of

his low register octave (C4 to C5). The sinusoidal frequency

components of any one of these damped impulsive sounds

are, curiously enough, not in an integer sequence, despite

the fact that when blown, a flute produces a tone whose

components are in precisely integer relationship. When one

snaps keys to produce the note F4, for example, the lowest

component has a frequency f1 near 349/second, as expected



for this note, while f2 is about 705/second instead of being

located at the second harmonic, which is at 2f1 = 2 ×

349/second = 698/second. Similarly f3 is at about

1058/second instead of matching the third harmonic of f1.

Because the component frequencies in the popped sound

of a flute are not harmonically related, our pitch assignment

is made by recognitions of approximate pattern matches,

and our sense of pitch is not strongly marked. If, on the

other hand, one replaces the subtly tapered head joint of the

flute (with its embouchure hole and the adjustable cavity

beyond it) by an accurately fitted cylindrical tube whose

inside diameter is the same as that of the main flute body,

the popped frequency components take on an almost exact

integer relationship. Snapping the keys on this modified

flute gives clear ringing pops having extremely well-defined

pitches. The decay times of the sounds from this modified

flute are longer than they are on the regular instrument,

which contributes somewhat to the ringing clarity of the

sound. A tiny wisp of cotton tucked into the open tube end

will, however, bring the decay times back to normal, but the

strongly marked sense of pitch will persist, because the

integer frequency relationship is preserved. Note: one

should not leap to the conclusion that the non-integer

relationship of the impulsively excited sinusoids of a flute is

a sign of imperfection in the instrument. On the contrary, if

a flute were built in such a way as to give an integer

relationship to such popping sounds, it would play very

badly.
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6

The Modes of Oscillation of

Simple and Composite Systems

In the earlier chapters of this book we studied the sounds

that come from vibrating objects, but we have not yet given

attention to the actual motions of these objects. We have

learned that every object will, when impulsively disturbed,

give rise to sounds which are found to be made up of

damped sinusoidal components. We also found that the

frequencies of these components are characteristic of the

object producing them. That is, alterations in the manner of

exciting the vibrations might well alter the initial amplitudes

of the oscillations, but their frequencies depend only on the

structure of the object. It is our task now to understand how

the mechanical structure of the vibrating object correlates

with the arrangement of its characteristic frequencies, and

to learn something of the way in which these vibrations are

set in motion.

It is important to keep in mind that there is a distinction

between instruments giving a sustained tone (such as the

human voice, the bowed string instruments, and the

orchestral wind instruments) and those that ring and die

away, such as bells and stringed instruments that are

plucked or struck. In this chapter we will limit ourselves to

instruments in the latter category. Figure 6.1 indicates their

basic nature: in some of them the string is pulled to one side

and released (harpsichord, guitar, harp) and in some the

string is struck by some kind of hammer (piano, cymbalom,



and also the clavichord). When one of these strings is

excited the following chain of events takes place:

string vibrates→ drives bridge→ drives

soundboard→ drives air in room→

drives our ears→→→

It must be emphasized that a string alone cannot drive the

air in a room directly in a manner that our ears find useful

for musical purposes. Anyone who has plucked a solid-body

electric guitar with the amplifier turned off knows that the

instrument is almost inaudible. The string and also the

sequence of things driven by it—the bridge, the soundboard,

and the room—are all vibrational systems in their own right

and they have many properties in common. Because of the

importance of these shared properties, we will illustrate

them one by one by means of simple examples, after which

we will be in a position to learn how each system connects

with its neighbors in the chain of excitations.



Fig. 6.1.

6.1. Properties of Simple Oscillators

In the preceding chapters we have talked about sinusoidal

oscillations, but have not given much indication of the

special properties that distinguish them from any other sort

of sinuous back-and-forth motion which one might imagine.

The following paragraphs describe an experimental

arrangement (consisting of a pendulum and a phonograph

turntable) which gives a definite description of sinusoidal

motion in terms of its relation to circular motion.

The simple pendulum which we will use consists of a

weight (commonly called a bob) hung on a string. When this

bob is pulled to one side and released, it swings back and

forth in a regular motion which eventually dies away. Hang

such a pendulum over the center of a record player



turntable on which is placed a block of wood with a nail

driven up through it. Place a lamp some distance from the

pendulum and turntable so that their shadows are cast

clearly upon a wall, as shown in figure 6.2. Adjust the length

of the pendulum so that it makes a complete oscillation in

the time of one revolution of the turntable. In other words,

set the pendulum frequency to 33 1/3 or 45

oscillations/minute (0.555 or 0.750 oscillations /second),

depending on the speed of the record player. If you should

have trouble getting the frequency right, remember that a

long pendulum oscillates at a lower frequency than does a

short one. For use with a 33 1/3 rpm turntable, start out with

a pendulum whose length is about 80 cm (somewhat less

than a yard) and make small length modifications until the

pendulum swings at exactly the desired frequency. For the

45 rpm case, start with a string length somewhat less than

44 cm.



Fig. 6.2. Relation between Circular and Pendulum Motion

Once you have adjusted the pendulum to swing at the

desired frequency, pull the bob aside and release it at the

instant when the shadow of the bob is directly above the

shadow of the revolving nail point. You will then find that the

two shadows move back and forth exactly together on the

wall. From this we can deduce that the shadow of a circularly

moving nail executes a sinusoidal motion whose amplitude

is equal to the radius of its path and whose frequency is

equal to the number of revolutions the nail makes per unit



time. We will find occasional use for the relation of

sinusoidal motion to the revolution of a hypothetical point

around a reference circle.

Our experiment shows us that sinusoidal motion is similar

to that of the shadow of a circularly moving object. We are

now in a position to seek the nature of the forces that must

act on an object to produce sinusoidal motion. This question

about the causes of the motion (as distinct from our earlier

question about the description of the motion) is typical of

the sort that has guided the development of physics since

the pioneering studies of Galileo and Newton. (Galileo was a

contemporary of Claudio Monteverdi and Giovanni Gabrieli.

He died in 1642, the year that Newton was born. Purcell

flourished during Newton’s lifetime.)

Ever since the time of Newton, a concise answer has been

available to our question about what forces cause sinusoidal

motion: if a body feels a leftward restoring force proportional

to its displacement when it is to the right of its central

position and a similar rightward force when it is to the left,

then it will execute a sinusoidal motion when it is pulled

aside and released.

We can clarify our thoughts about the meaning of this

“force” description of sinusoidal motion by experimenting

with a U-tube partly filled with water, as shown in figure 6.3.

Shaking the tube sets the mass of water into an oscillatory

motion. Let us see whether the forces acting on it are of the

sort prescribed for sinusoidal motion. At some instant when

the water level in the left arm of the tube is a distance d

below its equilibrium position, we find that there is an

unbalanced slug of water of length 2d in the right arm of the

tube. The weight of this unbalanced water is clearly acting

in the direction that would restore the whole water column

to its equilibrium configuration. If the water level is low on

the right, then there will be an unbalanced slug of water in



the left-hand part of the tube, so that once again we find

that a restoring force is present when the water is displaced

from its equilibrium position. Furthermore, we notice that

whatever the displacement d may be, the magnitude of the

restoring force is proportional to d. This shows that the water

in a U-tube will indeed move with a sinusoidal motion, since

we have found that the whole mass of water is acted on at

every instant by a restoring force supplied by the difference

in level between the two arms.

Fig. 6.3. Oscillations of Water in a U-Tube

The fact that oscillations generally die away in the course

of time has been referred to several times so far in this book.

As early as chapter 3 (see sec. 3.4) we described briefly this

aspect of a motion in terms of the time required for the

amplitude of oscillation to die away to half its value. We can

use the liquid-filled U-tube to help us now gain an

understanding of the additional forces that must be present



if an indefinitely prolonged sinusoidal motion is to be

converted into a damped motion, i.e., one that decays or

dies away.

Whenever a fluid flows (at reasonably low speeds) past a

stationary object (as for example when water oscillates

inside the stationary walls of a glass U-tube), there is what is

called a viscous drag force acting on the fluid which tends to

retard the flow. That is, the viscous force acts on the fluid in

a direction opposite to the direction of fluid motion, and we

find that the magnitude of the retarding force is proportional

to the velocity of flow. It is a viscous force of this sort which,

when added to the springlike restoring force, converts

undamped sinusoidal motion into a damped oscillation of

the sort we have been studying.

Digression on the Viscosity of Fluids.

It is easy to acquire an intuitive feeling for the properties of

viscous flow by means of simple experiments. One has

merely to stir a cup of honey or thick syrup to discover that

the spoon feels a much larger retarding force when it is

moved rapidly than when it is slow-moving. As a matter of

fact, one feels almost no retarding force at all at the slowest

possible stirring speeds. The rocking back and forth of the

free surface of a liquid in a half-filled saucepan or large jar is

a simple cousin to the oscillation of fluid in a U-tube. A

comparison of such rocking oscillations of honey, glycerine,

salad oil, water, and acetone shows clearly the relation

between the viscosity characteristic of each of these fluids

and the rates at which these oscillations decay.



We have now completed our preliminary look at the nature

of damped oscillations and have found them to have the

following properties:

1. Sinusoidal oscillation is identical with the side-to-side

motion of the shadow of a circularly moving object.

2. Such oscillations are produced when the object in

motion is subjected to a (springlike) restoring force, that is, a

force whose magnitude is proportional at any instant to the

distance between the object and its position of equilibrium

or center position.

3. The oscillation is damped if, in addition, it feels a

(viscous) drag force, i.e., a force whose magnitude is

proportional to the velocity of the object at every instant in

time.

In any case of damped sinusoidal motion, some object (of

mass M) moves under the influence of two forces, one which

depends on what we shall call the stiffness coefficient S and

one which depends on the damping coefficient D of some

fluidlike viscous material. It is possible to write down quasi-

mathematical formulas for the oscillation frequency and

damping times that will help us recall these things

throughout the rest of this book:



These formulas tell us that in an oscillator the characteristic

vibrational frequency is raised if one attaches a stiffer spring

to a given mass, or the halving time is reduced if one

provides a more viscous damper. Similarly we notice that

increasing the amount of moving mass reduces the vibration

frequency and lengthens its halving time if the stiffness and

damping coefficients are left unchanged.

6.2. Possible Oscillations of a Mass

Supported by Springs

On our way toward an understanding of guitar and piano

strings, we will need to learn something about the vibrations

of an elongated chain of alternating springs and masses. Let

us begin by looking at a single link belonging to such a

chain. Consider a lump of material suspended between a

pair of springs. Figure 6.4 shows such a system in an easily

made form: a large steel or brass nut (the 3/4-inch or 19-

millimeter size is convenient) is attached to a pair of heavy

rubber bands which are in turn anchored to rigid vertical

posts. The figure indicates the possibility of a side-to-side

(transverse) vibration. The solid lines in this diagram show

the nut and its rubber bands at the right-hand extreme of

the motion. The left-hand extreme of its motion is also

indicated, whence it moves back towards its starting point.

We could just as well imagine a similar transverse oscillation

taking place at right angles to the one shown. Another

oscillation which we can conceive of has a longitudinal

motion back and forth along the direction of the rubber

bands. Yet another type of oscillation that this object can

undergo involves the alternate clockwise and

counterclockwise twisting of the rubber bands. This sort of

vibrational motion is known as a torsional oscillation.



Fig. 6.4.

Figure 6.5 summarizes the above-mentioned oscillatory

possibilities for a single compact mass anchored by means

of elastic objects to a rigid external support. You may be able

to discover two or three more types of oscillation that are

possible for this system, but our present list is sufficiently

complete to show that we can conceive of a variety of

oscillations, and to show also how very much alike these

vibrations are in several important respects. For example, we

can make the following assertions about them all. If their

amplitudes are not too large and if the rubber bands are

stretched a reasonable amount, we find that they are all

fairly accurate examples of damped sinusoidal oscillation.

The frequency of each oscillation is determined jointly by

the sum of the stiffness coefficients of the two rubber bands,

which try to pull the mass to its resting position, and by the

mass of the oscillating nut. If we write S for the stiffness

coefficient associated with each of the two rubber bands

(under the conditions of its present usage), and M for the

mass of the nut, then,



f = a constant times 

As pointed out at the end of the last section, increasing the

net stiffness coefficient (e.g., by using heavier rubber bands

or adding one or more of them) increases the frequency;

decreasing the mass will also increase the frequency. For

example, if we were to reduce the inertia of our vibrating

system by cutting the nut in half so that M is replaced by

M/2, the frequency of any one of our oscillations would be

increased by the factor √2 1.414, as the following

calculation shows:



Fig. 6.5. Various Oscillations of a Spring-Mounted Mass

An exactly similar calculation shows that adding a single

rubber band to one side of the system raises the frequency

by a factor 1.225.

We are now in a position to recognize that the various

ways in which our nut and its two rubber bands can oscillate

will not in general have the same frequencies. The angles at

which the strands of rubber pull on the displaced mass are

quite different in our four possibilities for linear and

rotational oscillation. An exaggerated example is found in

figure 6.6, in which the two loops of the left-hand rubber

band are widely spaced where they go over the support rod.

The stiffness coefficient associated with the restoring force



for transverse oscillations parallel to the support rod is now

clearly much larger than the coefficient belonging with

transverse oscillations taking place at right angles to this

direction.

Digression on the Utility of Simplified Models.

We have been a little cavalier in the foregoing calculations.

For example, we have acted as though the rubber bands

have no inertia. Such simplifica-tions are very useful and

perfectly permissible for helping us to grasp the essentials

of the situation. We should, however, always try to be clear

about what simplifications we have made. In this way, we

know how to react to the inevitable discrepancies that are

found when we compare the results of our calculations with

measurements of the real things. When the discrepancies

are of the sort to be expected as a result of our

simplifications, they confirm that we probably understand at

least a part of what is going on. Sometimes, however, the

discrepancies are not explainable in terms of our

simplifications, which reminds us firmly to look more closely

at the system under study.



Fig. 6.6.

A Simplified Mass-and-Spring Oscillator

Before going on to an examination of the vibrations

characteristic of chains built up of two or more interlinked

built up of two or more interlinked masses and springs, we

should pause a moment to translate our discoveries so far

into terms that relate to what our ears can perceive. We

cannot hear sounds whose frequency components are as low

as those characteristic of our system of nut and rubber



bands. However, we could presumably build an analogous

system in which the nut is much smaller and the rubber

springs are replaced by stiffer, steel ones. This would raise

the characteristic frequencies sufficiently to make them

audible, yet leave their interrelations essentially unchanged.

This lets us imagine a system whose audible characteristic

frequencies are directly related to its mechanical

construction. It is easy to see that a glancing blow from a

hammer on the mass will excite all of the types of

oscillations and so produce a sound of maximum complexity.

Similarly, we should find it comprehensible that a blow that

is purely in the north-south direction will thereby fail to

excite the east-west transverse oscillation, so that the

characteristic frequency belonging to the east-west

vibration will be missing from the sound. In short, here is our

first clear illustration of how changes in the striking point

can produce changes in the impulsive sound to which it

gives rise.

6.3. Transverse Oscillations of Two

Masses Connected by Springs

Let us turn our attention now to the behavior of a system

made by connecting two massive objects in a row by means

of springs.1 In order to keep our ideas manageable we will

restrict our attention temporarily to one of the two possible

transverse oscillations, with the understanding that

whatever we learn about these can later be adapted in a

straightforward manner to apply to the other (e.g.,

longitudinal or torsional) kinds of vibration. Figure 6.7 shows

that there are two distinctly different transverse models of

vibration that are possible for our two-mass system, in

contrast to the single transverse mode that is available to

the one-mass system.

In what is labeled as mode 1 for the two-mass system, the

two masses move back and forth exactly in step with one



another. If the amplitude of the motion is less than about 10

percent of the longitudinal spacing of the masses, the

oscilla-tion is once again quite accurately of the damped

sinusoidal type. The other vibration, labeled mode 2, is one

in which the two masses always move in opposite directions.

They both oscillate in a sinusoidal motion, with precisely the

same frequency.

Fig. 6.7. Transverse Modes of Vibration of One- and Two-

Mass Systems

Let us see if we can deduce any relationship between the

two modes of oscillation that will allow us to say whether

mode 1 or mode 2 oscillates at a higher frequency.

Thoughtful examination of figure 6.7 suggests that the



middle one of the three rubber bands is not stretched nearly

as much at the extremes of the motion in mode 1 as it is in

mode 2. This tells us that at any given instant during the

oscillation, the total restoring force exerted by the two

rubber springs attached to a single nut will be smaller when

the motion is of the sort shown in mode 1 than in mode 2. In

other words, the net stiffness coefficient (which relates the

displacement of either mass to the restoring force acting on

it) is less in mode 1 than in mode 2. The stiffness coefficient

applicable to the motion of either mass taken by itself is of

course what determines the motion of that mass, so that

mode 1 is expected to oscillate at the lower frequency. A

slightly oversimplified analysis shows that the net stiffness

coefficient for each mass is threefold less for mode 1 than for

mode 2, provided that all three rubber bands are alike and

that the two nuts are identical. Each mass would therefore

be expected to oscillate at a frequency √3 = 1.732 times

larger in mode 2 than in mode 1. A similar line of argument

shows that the first mode frequency f1 of our two-mass

system is lower by a factor of = 0.707 than that

belonging to the transverse oscillation of a single nut

suspended between two rubber bands in the manner shown

in the left-hand part of figure 6.7. The geometrical symmetry

in the motion of each of the two vibrational modes helps us

understand how the two masses manage to cooperate in

agreeing on a common frequency. As in figure 6.4, we have

indicated one extreme position of the nuts by solid lines,

while the other extreme position (that is reached a half-cycle

later during the oscillation) is shown by dotted lines. It is to

be understood that the masses move back and forth

sinusoidally between these two extremes.

6.4. More Than Two Masses Connected

by Springs



The observation that a chainlike two-mass system has two

distinct modes of transverse oscillation, while a one-mass

system has only a single such mode, suggests that a three-

mass chain might be able to oscillate in three different ways,

and that similarly one might expect a four-mass chain to

have four distinct modes of sinusoidal oscillation. It turns out

that this suggestion is correct, as illustrated in figure 6.8.

The top part of this figure shows what we will call the

Characteristic vibrational shapes belonging to the three

transverse modes of vibration possible for a three-mass

chain. We may remark in passing that if all three masses are

alike and if the springs are alike, then a simplified

calculation of the characteristic frequencies shows them to

be in the following ratios when they are compared with the

frequency f1 of mode 1: 1.000, 1.847, 2.415. The lower part

of the figure shows the four vibrational shapes characteristic

of the transverse modes of oscillation of a four-mass chain.

Notice the great similarity of the first mode shapes in all four

of our examples. In every case it could be said to have a

single hump. In like manner we see that mode 2 has two

humps, while modes 3 and 4 have three and four humps

respectively.



Fig. 6.8. Transverse Vibrational Modes of Three- and Four-

Mass Chains

We must be sure to understand that what we are calling

humps are parts of the chain which undergo a relatively

large back-and-forth displacement. That is, what would look

like a rightward curving hump in a flash photograph taken at



one instant will appear as a leftward hump a short time later,

but regardless of the direction of the displacement, the

hump keeps its general form. We will in due course find it

useful to notice that adjacent humps along a chain are

always found to be deflected in opposite directions. At

present, however, it is the mere existence of such humps

which is of significance.

The top part of figure 6.9 shows the shapes characteristic

of the first four modes of vibration of a sequence of a very

large number of uniformly sized beadlike masses. This is of

interest because it allows us to guess quite accurately about

all of the characteristic mode shapes of a piano string (for

example), since it may be thought of as a chain of thousands

of molecules arranged in a row.2 We have seen in multiple

systems that the first mode always has one hump in its

characteristic shape, mode 2 has two humps, and so on.

Thus a piano string can have many thousands of modes.

Only the first two or three dozen have much relevance to

music.



Fig. 6.9. Characteristic Modes of Vibration of a Beadlike

Sequence of Masses

The lower part of figure 6.9 shows the first four vibrational

shapes characteristic of the transverse modes of oscillation

of a chain whose beads become progressively more massive

as we go from left to right in the diagram. Notice that the

relations are unchanged between mode number and the



number of humps making up the vibrational shape. To be

sure, the humps are no longer alike, and the relations

between the characteristic frequencies are also changed in

an amount which increases as the amount of nonuniformity

is increased. For present purposes, however, we are

interested chiefly in the common elements shared by all of

our composite systems.

Digression on Terminology: Humps and Half

Wavelengths.

Curiously enough, the technical vocabulary of acoustics

seems to lack a formal, generic word for what we have

called a hump, Acoustics books commonly refer to the

length of what we have called a hump as a half wavelength.

Unfortunately, there are two main ways in which this term is

used. In our dealings with wind instruments and with the

wooden vibrators belonging to violins, guitars, and pianos

we will meet cases where neither usage is appropriate. The

word hump, though it has an informal sound, is very

descriptive of the physical situation, and it keeps its

meaning throughout our discussion of the subject.

6.5. Characteristic Modes of Oscillation:

A Summary

In general we find that a chainlike structure, made up of a

sequence of springs and masses and anchored firmly at the

two ends, finds itself able to oscillate transversely in as

many distinct ways, or vibrational modes (to give them their

technical name), as there are masses in the chain. Let us

summarize the properties of these modes of oscillation as we

have learned them and also extend our description in

various small ways.



1. Each mode of vibration has its own characteristic

frequency, determined by the nature and arrangement of

the springs and masses.

2. When the system is oscillating in one of its modes, the

chain oscillates at the frequency characteristic of that mode

in a damped sinusoidal motion. The halving time for the

oscillation is exactly the same for the decay of each mass’s

oscillation.

3. The various masses in the chain move either precisely

in step with one another, or in precisely contrary motion.

(We are ignoring here a minute effect which can arise if the

damping is unequally distributed among the masses.)

4. All masses move in step in mode 1; adjacent masses

move in contrary directions in the highest possible

frequency mode belonging to any particular system.

5. Each mode of oscillation has its own characteristic

vibrational shape. In other words, the amplitude of

oscillation of each mass has a definite relation to the

amplitude of motion of every other mass.

The foregoing statements apply to any chainlike system

anchored at both ends, whether or not the masses are all

alike or the springs are similar.

We have provided ourselves here with a set of

generalizations introduced in connection with a study of the

transverse (side-to-side) oscillations of a sequence of

masses. This entire discussion can be adapted to the case of

longitudinal oscillations, or of torsional oscillations, simply

by making a few minor changes in the wording. The welter

of characteristic frequencies which one might somehow



discover can be separated into at least four interlaced sets,

two sets being associated with the transverse modes of

oscillation, one set with the longitudinal modes, and one

more set having to do with the torsional modes of oscillation.

We should also be aware of the fact that today’s

mathematical physics is able to calculate the characteristic

frequencies and modal shapes of any chain in terms of its

specified springs and masses. Furthermore, it is possible to

calculate one or more choices of a set of springs and masses

that will oscillate at any specified set of characteristic

frequencies. In other words, if we wish to do so, we are able

to go either way in relating the system to its frequencies:

given the chain, it is possible to find its frequencies; or,

given the frequencies, it is possible to find a corresponding

chain. The practical implications of this remark are

enormous for the maker or adjuster of musical instruments.

Before we leave this chapter to look into the way in which

a hammer or plectrum excites the characteristic modes of a

piano or guitar string, we should look ahead briefly to notice

that the sweeping generalizations that we have just made

will also prove to be adaptable with only minor changes to

the modes of vibration that are characteristic of elongated

columns of air such as those found in wind instruments, to

the characteristic modes of two-dimensional sheetlike

objects such as drumheads and piano soundboards, and also

to three-dimensional objects such as a bowl of jelly with

cherries embedded in it or the air in a concert hall.

6.6. Examples, Experiments, and

Questions

1. Long-persisting characteristic oscillations of a system of

interconnected pendulums may be studied with the help of

the arrangements shown in figure 6.10. Two or more long

pendulums hung on a solid supporting beam (such as a door



lintel) are joined by horizontal strings knotted so that they

can be slid up and down the support strings. When two

identical pendulums are coupled together in this way, we

find that two modes of sinusoidal oscillation are possible

when the bobs swing at right angles to the direction of the

supporting beam. Similarly, there are two possible modes if

we consider swinging motions that take place in a direction

parallel to the support. In either type of oscillation we find

both pendulums moving back and forth together in mode 1,

while in mode 2 they move in opposition to one another. The

difference between the two modal frequencies in this setup

is fairly small, and it depends on the place where the

coupling strings are attached. Once these frequencies are

identified, it is interesting to watch the peculiar motion that

takes place over a long period of time when only one of the

two pendulums is initially pulled aside and released. The two

pendulums appear to take turns in their swingings. In

chapter 7 we will learn how to deal with complex motions of

this sort, which turn out to involve both characteristic modes

of oscillation at the same time. It is worthwhile to

experiment with the two modes of oscillation of our two-

pendulum system when the bobs are of different sizes, or

when their support strings have different lengths. Whether

the pendulums are alike or not, in the mode having lower

frequency the two masses move in step, while in the mode

having higher frequency the two masses move in opposition.

Notice that the amplitudes of motion of the two masses in

either mode are alike only when the two bobs and their

support string lengths are exactly alike. The behavior of

systems having three or more pendulums is also worth some

attention, although their complexity may make things

difficult to sort out.



Fig. 6.10.

2. Two versions of another chainlike structure may be put

together from carts of the sort shown in figure 6.11. Three to

five of these carts can be joined together in a row by means

of compression springs screwed into coupling holes on the

carts. Figure 6.12 shows two possible versions of the

chainlike structure. The upper version consists of a



sequence of five interconnected carts, the end ones being

attached to fixed supports by means of springs (just as in

the case of our rubber-band apparatus). The lower part of

the diagram shows a three-cart system which is left free at

its ends. Both of these systems are able to oscillate in

various characteristic longitudinal modes of sinusoidal

motion.

Mode 1 of the system fixed at both ends can be excited by

rolling all five of the carts to the same side and releasing

them. They will then move majestically back and forth

together. Notice that the center cart moves the farthest,

while the carts nearer the ends move less far. Mode 2 for our

chain has carts a and b moving in a way that is the mirror

image of the motion of d and e. Cart c is stationary in this

mode. Mode 2 is very easily started by pulling carts a and b

rightward toward the center while pulling d and e at the

same time an equal distance leftward, and then releasing

everything. In mode 3 the outermost two carts move one

way while the center one moves in the opposite direction,

etc.

Let us look now at the free-ended three-cart system. The

lowest frequency mode here is one in which the outer two

carts alternately approach one another and recede, the

center cart remaining stationary. In mode 2 the two outer

blocks move in a direction contrary to the direction of the

center block. There is no third mode of oscillation in this

system. It is worthwhile to continue the exploration by at

least thinking about the behavior of a two-mass system

attached at one end to a rigid anchorage by a spring, the

other end being left free.



Fig. 6.11.

Fig. 6.12.



3. The sloshing of water in a pan, or better, in a length of

rain gutter closed at both ends and about 2 meters (6 feet)

long, provides further insight into the natural vibrations of

extended objects. It also will demonstrate a kind of motion

that is very similar to what takes place in the air columns of

musical wind instruments. The first three sloshing modes of

a water-filled horizontal trough are illustrated in figure 6.13.

If one experiments with such a trough it is quickly apparent

that the vertical motion of the water level at various points

along the trough is very different in its nature from the

water’s back-and-forth horizontal flowing motion. Looking

first at the vertical aspect of the fluid motion, we find that in

mode 1 the level is falling in the left half of the trough when

it is rising in the right half. There is no vertical motion at all

at the trough’s exact mid-point. In mode 2 the water level at

the two ends rises and falls in step, while in the middle of

the trough the level moves in the opposite direction. We find

also that there are two places along the trough where the

water level is unchanging. Customarily such points of zero

disturbance are referred to as nodes, and what we have

earlier called a hump extends from one node to the next.

Notice that a half-hump is found at each closed end of the

trough.

Sprinkling a little powder on the water surface will help us

to see the horizontal motion of the water in the trough. In

mode 1 there is a strong longitudinal flow of water to be

seen in the center of the trough. There is of course no

possibility of flow at the two closed ends (i.e., there are

nodes for this horizontal motion at the two ends). In mode 2

we find that there is strong horizontal flow (in opposite

directions) at two points along the trough, with a node

between these points, in addition to the nodes forced on the

system by the two end closures. Careful observation will

help us realize that in every case the largest horizontal

oscillation of the water takes place precisely at those points



where the vertical motion is zero. Conversely we find that

the nodes of the horizontal motion are located at the exact

spots where the water’s vertical os-cillation is the largest.

We have discovered that every mode of watery oscillation in

a trough has two interlaced aspects: a vertical motion and a

horizontal motion. These two motions are inextricably

coupled to one another by the simple fact that the only way

to raise the water level at some point is to have water

flowing toward it.

Fig. 6.13. Sloshing Modes of Water in a Trough

One can also experiment with a tilted gutter, so that the

water is deeper at one end than at the other, making a

nonuniform cross section below the quiescent waterline. The

general nature of the water modes is little changed from

before (see fig. 6.9 for the analogous comparison of

vibrations of a uniform and a tapered string). The

frequencies of oscillation are of course changed and we also

find that the positions of maximum or zero vertical motion



no longer coincide with those of their opposite numbers for

the horizontal motion.

Up till now we have said nothing about how these various

modes of oscillation may conveniently be excited. If we

place an open hand paddle-fashion at a point of large flow, it

is easy literally to stir up the desired oscillation. For

example, our two hands placed 1/4 of the gutter length in

from the ends, both being moved toward and then away

from the center, will strongly excite mode 2.

Notes

1

Norman Feather, An Introduction to tbe Physics of

Vibrationts and Waws (Edinburgh: at the University Press,

1961; London: Penguin, 1964). Feather in chapter 3 gives a

good introduction to the mathematics of this particular

system and then presents many examples of other systems

showing similar behavior.

2

John C. Slater and Nathaniel H. Frank, Mechanics (New York:

McGraw-Hill, 1947), pp. 151—55. Figures 25a and 25b

provide an interesting pictorial view of further relationships

between the motion of a chain of masses and that of a

flexible string.
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Introduction to Vibration

Recipes: The Plucked String

In chapter 6 we learned that a chainlike collection of springs

and masses can vibrate in certain characteristic modes,

each with its own frequency. The frequencies and shapes of

these vibrating modes can be calculated if one has the

proper information about the strength of the springs and the

sizes of the masses making up the chain.

The characteristic frequencies of the vibrational modes are

often called the natural frequencies, of the system, and the

modes themselves are referred to as the natural modes. This

terminology comes about from the fact that when a system

is disturbed and left alone to pursue its natural tendencies,

the free vibration is always composed of one or more of

these characteristic modes.

At several points so far in the book (and especially in

chap. 6) we have met the idea that different ways of striking

or plucking an object produce different sounds, and that this

is simply another way of saying that the initial amplitudes of

oscillation of the various modes are influenced by the nature

of the excitation. The guitarist becomes familiar with these

ideas when he learns how to pluck the string at different

distances from the bridge in order to vary the sounds he

produces. He also has various options concerning how he

plucks; he may use a fingertip, a fingernail, or some one of

several kinds of plectrum. In this chapter we will have our

first look at what is going on when a musician makes



changes of this sort. In other words, we will begin to learn

how such variables as the plucking position or the breadth

of a plectrum determine the initial amplitudes of the several

vibrational modes of the string. First we will see how any

possible transverse motion of a two-mass chain is actually a

combination of its two characteristic modes of sinusoidal

oscillation, and then we will progress to a beaded chain

made up of a large number of masses, finally moving on to

an examination of the behavior of a real musical string.

7.1. Combinations of Modes: The Two-

Masts Chain

Assertion: when a system is struck and left to its own

devices, any possible motion it has is made up of a

collection of the natural vibrational modes of the system.

The initial amplitudes of these modes are determined by the

manner of striking.

In order to test and demonstrate the above assertion, let

us make use of a fairly simple system consisting of two balls

connected by springs. Suppose for example that both balls

are drawn upward a unit distance (for instance, 1 cm) so

that their arrangement is of the sort shown in the top part of

figure 7.1. If they are released from this initial position it is

clear that the balls will vibrate back and forth sinusoidally

with a frequency characteristic of what we have called mode

1 for a two-mass system (see fig. 6.7 in chap. 6). The balls

initially are arranged so that their positions match the

vibrational shape of mode 1, and upon their release the

system oscillates at the mode 1 frequency, with (in our

example) a 1 cm initial amplitude.



Fig. 7.1. Two Initial Configurations of a Spring-Mass Chain

Suppose now that instead of pulling both balls upward 1

cm before releasing them to oscillate, we move the ball on

the left upward a distance of 1/3 cm and hold it, and at the

same time we move the ball on the right downward 1/3 cm,

as shown in the lower part of figure 7.1. If we release the

balls from this initial configuration (whose shape is exactly

that belonging to mode 2) we should not be startled to learn

that the subsequent vibration is sinusoidal and that it takes

place at the frequency of mode 2.

The experiments described in the preceding two

paragraphs illustrate the fact that it is possible to start the

vibration of a system purely in one or another of its

characteristic modes. In order to do this, we must somehow

arrange for the initial configuration of the system to agree

exactly with the vibrational shape of the mode we wish to

excite. Let us now look at a somewhat less specialized

situation.

Suppose (step a) that we first pull both balls upward a

distance of 1 cm to give a shape that matches that of mode



1, after which (step b) the ball on the left is pulled up 1/3 cm

further and the ball on the right is depressed 1/3 cm, as

shown in the top part of figure 7.2. This two-step procedure

gives us an unsymmetrical, triangular arrangement for the

balls, which shape could just as well have been achieved in

the manner shown in the lower part of figure 7.2. Here the

left and

Fig. 7.2.

the right balls, respectively, are raised and lowered 1/3 cm

(step a’) and afterwards both are raised 1 cm (step b’). What



we have done in both versions of our procedure is to achieve

a certain shape by the process of combining the initial

shapes of the two characteristic modes.

The particular configuration we have set up here by either

one of our two-step procedures based on the characteristic

mode shapes could have been obtained much more easily.

All one would have to do is pull the ball on the left upward a

distance of 1 1/3 cm, the other ball being allowed to find its

place, but this way of going at it does not display to us the

initial presence of the two characteristic modes.

If we release the balls from the positions shown in figure

7.2, we find that the system vibrates in the fashion shown in

figure 7.3. If these vibrations were to take place at audible

frequencies, we would hear two components in the sound,

one having the mode 1 characteristic frequency and one

having the frequency belonging to mode 2. The loudnesses

of these two components would depend ultimately on the

amplitudes of the two characteristic vibrations. In our

particular example we have arranged to have the initial

amplitude of mode 2 be exactly 1/3 of the initial amplitude

of mode 1.



Fig. 7.3. Complicated Motion of the System After Release

Figure 7.4 summarizes what we have done and suggests a

way in which we can think about how an initial configuration

may be constructed out of suitably chosen “amounts” of the

characteristic modes. It is helpful here to borrow some

language from the kitchen. A cake has a certain set of

ingredients and its recipe must name not only the

ingredients but also the amounts needed. A one-egg cake, a

four-egg cake, and a butter (or pound) cake all use the same

ingredients in varying amounts, but each cake ends up with

different flavor and texture. In an exactly similar manner we

can cook up any conceivable initial shape of our vibrating

system by combining suitably chosen amounts (initial

amplitudes) of the complete set of characteristic mode

shapes belonging to the system. One can thus write

“recipes” for any desired vibration merely by listing the

amounts (i.e., initial amplitudes) of the first, second, third,



etc., characteristic modes that are present. We can call these

initial amplitudes by the name a1, a2, a3, etc.

Fig. 7.4. Summary of the Meaning of a Vibration Recipe

Digression on Vibration Recipes.

A cook cannot usually deduce the recipe of a cake by tasting

it. He may be able to guess the names of the ingredients,

but not the exact amounts. It was a triumph of nineteenth-

century physics that methods were, however, found for

doing the analogous job for vibration recipes. To do this, the

physicist must first figure out the shapes and frequencies of

the various modes. After that it is only a little work to

deduce the amounts of these modes that are present. That

is, once he knows what the ingredients are, it is not difficult

for him to discover the amounts. We will not have to study

any of the formal methods for carrying out such analysis,

but it often proves useful to know that procedures are

available. The mere existence of vibration recipes allows us

to make use of them in our thinking.



Before we apply our newly acquired knowledge of

vibration recipes to musical strings, it is advisable to notice

in figure 7.3 an important implication of the whole recipe

idea. Here we see that as time runs on after the release of

our two-bead system, the initial disturbance does not keep

its shape. What started out as a neat triangle at the instant

of release becomes a very peculiarly shaped squiggle a few

instants later. We can see the reason for this at once: the two

natural vibrations that are going on will get out of step. For

all intents and purposes, the initial shape will never recur.

Suppose for example that the second mode frequency f2 is

exactly 1.732 times f1 (as is approximately true if the

masses are alike and the springs are alike). Then by the time

that the mode 1 part of the recipe has repeated itself 1000

times, mode 2 will have gone through 1732 of its cycles of

oscillation. At first glance one might think that then

everything will be back where it started and that the whole

performance will begin again. Something has been left out,

however: the two oscillations decay at different rates (i.e.,

with different halving times), so that a vibration recipe that

started out with a2 = 1/3 a1 will no longer have this same

relationship after 1000 swings of mode 1. We are led, then,

to the following generalizations:

1. A system released from an initial shape identical with

any one of the natural (characteristic) modes of vibration

keeps this shape as time goes on. Its amplitude dies away in

a manner determined by its own halving time.

2. A system released from an initial shape that is

constructed out of a set of characteristic mode shapes will

not keep its initial shape as time goes on.



7.2. Vibration Recipe of a Stringlike

Beaded Chain

Let us review briefly what we learned in chapter 6 about the

characteristic shapes of the various vibrations of a chain

made up of numerous small masses joined by springs. This

sort of chain of many beads will of course quickly turn itself

in our thinking into a simplified version of a real guitar or

harpsichord string, so that we are coming very close to an

examination of real musical instruments. Let us give the

name flexible string to a closely beaded chain in which the

connecting springs have stretchability, but because of the

nature of their attachment to the beads they provide no

resistance of their own to bending of the chain. When such a

chain is pulled out tightly between two supports, it is the

stretching (longitudinal) elasticity of the springs that

provides the forces guiding any oscillation taking place.

Such a flexible string is a direct descendant of the

sequences of nuts and rubber bands with which we

experimented in chapter 6. The top part of figure 7.5 shows

an example of a completely flexible chain made up of

springs and masses, as just described. The lower part of the

illustration is adapted from figure 6.9 to show the shapes of

the first three vibrational modes of such a chain.

We are now in a position to inquire usefully about the

vibrational recipes belonging to a plucked guitar string.

More accurately, we may ask for the recipe belonging to a

flexible beaded string under tension when it is pulled aside

and released. Figure 7.6 shows diagrammatically what is

involved in two cases. On the right we see the string pulled

aside by means of a hook located exactly halfway between

the string’s anchorages; on the left we find the hook

displaced so that it is fairly close to one end of the string.



Fig. 7.5. A Completely Flexible Chain and Its Lowest Three

Modes



Fig. 7.6.

Our first glance at the left half of figure 7.6 reveals that

the initial triangular-shaped deflection of the string has a

recipe containing certain amounts of modes 1, 2, 3, etc. In a

preliminary way we can observe that the addition of the

unsymmetrical mode 2 shape to that of the symmetrical

mode 1 will give a resultant whose lack of symmetry is of the

same general sort as the desired triangular deflection. That

is, adding these two modes together produces a shape in

which the left half of the string becomes more deflected

than the right half. We cannot always succeed in attempts to

extract in this manner much detailed information about a

vibration recipe, attempts which are like a cook’s attempts

to work out a recipe by taste alone. It is possible however to

go just a little farther in this particularly simple case, and



this effort will help prepare us to understand certain general

relations that have been found between plucking point and

vibration recipe.

When the string is pulled aside at its exact center, as

shown in the right half of figure 7.6, the string shape has

enough symmetry to it that we can learn the basis for a

number of useful things about vibration recipes in general.

We have already noticed that the shape of mode 2 is not

symmetrical about the string’s center; clearly then it would

be a most inappropriate candidate for inclusion in the recipe

for a symmetrical initial shape. Another way of arriving at

this same conclusion is based on the idea that one would

hardly expect a mode to be excited if one tried to pluck it at

a point that remains stationary, as is the case for the string’s

midpoint in mode 2. Looking further, we notice that mode 3

is symmetrical, so that it remains a candidate for inclusion in

our recipe. Furthermore we notice that adding mode 3 to

mode 1 gives a shape that is more peaked at the center and

less arched on the sides than the mode 1 shape taken alone.

These changes are of course exactly of the sort that are

needed in our desire to convert the shape of mode 1 into a

better imitation of the isosceles triangle that is produced by

pulling the string aside at its center. So far, then, we have

excluded mode 2 from membership in the recipe, and we

have verified that it is at least plausible to include mode 3.

Looking further down the list of modes, we realize that while

mode 4 has more humps than mode 2, it has the same lack

of symmetry. The left half of the pattern is upside down

when compared with the right half. It takes only a few

moments to make freehand sketches of the various higher-

numbered mode shapes, all of which show that the even-

numbered modes are like mode 2 in having this lack of

symmetry (or more precisely, this flipped-over symmetry,

which is referred to as antisymmetry by mathematicians, to

distinguish it from unsymmetrical cases in which the two



halves of the pattern bear no resemblance to one another).

We also notice that all the odd-numbered modes of our

uniform string have symmetrical shapes. Because of the

similarities that we have noticed among the even-numbered

modes, and other similarities among the odd-numbered

ones, we are led to extend our conclusions about which

modes are acceptable in our vibration recipe: if modes 1 and

3 are acceptable in the recipe, then all the odd-numbered

modes could be part of the recipe; similarly, what makes

mode 2 unacceptable rules out all even-numbered modes as

candidates for this vibrational recipe.

Let us return to a remark made earlier to the effect that

the central plucking point lies at a point on the string that is

stationary for mode 2. We find that this point is stationary in

the case of all the even-numbered modes, so that if it seems

unlikely that one can excite mode 2 by plucking at its

stationary point (or node, as it is properly named), then it is

equally unlikely that the other even-numbered modes will

be set in motion when plucked at the position of one of their

nodes. It turns out that we can make very general

statements about the degree of excitation of any given

mode if the relation is known between the position of the

plucking point and the position of the nearest node

belonging to that particular mode of oscillation. The actual

proof of the correctness of these statements requires a

considerable grasp of mathematical physics. However, our

investigations so far are sufficient to make them intelligible,

and the commonsense insight into the nature of mechanical

vibrations which we have striven to develop may well be

sufficient to make them seem plausible.

The following numbered assertions summarize the

connections that exist between the location of the plucking

point on a string and the amplitudes of the various

vibrational shapes that form the ingredients of the initial

string shape.1



1. One cannot excite a mode by plucking the string at a

point where there is a stationary point (a node). That is, such

modes will not be ingredients of the vibrational recipe.

Not only is it possible to say definitely where one must pluck

if a mode is not to be excited, but also we can say how to

give it the strongest possible excitation.

2. For a given plectrum force, a mode gets its strongest

excitation if the string is plucked where this mode has its

largest excursion.

Having told where one plucks to excite a mode most

strongly and where plucking fails to excite the mode at all, it

is now possible to say something about the excitation due to

plucking at some intermediate point.

3. For a given force, the excitation of a mode is

proportional to the size of the mode’s excursion at the

plucking point (this statement contains the implications of

both the preceding statements).

Figure 7.7 shows everything we have said in pictorial form,

using the characteristic shape for mode 3 as an example As

one moves the plucking point along the string from its

anchorage on the left toward the right-hand fixture, we find



that this mode is excited weakly or strongly depending on

the region in which the plucking point finds itself. There are

three regions along the string in which plucking produces

strong excitation of mode 3. Between these regions and at

the ends of the string, we find regions in which the

excitation is small, or is even zero if one tries to pluck

exactly at the position of a node. In between the regions

that are identified with strong and weak excitation are parts

of the string where plucking produces an intermediate

excitation of mode 3. For example, at the points along the

string that are marked by the letter B, the excitation is half

as great as the maximum amount that is possible. Notice

that at these points the excursion of the string away from

the central straight line is half of the maximum excursion

(which is found at the points marked E). It is sometimes

useful to know that plucking anywhere in about the middle

third of any string hump will produce an excitation that is

more than 85% of the maximum possible excitation, so that

we are justified in informally labeling it as being a region of

strong excitation.



Fig. 7.7.

We now come to an additional assertion whose content

cannot easily be discovered without the use of advanced

mathematics, but which proves to be as simple in its

application and as useful in its musical implications as the

preceding three assertions. It turns out that the strength of

excitation of the nth of our sequence of characteristic string

modes depends in a simple way on the serial number n of

the mode, over and above the relations described in

assertions 1 through 3.



4. The strength of excitation (by plucking) of the nth

vibrational mode of a string fixed at both ends is inversely

proportional to the square of the mode number. That is, an =

(1/n)2 times the other proportionalities.

As a consequence of assertion 4, even if we pluck a string at

one of the points that excite mode 3 with maximum efficacy,

the initial amplitude a3 of this mode will be only 1/32 = 1/9

as large as the amplitude a1 which mode 1 would have if the

plucking point were such as to give maximum excitation for

this mode.

We have struggled through a rather formidable list of

closely interwoven assertions. It is therefore time to

consolidate things by applying these ideas to a more or less

practical example. In the next section we will use a slightly

simplified guitar string for this purpose. (A similarly

simplified piano string will turn up in the next chapter.)

7.3. The Basic Recipe of a Plucked or

Struck String

In the preceding section of this chapter, some prescriptions

were given that allow one to work out the actual vibration

recipe for a plucked string. More precisely, the prescriptions

tell how to find the initial amplitudes of the various

vibrational modes that are characteristic of a slightly

simplified (i.e., totally flexible) string excited by means of an

extremely narrow, knife-edged plectrum which is used to

pull the string aside before it is released. We will deal in due

course with the small changes to our prescriptions that must

be made when real strings are plucked by slightly extended

or soft-tipped plectra, but at present we should see how very

much information about string vibration is made available to

us upon the basis of what we have learned so far.



Fig. 7.8. The Effect of the Plucking Point on the Excitation of

Various Modes. In this example the string is plucked one-

quarter of the way from one end.

The top part of figure 7.8 shows the triangular shape

produced when a flexible string (a chain of many tiny

masses hooked together in a line by minute springs) under

tension is pulled aside by something sharp which acts at a

point one quarter of the way along the string from the left

end. The lower parts of the diagram show the characteristic



shapes of the first four vibrational modes of this string, all of

them being drawn to have unit amplitude. A vertical dotted

line is drawn through all five parts of the diagram showing

the position of the plucking point relative to the humps of

the various mode shapes. Let us first make use of our

knowledge that the strength of excitation of a given mode is

proportional to that mode’s excursion at the plucking point.

From the figure we see that mode 1 has an excursion at the

plucking point that is very nearly 70% of the maximum

excursion of this mode, which takes place at the string’s

center. Similarly we notice that mode 2 gets maximum

excitation, since the particular plucking point we have

chosen happens to fall at a point of maximum excursion.

Continuing down the diagram we find that mode 3 gets

0.707 (70.7%) of its maximum possible excitation, while

mode 4 is not excited at all because the plucking point

happens to coincide with a node. The first line of table 7.1

gives a list of numbers showing how the plucking point

affects the amount of excitation for the first eight modes,

now that we have seen how four of them are determined.

The next step in finding the recipe is to divide each of

these numbers by the square of the corresponding mode

number. That is, we divide them by 12 = 1, 22 = 4, 32 = 9,

etc. These divisors are given in the second row of the table,

while the third row presents the results of this arithmetic. It

is this latter row that tells the initial amounts of the various

ingredients in the vibration recipe. It is a little hard to

interpret these numbers as they come to us from the

arithmetic, because they are, so to speak, like a listing of the

quantities of flour, sugar, etc., needed to make a 70-percent-

sized cake. A very useful convention which we shall

sometimes use is to normalize the recipe so as to give unit

amplitude to mode 1. That is, we will convert the recipe

given in row 3 of the table (in which the mode 1 ingredient

has a magnitude of 0.707) to one in which mode 1 has unit



amplitude. This is done simply by dividing every number in

row 3 by 0.707, with a result shown in row 4. Here we can

read off directly that the initial amplitude of mode 2 is 35.3

percent of the mode 1 amplitude, or that mode 3 has an

initial amplitude that is 11. 1 percent of the mode 1

excitation, and so on. Let us rewrite this one more time,

using the symbol an for the initial amplitude of the nth

mode: a1 = 1.000, a2 = 0.353 a,, a3 = 0.111 a1, etc. If we

were to draw the string aside more or less far before it is

released, the amounts of all the ingredients would be

changed in the same proportion, so that if we somehow find

the amplitude a1 (say 0.5 cm maximum excursion) for a

particular strength of plucking, then all the other amplitudes

can be found by multiplying all of the normalized

amplitudes by 0.5 cm, which is the mode 1 amplitude

measured in a particular example.

Table 7.1 Amplitudes of First Eight Modes of a Plucked String

Our numerical example can be used to illustrate a number

of important properties of plucked strings, as we have

studied them so far. For one thing we have confirmed that

modes 4, 8, 12, etc., will not be present in the recipe

belonging to a string plucked one-fourth of the way from one

end. As a matter of fact, we can go further to realize that in



exactly similar fashion, plucking 1/3 of the way along

eliminates modes 3, 6, 9, 12, ... from the recipe, or that

plucking 1/7 of the way will prevent excitation of modes 7,

14, 21, 28, .... More generally, if we wish to remove the nth

mode and its whole number multiples from the recipe, we

have merely to pluck (1/n)th of the way from one end of the

string. By the same token, and much more important for

practical music, plucking near one of these spots rather than

exactly on it gives the corresponding lists of modes a weak

rather than a zero excitation. Another piece of information

that can be gained from row 4 of table 7.1 is that because of

the 1/n2 factor in the computations, the higher-numbered

modes are very weakly excited in comparison with the lower-

numbered ones, quite aside from any effect of the plucking

position on the excitation.

The vibration recipe for a string that is struck by a hard,

sharp-edged object at a given point along its length (rather

than plucked) is almost exactly the same as the one given

above. The only difference is that instead of dividing by n2,

as given in row 2 of table 7.1, one divides by n itself. 2 For

example, the normalized amplitudes for a string that is

struck 1/4 of the way from one end are found to be: 1.000,

0.707, 0.333, 0.000, 0.200, 0.236, 0. 143, 0.000. These

amplitudes fall away much less rapidly as we go up the

series of mode numbers than is the case when the string is

plucked. There is considerable similarity between the

vibration recipes associated with the plucking and the

striking of a string. In both cases higher modes are

progressively less strongly excited than are the lower-

numbered ones. One always finds, however, that the higher

modes are more strongly excited by striking than by

plucking a string. We will go into more detail about struck

strings in the next chapter.



We are at a point where we are beginning to find some of

the many implications for music that are hiding within what

we have learned so far. However, we must take care not to

jump too quickly from our ability to determine the vibration

recipe for a string to any conclusions about the analogous

recipe for the sounds that reach our ears. To be sure, it is the

string vibrations of a harpsichord or piano that ultimately

give rise to the sound we hear, but on the way to our ears

the string vibrations must be passed to us via the

soundboard and the air in the concert hall. As was pointed

out in chapter 6, these intermediate objects are also

endowed with characteristic modes of oscillation, each with

its own natural frequency, vibrational shape, and decay

(halving) time. It is only reasonable to expect that the

overall behavior of the composite system made up of a

string, a soundboard, and a room will show as marked a

relation between excitation position and amplitude of

response as we found for the string alone (the string itself

being a composite of many tiny masses and springs).

Fortunately, we will be able easily to extend our

understanding of the excitation of strings to the excitation of

soundboards and rooms in a way that is exactly analogous

to the way in which the properties of a single spring and

mass were used to explain the behavior of strings.

A simple description can be given of the first stage in the

transformation of the string displacement’s vibration recipe

into the final recipe that reaches our ears. The first stage

transforms the string displacement into the force exerted on

the bridge, which then excites the body of the instrument

and radiates acoustical waves to the listener. The amplitude

of the nth vibrational mode of a plucked string is inversely

proportional to the square of the mode number (1/n)2 (see

assertion 4), and the corresponding vibration recipe of the

force on the bridge is inversely proportional to the mode

number (1/n). The amplitude of the nth vibrational mode of



a struck string is inversely proportional to the mode number

(1/n), and the corresponding vibration recipe of the force on

the bridge is independent of mode number. For both the

plucked and struck strings, the force on the bridge

emphasizes the higher frequency components of the string

displacement vibration recipe.

In our quest for added realism in our descriptions of the

vibrations of strings (and therefore also of more complex

systems) we must consider one more item that is closely

related to what we have learned in the present chapter. The

strings of actual pianos, harpsichords, and guitars are not

set into vibration by means of knife-edged hammers and

plectra, nor are these real musical strings exactly like the

simplified flexible strings that we have been imagining so

far. In the next chapter, it will prove possible to make some

very simple modifications in what we have discovered so far,

so that our results may be adapted to take into account the

broader hammers and plectra and the stiffer strings one

actually encounters in the non-idealized musical world.

7.4. Examples, Experiments, and

Questions

1. In section 4.4 of chapter 4 it was pointed out that if a

tuning fork is struck at a point lying between 1/4 and 1/2 of

the way from the end of one tine, only mode 1 is excited.

This observation allows us to pinpoint the location of nodes

belonging to the fork’s mode 2. By now we have enough

general knowledge of the characteristic vibrations of various

objects to be able to make good sketches of the vibrational

shapes of the first two fork modes. Try to do this, making use

of the fact that in all modes the free ends of the fork tines

are in motion. In chapter 9 we will look at the analogous

problem of deducing the vibrational shapes belonging to the

glockenspiel bars discussed in section 5.1 of chapter 5.



2. The third modes-of-vibration example presented at the

end of chapter 6 had to do with the sloshing of water in a

long narrow channel. In this present chapter we have

learned a good deal about the way in which a locally applied

force excites a given mode of oscillation, and it is worthwhile

to bring hindsight to bear on the suggestions made earlier

on how to excite the various sloshing modes. Notice that

even with a hand used as a paddle, we do not expect to

excite a mode by disturbing it at a nodal point. How would

one go about choosing excitation positions for one’s hand if

it were to be laid flat on the water surface and given a

vertical motion rather than a horizontal motion prescribed

earlier? Hint: one would not expect to stir up mode 1 with

vertical excitation applied half way along the trough.

3. The pickups of an electric guitar are small magnetized

screws placed near the strings at some point between the

bridge and the end of the finger board. Coils of wire wrapped

around these screws are interconnected and provide

electrical signals for the amplifier and loudspeaker

whenever the strings vibrate. Let us confine our attention to

a single one of these pickup screws, which is arranged

relative to its own guitar string in the manner shown in

figure 7.9. Leaving out extraneous electrical and mechanical

details, we can see that if the electrical signal depends on

string motion, then the pickup is blind (or better, deaf) to all

those modes having a node at the screw position.

Furthermore, some mode that has its maximum excursion at

the screw position will contribute the maximum possible

amount of its characteristic sinusoidal oscillation to the

electrical signal from the pickup. In other words the recipe

for the electrical signal depends on the location of the

pickup screw, as well as upon the recipe of the complete

vibration (see also example 5 below).

Assuming that the pickup is located 1/4 of the way along

the string, try to deduce the electrical vibration recipe



belonging to a vibration started by plucking the string at its

exact center. First you should recall (with the help of

assertions 3 and 4 of section 7.2) the recipe for the string

vibration itself. There are no even-numbered modes excited,

and the amplitudes of the odd-numbered ones are 1, 1/9,

1/25, 1/49, .... The second row of table 7.1 can now be used

to get a numerical measure of the effectiveness of the

pickup in responding to a given mode. Notice the exact

parallelism between our ability to communicate an

excitation to a string mode and our ability to extract a

sample of this oscillation. In both cases the effectiveness of

the transfer is proportional to the excursion of the string at

the spot where the transfer is to take place.

Our glance at the relationship between the recipe of

electrical signals produced by a guitar pickup and the

vibration recipe of the string gives us our first clear example

of the reason why vibration recipes of vibrating objects do

not necessarily match the vibration recipes of the sounds we

hear. The acoustic recipe depends not only on the vibration

recipe but also on the details of the process which

transforms the vibration into the sounds reaching our ears.

What general deductions can be made about the relations

between the electrical recipes as-sociated with each of the

two pickup assemblies that are often mounted on a guitar?

Recall that one of these pickup sets is located near the

bridge, while one is near the finger board. Comment also on

the change in recipe that arises in going from note to note in

a scale played on one string. The plucking point and the

pickup position remain a fixed distance from the bridge,

while the frets are used to shorten the string progressively.

In other words, the plucking and pickup points progressively

approach the center of the vibrating part of the string, and

even pass it for the very highest notes.



Fig. 7.9. An Electric-Guitar String and Its Pickup

4. Among the experiments described at the end of chapter

6 was an attempt to excite mode 1 of a chain formed by 5

carts coupled by springs, with additional springs connecting

the ends of the chain to fixed anchorages (see fig. 6.12). It

was suggested that if all five carts are pulled to one side and

released, the system would oscillate in mode 1. From our

present vantage point, we can recognize that the proposed

initial configuration does not have exactly the shape of

mode 1. In particular, the center cart is not pulled

sufficiently far to one side. It is worthwhile to figure out why

we can be sure that a small amount of mode 3 is in fact

present in the initial shape, but none of mode 2. Is there any

of mode 4 or mode 5 in the initial recipe?

5. Owners of steel-string guitars or similar instruments

having metallic strings can repeat all of the experiments

described for the electric guitar by using a trick which has

been familiar to acousticians for about half a century (see

fig. 7.10). If the two ends of the string are connected to the

phono or microphone input terminals of a home music

amplifier, bringing a magnet near the string will give rise to

a signal whose recipe depends on the magnet position in a

way that is precisely the same as that described for a normal

guitar pickup. (The metal-wound lower strings of a classical

guitar can be used in the same way.)



Fig. 7.10.

Digression on Electric Guitar Pickups.

A physicist reading about electromagnetic pickups on

vibrating strings takes it for granted that the electrical

signal going to the amplifier is proportional at any instant to

the velocity of the string’s motion past the magnet. He may

then be tempted to make some incorrect generalizations

about the sound recipe produced by the loudspeaker, unless

he takes into account the fact that phonograph and guitar

amplifiers are both provided with equalizing or

compensating circuits as well as with tone controls which

drastically alter the sound recipe. Furthermore, the

loudspeakers used with guitars are “voiced” differently from

normal loudspeakers in order to make additional musically

desirable adjustments to the sound recipe.



6. We have just learned that the amplitude with which a

given mode is excited on a struck string depends jointly on

the distance of the striking point from a node and on a factor

(1/n) which is determined by the serial number of the mode.

Figure 7.8 in section 7.3 suggests that a string struck very

near one end excites all the lower modes with practically

equal amplitude (that is, all the modes whose interhump

length is somewhat more than twice the distance from

hammer to fixed end). Verify this observation with the help

of careful sketches. Notice that the modes having

successively higher serial numbers than the ones described

above are excited with rapidly decreasing amplitudes,

because their first nodes lie ever closer to the hammer

position. Note also that the analogous result for a plucked

string leads to amplitudes for the lower modes that can be

described simply as varying as (1/n), rather than according

to the formula (plectrum position) × (1/n2), which is the

description given in section 7.2.

Notes

1

Alexander Wood, Acoustics, 2d ed. (1960; reprint ed., New

York: Dover, 1966), pp. 377–81, and Horace Lamb, The

Dynamical Theory of Sound, 2d ed. (1925; reprint ed., New

York: Dover, 1960), p. 73. We will examine further the

behavior of plucked harpsichord strings in chapter 18.

2

Philip M. Morse, Vibration and Sound. 2d ed. (New York:

McGraw-Hill, 1948), pp. 87–88; A. B. Wood, A Textbook of

Sound, 3rd rev. ed. (1955; reprint ed., London: Bell, 1960),

pp. 98–101; and Lamb, Dynamical Theory of Sound, pp. 73–

74. We will return to a discussion of struck string behavior



in chapter 17, which is concerned with sound production by

the piano.



8

Broad Hammers and

Plectra, Soft Hammers,

and the Stiffness of

Strings

What we have learned in chapter 7 about the vibration

recipes associated with knife-edged exciters of strings will

help us understand the vibrations produced when a broad

plectrum or a wide hammer acts on a string. Once we have

organized our thinking about somewhat more realistic

plectra and hammers, it will not prove difficult to deal with

the changes in vibration recipe that are associated with the

stiffness of a real string or with the softness of a real piano

hammer.

8.1. The Equivalence of

Broad Plectra to Sets of

Narrow Ones

The top part of figure 8.1 shows the initial shape of a string

pulled aside by a broad hooklike plectrum. The middle

diagram shows that identically the same shape may be

produced by using two narrow plectra of the sort we have

met with before. The bottom diagram of figure 8.1 suggests

a way in which a more complicated initial shape may be



obtained through the use of a suitable number of additional

narrow plectra. In principle there is no limit to the number of

plectra we could use; a sufficient number of them can be

properly located and pulled aside the proper distances to

produce any desired initial shape. In other words, a

collection of narrow plectra can take the place of whatever

real-world combination of finger-tips, fingernails, and sharp-

edged picks we wish to invent.

One may well ask what is the utility of the mental

replacement of an actual string picker by a collection of

narrow plectra. The answer is that the vibration recipe

associated with any given initial shape may be deduced in a

straightforward way simply by combining the recipes that

would be produced by the narrow plectra acting one at a

time. Let us see with the help of figure 8.2 how this comes

about. The top part of figure 8.2 shows the characteristic

vibrational shape of mode 1 for a flexible string, along with

a possible arrangement of two plectra. Plectrum 1 is located

at the string center, at a spot where (acting alone) it would

produce maximum excitation of mode 1; plectrum 2 is

located half way between the center and one end of the

string. When it acts by itself, plectrum 2 would, as we

learned in chapter 7, produce less than the maximum

excitation of mode 1. If the two plectra acting one at a time

are pulled aside equal distances, then plectrum 2 would in

our example produce only 70.7% as strong an initial

amplitude for mode 1 as would plectrum 1. We come now to

the point of asking the result when both plectra are pulled

aside in the same direction an equal distance to produce an

initial string shape of the sort shown in the middle part of

figure 8.2. It is not hard to accept the plausibility of an

assertion that the initial amplitude of mode 1 is now equal

to the sum of the mode 1 amplitudes produced by the two

plectra acting separately. In other words, let a1 stand for the

transverse deflection of plectrum 1 at the string midpoint.



Let the corresponding mode 1 amplitude of the string be

1.0, under the condition when plectrum 1 acts by itself. Let

b1 stand for the transverse deflection of plectrum 2. The top

plot of figure 8.2 shows that the corresponding mode 1

amplitude is 0.707 under the condition when plectrum 2

acts by itself such that b1 = a1. When both plectra act

together in the same direction (see middle plot of figure

8.2), the transverse displacement is constant and equal to

a1 + (2/3)b1 between the two original plucking points. See

figures 7.1 and 7.2 for the nature of the calculation of the

factor 2/3. If the two plectra displacements are equal (b1 =

a1), then the corresponding mode 1 amplitude of the string

is

1a1 + 0.707(2/3)a1 = 1.47 a1
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Fig. 8.1. Ways to Achieve Various Initial String Shapes

There is another way in which plectra at the same two

plucking points could be used to excite the string. Suppose

that plectrum 1 is arranged to pull upward on the string

exactly as before, while plectrum 2 acting separately pulls

the string downward an equal distance. If both plectra act

on the string, the initial string shape is now of the sort

shown in the bottom part of figure 8.2. Plectrum 1 acting by

itself produces a mode 1 hump which arches above the line

made by the undisturbed string. Immediately after release,

the string begins to move downward. Plectrum 2, acting by

itself, on the other hand, gives rise to a downward arching of

the mode 1 initial shape, and upon release the string will

start to move in an upward direction. In other words, the

effect of an upward pull of plectrum 1 in producing some

mode 1 excitation is counteracted (at least in part) by the



downward pull of plectrum 2. Because of the different

efficacy with which the two plucking positions excite mode

1, there is not complete cancellation. Thus, as before, we

use the symbol a1 to stand for the transverse displacement

of plectrum 1 acting alone, and the corresponding mode 1

amplitude is 1.0. We use the symbol b1 to stand for the

transverse displacement of plectrum 2 acting alone, and the

corresponding mode 1 amplitude is–0.707, with the

negative sign indicating a displacement downwards for the

case b1 =–a1. For this same case (see bottom plot of figure

8.2), the corresponding mode 1 amplitude of the string for

both plectra acting in opposition is

1a1–0.707(2/3)a1 = 0.53 a1
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Fig. 8.2.

Let us further clarify the nature of our recipe addition

process with the help of yet another example. The top line

of figure 8.3 shows the vibrational shape characteristic of

mode 7 of a flexible string. In the second line of the diagram

we see the initial string shape produced by the action of two

plectra pulling upward at two of the positions of maximum

excitation for mode 7. Arguments exactly similar to those in

the preceding paragraph lead us to expect these plectra to

result in an initial amplitude for mode 7 that is twice as big

as that produced by either one of these plectra acting alone.

We can realize further that mode 7 would be excited to

exactly the same degree if the two plectra had been located

at any pair of points marked p along the string. The third

line in the diagram presents one such example.
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Fig. 8.3.

Suppose now that, instead of two plectra located at the two

points marked p on the diagram, we have one located to

pull upward at a p and one located to pull downward at a

point marked q. A simple example of this case is illustrated

in the 4th line of figure 8.3. Here again the two plectra are

at points of maximum excitation for mode 7; since an

upward pull at point p gives rise to exactly the same

arrangement of upward and downward arching humps as

does a downward pull at point q, we find again that mode 7

gets a joint excitation which is twice as large as the

excitation produced by the two plectra acting separately.

The final arrangement of plectra which we need to consider

is that shown in the bottom line of figure 8.3. Here the initial

string shape is produced by a plectrum at p as before, while

the second plectrum is still applied at q, but instead of

pulling down it pulls up. In this case the two plectra are

working against one another: the plectrum on the left is

trying to produce an oscillation in which all parts of the

string marked p have a downward initial motion after

release (and all points marked q start to move upward). On

the other hand, the plectrum on the right would, acting by

itself, set up an oscillation in which all the points marked q

will start to move downward upon release, with the p’s

moving upward. In other words the two plectra are acting in

opposition, and because they produce equally strong

excitations, the net result is that mode 7 is not excited at all

in this case. Nor for that matter are modes 14, 21, 28, and

35 excited.

Once again we have undergone a long series of step-by-step

investigations of the behavior of a plucked string, only this

time we have dealt with two plectra instead of a single one.

As before, we find it possible to summarize the results of our



investigations in a very few words, and also to extend them

in various ways whose interpretation is straightforward:

1. The vibration recipe produced by several plectra acting

simultaneously is found by combining the recipes belonging

to each plectrum acting alone.

2. In combining several recipes one must remember that

they may have to be added or subtracted to take care of the

fact that certain plectrum positions release a given mode so

that it initially starts moving in the opposite direction to

that produced by a plectrum located elsewhere.

3. Two plectra pulling in the same direction will act very

much like a single plectrum pulled back twice as far, as long

as we are considering modes for which the inter-plectrum

distance is less than about one-third of the length of a

hump.

4. Two plectra pulling in the same direction will produce zero

excitation of any mode for which the hump length along the

string is exactly equal to the distance between the plectra

(or for which the inter-plectrum distance is exactly an odd

number of hump lengths). This is true regardless of where

along the string the pair of plectra may be placed.

5. Modes whose hump lengths are only a little larger or

smaller than the inter-plectrum distance are weakly excited

since they approximately meet the criterion for zero

excitation given in assertion 4 above.

These five summarizing assertions will allow us to

understand many things about plucked strings as they are

used in musical instruments. The fact that all of these

statements prove to be applicable, with only small changes,

to the excitations of struck strings and of soundboards and



rooms is another, very compelling reason why so much care

and so many pages have been devoted to their exposition.

Let us focus our attention mainly on the last three of the

assertions given above as we relate them to the real

behavior of a guitar string. Reference back to the top two

parts of figure 8.1 reminds us that a plectrum of width W

acts on a string in very much the same way as a pair of

narrow plectra separated by the distance W. This leads us to

the realization that the width of a plectrum directly

influences the total number of string modes that it is able to

excite. For example, when one uses thumb and forefinger,

the plectrum is something for which W is about 2 cm,

implying that a string mode whose hump length is 2 cm will

not be appreciably excited (assertion 4). (For present

purposes the effect of the softness of the thumb and

forefinger has been neglected.) Since a guitar string is

about 60 cm long (call this length L) and since the mode

number n itself is equal to the number of humps belonging

to its own characteristic vibrational shape, we find that

there is no excitation possible of the mode whose serial

number n is found as follows:
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We can extend this result by using assertion 5 to show that

there is very little excitation of the string modes near mode

30. Furthermore, the 1/n2 factor which we met for the

displacement amplitude of plucked strings in chapter 7

assures us that modes above mode 30 are very weakly

excited for this additional reason. Returning now to

assertion 3, we find that the vibrational recipe for modes

whose hump length is more than about three times the

length of string covered by thumb and forefinger can be

calculated with good accuracy by the simple narrow-

plectrum substitutions outlined in the first part of this



chapter. For the case at hand these modes, whose hump

length is more than three times the 2 cm plectrum length,

have serial numbers lower than 10:
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Let us now summarize the results of our computations. One

can accurately describe the recipe for a string plucked by

thumb and forefinger by telling the amplitudes of the first

10 or so modes as they are calculated by using narrow

plectrum procedures. The simple calculations we are using

will not give us the details for modes whose serial numbers

lie between 10 and 30, but if we know something about the

lower-numbered modes and also know the cutoff beyond

which no modes are excited, then we have most of the

essential information for a vibration recipe. As one might

expect, the modes between numbers 10 and 30

progressively diminish.

If we pluck at the same guitar string using a pick for which

W = 0.2 cm (only a tenth of the former width), exactly

similar calculations show that the serial number of the

highest modes to be excited is now tenfold larger (300),

while the upper limit for applicability of simple theory is

raised from mode 10 to mode 100.

As a matter of fact, our whole method of analysis breaks

down for modes having serial numbers higher than about 40

(due to string stiffness effects with which we will deal

shortly). Even so, this limitation on our ability to estimate

recipes is useful, chiefly because modes having serial

numbers above about 30 are weakly excited. Recall that

there is a factor 1/n2 that governs the displacement of

plucked strings and a factor n that governs the

transformation to the force exerted by the string on the

bridge (or string support). These reduce transmission of the



initial string amplitudes by a factor more than 
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lower frequency components so they make a nearly

inaudible contribution to the sound. In any event, we have

seen examples now of the ways in which plucking position

and plectrum width can be used to control the vibration

recipe of a string and therefore will ultimately influence the

nature of the emitted sound from a musical instrument.

8.2. The Effect of Hammer

Width on the Recipe for a

Struck String

When one strikes a string with a hammer, the resulting

vibrational recipe produced by a wide soft hammer differs

from that resulting from a narrow hard hammer in ways that

are very similar to those we found when the string is picked

with a broad or a narrow plectrum. There are however two

parts to what we might call the piano-designer’s problem.

Typically the impulse transmitted to a string during the blow

of a real hammer is not distributed uniformly along the part

of the string touched by the hammer. The central part of the

hammer is firmer than are the edges, since it is supported

on both sides by the rest of the material, so that the

momentary forces exerted on the string by the center of the

hammer are larger than those exerted by the edges. Figure

8.4 illustrates what would happen if for example one were to

strike a block of wax instead of a string by means of a piano

hammer. The dent left in the wax would not necessarily be

of the same shape as the undisturbed profile of the hammer

felt; on the contrary, the depth of the depression would at

any point across the region of hammer contact indicate the



magnitude of the impulsive force that had been impressed

on that post of the wax at the instant of the blow.
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Fig. 8.4. Variation of Force Exerted by Different Parts of a

Piano Hammer on a String
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Fig. 8.5. Distribution of Hammer Force along the String

Figure 8.5 shows a slightly idealized version of the force

distribution implied by our experiment with wax and a piano

hammer. As a matter of fact such a force distribution is, in

all its essential features, typical of the blows struck by all

hammers in the real world, whether one is thinking of the

felt piano hammer or of the rubber and wooden balls used

by xylophonists, the metal clappers of church bells, or the

pencil erasers and ballpoint pen butts we might use in the

course of our informal experiments. For definiteness we will

use the letter Wh to indicate the width of the hammer in the

sense that within the range Wh of position along the string,

the force rises to values that are at least half the magnitude

of the maximum force (denoted by Fmax) exerted at the

central part of the struck region. We will further assume that

the string has a limited region that is acted upon by any

force at all, and this region is of width 2Wh. While

mathematicians find that our desired conclusions are most

easily obtained if we assume that the curve of figure 8.3 is

of sinusoidal form, they also discover that almost any well-

localized force distribution leads to essentially the same

results, as long as Wh is defined as it is above, i.e., as the

distance between points where the force is equal to 1/2

Fmax. The width Wh of the blow plays a role for struck



strings that is almost exactly analogous to that of the inter-

plectrum distance in the first half of this chapter. The nature

of a struck-string vibration recipe produced by a broad-

faced hammer whose width is identified by the letter Wh can

be summarized by the following statements:

1. Vibrational modes for which the Wh is less than one-half

the length of a hump are excited in almost exactly the same

way as by a narrow hammer.

2. Modes for which the humps are approximately equal in

length to the width Wh are excited about half as strongly as

they would be by a narrow hammer.

3. If the width Wh extends over two or more humps of a

vibrational mode shape, the mode receives almost no

excitation.

It is worth noticing how very similar these three statements

are to the ones that deal with wide plectra. There are small

numerical differences, but the overall qualitative behavior is

exactly the same.

8.3. The Effect of Impact

Duration on the Recipe for

a Struck String



When any real hammer strikes a string, not only does the

strength of its briefly exerted force vary from point to point

along the region (of width Wh) in which it strikes the string,

but also the force varies in time during the duration of the

impact. The magnitude of the force varies during the blow in

a straightforward manner, chiefly because of the progressive

compression of the hammer material during the first part of

the collision and its subsequent relaxation during the latter

part as the hammer rebounds. The top part of figure 8.6

shows (as in a multiple-flash photograph) the approach and

rebound of a hypothetical hammer as it strikes the surface

of a hard block. Clearly, there is no force exerted on the

block by the hammer before the two come into contact. The

force then rises smoothly as the hammer moves downward

and compresses the material at its tip. The force reaches a

maximum when the hammer reaches the end of its motion,

at which moment the head is compressed the most. After

this, the force becomes progressively weaker as the hammer

recedes, in a manner that is very nearly a reversal in time of

the behavior during approach. The lower part of figure 8.6

shows in graphical form this variation of the force exerted

on the block during the time of impact, the height of the

curve at any time giving a visible measure of the magnitude

of the force which acts at that time.
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Fig. 8.6. Time Variation of the Force Exerted by a Hammer as

It Strikes and Rebounds
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Fig. 8.7. Variation of Hammer Force during the Time of a

Blow



It turns out that figure 8.7 is a very good representation of

the time variation of any impulsive force that we are likely

to meet. This sort of time variation (which is well-known to

communications engineers as a “hanning pulse”) is drawn

as a short segment of a sinusoid. The letter Th indicates the

time duration of the hammer blow. Strictly speaking Th is

the time interval over which the force is equal to or greater

than half of the maximum force Fmax that is exerted during

the collision. Notice that the appearance of figure 8.7 is very

similar to that of figure 8.5. In one case we have shown the

variation along the string of the force exerted during a

hammer blow, and in the other case it is the variation in the

course of time of the same force. As we shall see in a

moment, this similarity of temporal and spatial aspects of

the behavior of hammer forces leads also to a similarity in

the way in which they both affect the vibration recipe of a

struck string.

As we know, every natural vibration of a string has its own

characteristic frequency of (damped) sinusoidal oscillation,

as well as its own characteristic vibrational shape. In dealing

with the influence of plectrum width on the vibration recipes

of plucked strings (or the influence of hammer width in the

case of struck strings), we found that everything depended

on the relation between the width W of the exciter and the

length H of a hump belonging to a particular vibrational

mode. When dealing with the duration Th of a hammer blow

we find an exactly similar sort of relationship between Th

and the repetition time required for one complete back-and-

forth cycle of the oscillation for the mode in question. This

repetition time, which is also called the period P of the

oscillation, is of course equal to the reciprocal of the

oscillation frequency f: P = 1/f. The close similarity between

the relations between P and Th to those found to connect

Wh and H are very well displayed by the fact that the



following assertions about the effect of a finite duration of

the impact time on the vibration recipe of a struck string

have been copied from those given earlier for the effect of

hammer width, with only a few words changed:

1. Vibrational modes for which Th is less than one-half of the

time interval P/2 are excited in almost exactly the same way

as by a hypothetical hammer that strikes and rebounds

instantly.

2. Modes for which the time interval P/2 is approximately

equal in length to the collision time Th are excited about

half as strongly as they would be by a hammer that strikes

and rebounds instantly.

3. If the duration Th extends over a time of one or more

oscillatory periods, the mode receives almost no excitation.

8.4. The Effect of String

Stiffness on the Excitation

of Strings

When one pulls a real string aside by means of a knifelike

plectrum, the stiffness of the string prevents it from

assuming a sharply marked triangular shape of the sort

which has been sketched in the top line of figure 7.8 in

chapter 7. Figure 8.8 shows the nature of the deflection of a

real string as it compares with that of the idealized flexible

string that we have discussed so far. The top diagram shows

how a completely flexible string under tension bends

abruptly around a sharp-edged object. The center diagram

shows that a string having small stiffness or one under great

tension bends in a smooth curve around a sharp object, the



bent region being restricted to a short distance on either

side of the edge. The bottom diagram indicates that a very

stiff string or one under relatively low tension bends around

a deflecting object in a smoother curve of considerably

greater extent.
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Fig. 8.8.

One can see curvatures of this sort by using a magnifying

glass to examine the strings of a guitar at the point where

they run over the bridge and at the fixed nut at the far end

of the neck. The curvatures observed for the bass strings

differ from those of the treble strings, and one also finds

differences between nylon and steel strings.

There is a close relation between struck and plucked strings,

so it is at least plausible that the presence of curvature at

the plucking point will eliminate the higher modes from the

vibration recipe in a way that is similar to the elimination

resulting from blows by a soft or round-faced hammer. The

mathematical analysis of the effect is not particularly easy,

nor is it a simple matter to outline the arguments in a book

such as this. We will therefore content outselves with the

following summary of the results:

1. The presence of string stiffness will greatly reduce the

excitation of higher modes in a manner similar to that

resulting from the use of wide plectra or hammers.

2. Increasing the string tension and/or reducing the string

stiffness will make the vibration recipe of a real string

behave progressively more like that of a flexible string.

One finds that because of stiffness effects in guitar strings,

there can be very little excitation of modes above about



serial number 40 or 50 (depending on the type of string).

This is true even if such excitation is otherwise permitted by

the plectrum width.

8.5. The Upper Limits of

the Vibration Recipe: A

Summary

Our analysis of the excitation of plucked and struck strings

has had only four major ideas running through it. Because of

their direct musical importance and because of their wider

implications, we should review these ideas and put them in

a broader context.

The first major idea is that the strength of excitation of a

string mode caused by either plucking or striking the string

with a narrow object is proportional to the relative excursion

of that vibrational shape at the point of excitation.

Disturbing the string at any nodal point for a certain mode

thus gives zero excitation to the mode. Excitation is, on the

other hand, at a maximum when the string is impulsively

disturbed at any points of large oscillation (which are found

to lie between the nodal points). Systematic application of

this idea to each characteristic vibrational mode belonging

to a string allows us to deduce the entire vibrational recipe

resulting from an impulsive excitation.

The second major idea is that the vibrational recipe

associated with excitation by an extended plectrum or

hammer may be deduced by suitably adding the recipes

belonging to a set of closely spaced narrow exciters

arranged to give the string the same initial state as that

produced by the actual exciter. We found also that this idea



of superposing the effects of impulses distributed along the

string could be adapted to the case of impulses distributed

over a short period of time.

The third major idea is that regardless of the nature of the

excitation, if it is distributed along the string, modes whose

hump length is comparable to the width of the distribution

will not be excited. The exact numerical relationships vary

from case to case, but the effect of exciter width in

eliminating the higher-numbered modes is always found. An

exactly similar relationship is found between the duration of

a hammer blow and the period of oscillation of a given mode

of oscillation. Modes whose periods are shorter than the

impact time are weakly excited.

The fourth important idea appearing throughout chapters 7

and 8 is that the vibration recipe of any plucked string has

the amplitudes of its first, second, third, fourth, and nth

modes reduced by the factors 1/12, 1/22, 1/32, 1/42, . . . ,

1/n2, . . . ; on the other hand, the recipe of a struck string

has a set of reduction factors which run 1, 1/2, 1/3, 1/4, . . . ,

1/n, ... for the successive modes. This pair of effects is

present over and above any complication produced by the

size and hardness of the exciter or its point of application.

There are analogous though more complicated reduction

factors to be found in the two-dimensional case of a

drumhead or a soundboard, as well as for the impulsive

excitations of rooms. At this point, however, we will not need

to know much about them beyond the fact that the higher

frequency modes are less well excited than are the lower

ones, just as in the case of strings. Furthermore, the

reduction takes place more rapidly in the case of plucked

(initial displacement) excitations than it does when a metal

sheet is struck with a hammer or when a firecracker is set off

in a room.



The first three of our set of four major ideas listed above will

carry over unchanged to the behavior of soundboards,

rooms, etc., and we will make constant use of them and of

their further implications throughout our work. The last

section of this chapter will provide several examples of their

utility in helping us to understand the excitation of various

sorts of stringed instruments.

8.6. Examples,

Experiments, and

Questions

1. The highest pitched string on a steel-stringed guitar

provides us with an excellent experimental subject for the

exploration of many phenomena which we have met in this

chapter and in chapter 7. For example, we found that

plucking a string precisely at its midpoint gives rise to a

vibration whose recipe contains only the odd-numbered

modes. Listening experiments with the guitar also inform us

that the tone we hear in this case is peculiar and hollow-

sounding. Furthermore, we discover that plucking only half

a finger’s width off-center almost completely eliminates the

special hollow quality of the tone. As we move our plucking

further and further away from the center of the string, the

remaining tone color changes are relatively slight until we

get very close indeed to the fixed string ends. (When the

string is plucked exactly 1/3 of the way from one end, which

eliminates modes 3, 6, 9, etc., from the recipe, it gives a

sound which is only a little different from that arising from

nearby plucking points.) The perceptual status of a sound

that is lacking even-numbered harmonic partials is quite

different from that of any other sounds. Even a very small

addition of the even harmonics (produced by plucking off-



center) will essentially destroy the special status. Excitation

arithmetic based on a plucking point that is 1 cm away from

the center point of a 60 cm string shows us that the lower

seven members of the normalized vibration recipe have the

following initial amplitudes: 1.000, 0.026, 0.111, 0.013,

0.040, 0.009, 0.020. Notice how small the amplitudes of the

even-numbered modes are compared to their odd-numbered

immediate neighbors. According to our analysis so far, the

normalized recipe produced by plucking at the exact center

is found by replacing all the even-numbered mode amounts

by zeros.

2. Let us continue our experiments with the top string of a

guitar in order to study the effects of damping various sets

of modes selectively. Thus, if one first plucks the string (at

any normal spot) and then lightly touches the exact

midpoint of the string with the corner of a soft foam sponge,

modes 1, 3, and 5 will die away quickly, leaving modes 2, 4,

6, ... to ring on in essentially their normal fashion. This effect

of selective damping comes about because all odd-

numbered modes have a large excursion at the mid-point,

so that they can rub away their oscillations by friction

against the piece of foam. On the other hand, for even-

numbered modes the string is at rest at the mid-point, so

that there is no retarding effect exerted upon them by the

sponge.

What happens to the pitch of the sound of this plucked

string when we apply our sponge damper? When the string

is first plucked, its vibration recipe contains components

oscillating at 329.6/second and its (very nearly) whole-

number multiples. Such a collection made up of a

fundamental and its harmonics has the 329.6/second

repetition rate which we associate with the note E4 just

above piano middle C. After the damping has had time to

take effect, we are left with components whose frequencies



are 2 × 329.6 = 659.2/second and its whole-number

multiples, and we say that the pitch has gone up an octave

from E4 to E5.

If an exactly similar experiment is carried out with the

damping sponge applied exactly 1/3 of the way along the

string from either end, we find that only modes numbered 3,

6, 9, 12, ... survive undamped, giving us a perceived pitch

very close to the one tabulated for B5, essentially a musical

twelfth above the original pitch of the string. What would we

hear if dampers were simultaneously applied to the string at

the mid-point and 1/3 of the way along it?

Let us now notice what happens when the sponge is kept

lightly in contact with the string before it is plucked. For an

instant after the string is plucked we hear the original pitch

of the normal string, but this version of the sound appears

to die away almost at once to leave a more persistent tone

at the higher pitch. We have here a spectacular example of

changes produced in the nature of a sound as it dies away if

the various modes of vibration have different halving times.

Our ears are by how sufficiently educated to listen for the

less marked but musically important changes that take

place when a single key of the piano is struck and held

down until all vestiges of the tone have died away.

3. There are many more ways in which we can use selective

damping techniques to check up on the effects of plucking

point on the excitation of various string modes. For

example, if the string is plucked exactly at its center, we

have been led to expect complete silence to result if the

damper is also applied at the string’s midpoint. In actual

fact, the experiment works well when it is tried, provided

one is careful to pluck and to damp the string precisely at

the midpoint.



The duration of a hammer blow and its effect on the

excitation of various vibratory modes can easily be studied

with the help of a collection of pencils (with and without

erasers), rubber balls, and steel balls. These can be bounced

off different spots on tuning forks, glockenspiel bars, and

the like, and note taken of the modes which are or are not

excited by collision with a given object. Since many mode

frequencies have been given throughout the book for

objects of this sort, it should prove possible (by cross-

checking of experiments) to prepare a table giving quite

accurate estimates of the collision time Th belonging to

various objects that can be used as musical hammers.

4. In section 8. I we explored the behavior of a string when

two plectra act upon it simultaneously. We found that the

two can either aid one another in exciting a given mode, or

tend to counteract one another, depending on their distance

apart along the string (compare the bottom two parts of fig.

8.3). Exactly similar phenomena take place when the player

of a double-pickup electric guitar throws the switch to

combine the signals from both pickups. For example, it is

not hard to show (with the help of assertion 4 in sec. 8.1)

that regardless of their position along the string, the pair of

pickups produce no signal whatever at the frequency of a

mode whose hump length matches the spacing between the

pickups. Disconnecting either pickup will then restore the

signal to whatever level is appropriate to the location of the

functioning pickup.

There are many experiments which a thoughtful listener can

carry out with the help of a two-pickup electric guitar and

his ears. He can search for variations on the guitar

experiments already described in this chapter and the last,

making use of his newly added ability to detect (pick up)

the vibrations at well-defined points on the string, while

varying the plucking and damping points. One can use two



small magnets in combination with the guitar string itself to

form a generator of electrical signals (see experiment 5 at

the end of chap. 7); this permits an even wider variety of

experimentation. Turning one magnet end for end changes

the additions to subtractions and vice versa when one looks

into the combined effect of two magnets acting on a single

string.

Let us consider the implications of what happens to the

electrical recipe when both pickups are connected to the

amplifier. We have learned that even if all the modes of a

string were excited equally well (could this actually be

done?), the electrical recipe associated with a single pickup

would have irregularities in its overall pattern. This is

because the sensitivity of the pickup to a given modal

vibration depends on its position relative to the humps and

nodes. When two pickups are connected together, we find

that the recipe belonging to their joint output is even more

irregular than that of either one. Over and above the

fluctuations in strength of the various components as they

come from the individual pickups is the fact that the

pickups aid one another in responding to certain modes

(giving an unusually large output signal) and for other

modes they cancel one another out. A close cousin to this

phenomenon besets the recording engineer when he

records a performance by means of several microphones

connected to his tape machine via a mixing panel.



9

The Vibrations of

Drumheads and

Soundboards

By now we have accumulated a considerable fund of

knowledge about characteristic vibrations and how they

may be selectively excited or damped out. So far our chief

examples have been based on more or less close relatives to

vibrating musical strings. These stringlike objects are what

are often called one-dimensional vibrators. The vibrating

string has a length but no appreciable breadth, in contrast

to its two-dimensional cousin, a woven carpet with strings

running lengthwise (the warp) and crosswise (the woof). The

carpet is an object having both length and breadth. The air

in a room, or some jelly in a bowl, can serve as an example

of the three-dimensional objects in which oscillations can

take place.

9.1. Unraveling the Mode

Shapes of a Glockenspiel

Bar

Let us use the glockenspiel bar first described in section 5.1

as our introductory example of vibrations that involve two

dimensions. We should first focus our attention on the sound

recipe component whose frequency is 1046/second. Since it



is the lowest frequency component in the set, we are fairly

safe in assuming it to belong to the first (and most simply

shaped) of the characteristic vibrational modes of the bar. If

we move the hammer over the surface of the bar while

continually tapping it, we notice that the resulting sound is

particularly loud when one strikes near the middle of the bar

and fairly loud when one hits near the ends. There are two

places somewhat in from the ends where the hammer seems

to be unable to excite mode 1. The upper part of figure 9.1

summarizes the results of these experiments. The shading is

heaviest in those parts of the bar where it is most strongly

excited by tapping, and becomes less pronounced in those

regions where the excitation is found to be least. If we recall

that the strength of excitation is greatest at those points

where the vibration is of largest amplitude and is least at

the positions of the nodes, we are encouraged to believe

that mode 1 of our bar has a vibrational shape of the sort

shown in the lower part of figure 9.1. That is, the bar bows

back and forth in a simple curve, with nodes at the points

where we found the weakest excitation. Let us confirm this

by an experiment with selectively applied damping. Resting

a finger on the bar at any point that moves will tend to

damp out the vibration, whereas application at one of the

two presumed nodal positions will leave the oscillation

almost undisturbed. Testing in this manner shows this to be

true and we may realize (a little sheepishly) that the

experiment hardly needed to be carried out, since the soft

felt strips on which the bar normally rests are already

located at spots chosen to give minimum frictional damping

to the mode 1 vibration.
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Fig. 9.1. Lowest Mode of Vibration of a Rectangular Bar



Let us continue our study of the bar’s vibrations by looking

for mode 2. Every detective knows that even a partial

description helps him track down a suspect, so we should

guide our study by means of the best description of mode 2

that is available to us. To begin with, we have already

learned its frequency, via observation of its pitch. This lets

our ears pick out the relevant component of the sound. In

the second place, we have noticed in a general way that any

given mode of oscillation seems to have one more hump in

its characteristic vibrational shape than does the next lower

mode in the sequence. Another way to express the same

idea is to say that a given mode has one more node than its

predecessor. Following up this clue, we make a sketch like

that shown at the top of figure 9.2 for the probable

vibrational shape of mode 2. This sketch suggests that there

are four regions along the bar where tapping will strongly

excite mode 2. It also suggests that a finger laid on the bar

in its exact center will assure us that mode 1 will be

effectively removed from the vibration recipe, leaving mode

2 undamped. In other words, we have found a probable way

in which to separate mode 2 from mode 1 in our

experiments. Now that we know what to do, we can place a

finger on the middle of the bar and tap everywhere else with

the hammer. The middle part of figure 9.2 shows the regions

in which mode 2 turns out to be strongly excited, and those

where it is only weakly set into motion, if at all. Comparison

with our sketch of the presumed vibrational shape shows

that the original guess was good. Further confirmation of its

correctness can be found by moving the finger to one or

another of the presumed nodal spots, or even by using two

or three fingers at the same time as dampers. Now that we

really know what is going on, we can go back and discover

that all of this can be verified by listening experiments

alone. One merely taps all over the surface, while ignoring

the low-frequency sound component belonging to mode 1.
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Fig. 9.2. Rectangular Bar: Modes 2 and 3

By now we can lay a trap for mode 3 with the help of a

sketch of the sort shown in the bottom part of figure 9.2.

Here we have provided an assumed vibrational shape with

three humplike curves instead of one or two, and we expect

(for example) that tapping at the exact center of the bar will

give strong excitation of the 3906/second oscillation

belonging to mode 3. We also expect that putting a pair of

fingers symmetrically on the bar at points fairly near the

center will effectively kill off modes 1 and 2 (look back at

figs. 9.1 and 9.2 to see why), and leave mode 3 relatively

free to vibrate. When we actually try the experiment,

however, it is clear that something has gone wrong. The

frequency component belonging to mode 3 is not heard.

However, in the course of tinkering around (with the idea

that our fingers are not quite properly placed) we notice

that the pitch associated with mode 4 can be detected when

the bar is tapped. Further investigation confirms that our

presumed vibrational shape belongs in fact to mode 4, and

that mode 3 has somehow managed to elude us.

The fact that mode 4 turned up in clearcut fashion in the

shape expected for mode 3 shows that we have a fairly

good, but not complete, understanding of vibrational mode

shapes for a bar. At this point the experienced

experimentalist will resort to a kind of educated messing

around. He knows that the sound of mode 3 will disappear if

the bar is struck at the position of a node; he knows also

that in the case at hand mode 3 does not make its

appearance when the bar is struck at its center, at least

when fingers are laid on the bar at two points near the

center. Removal of the fingers does not bring in the sound of

mode 3. Tapping all over the bar, with no fingers on it at all,



brings to light a pattern of mode 3 excitation of the

unfamiliar sort shown in the top part of figure 9.3. There is

clear evidence that striking the bar anywhere along its two

mid-lines (shown dotted) fails to excite mode 3. Striking

anywhere near the four corners of the bar gives rise to a

strong mode-3 frequency component. Now that we have

found some good clues as to what is going on, it takes only

a few moments to confirm the hints gathered so far about

mode shape: putting damping fingers anywhere along the

two mid-lines will leave mode 3 intact, but will kill off the

other modes (except at the positions of their nodes).
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Fig. 9.3. Rectangular Bar: Mode 3

We have already found that in any mode there are regions

of strong vibrational disturbance (humps) separated by

places in which there is no motion at all (nodes). We also

have noticed that the system always moves in opposite

directions on the two sides of a node. This observation that

the mechanical motion on one side of a node is opposite to

that on the other will allow us to unravel the vibrational

shape of our bar. A glance back at the upper part of figure

9.3 suggests that the bar vibrates with each quarter of the

bar moving in the opposite direction to its adjacent

neighbors’, as shown in the lower part of the figure. An easy

way to visualize this sort of motion is to take a rectangular

strip of cardboard and twist its two ends back and forth

around an axis running through the long mid-line of the

rectangle.

We have run through a series of experiments with the

vibrational behavior of a bar partly as a way to introduce the

nature of two-dimensional vibrations, and partly as an



illustration of the enormous investigational power that is

conferred on us when we have a general understanding of

vibrational modes. With nothing but a mallet and our fingers

we have acquired a great deal of detailed information about

a bar; it would require rather elaborate equipment to add

anything quantitative to our stock of knowledge at this

point, but there is considerable practical use that can be

made of the qualitative sort of information we have so easily

discovered in the preceding paragraphs.1 We shall see, for

example, how violin makers and the makers of wind

instruments can use methods similar to these to guide the

adjustment of the characteristic frequencies of their wooden

boxes and air columns to enhance their instruments’

musical functioning.

9.2. Mode Shapes of a

Rectangular Plate Having

Free Edges

In the last section we carried out an experimental

investigation of the first few modes of a glockenspiel bar

and discovered a mode whose peculiar twisting motion was

quite different from the ordinary bending implied by an

analogy between bars and strings. We will now elaborate on

this analogy to understand better the vibrations of a two-

dimensional plate. When we look at a rectangular plate, it is

easy to image two ways in which it can behave in simple,

barlike fashion (i.e., like modes 1, 2, and 4 of the

glockenspiel bar). Figure 9.4 shows two examples of each of

these two families of bending vibration. The plus and minus

signs on the rectangles are a mathematician’s way of

indicating which way the adjacent vibrational humps are



bulging. On the left we find what have been called modes 1

and 2 of the glockenspiel bar, and on the right are exactly

the same shapes, except this time we might say that the bar

appears to have become wider than it is long. Let us see if

we can find a way to estimate the frequencies of these

newly recognized modes of oscillation.

The complete set of glockenspiel bars, taken together,

indicates that short bars have higher characteristic

frequencies than do long bars. Close inspection shows that

each bar in the upper octave is about 70 percent of the

length of its namesake an octave lower. As a result, the top

C bar is approximately half as long as the bottom C bar two

octaves lower (since 0.7 × 0.7 ≅ 0.5). In other words,

halving the length of a bar will raise its frequencies about

fourfold. Since the bar shown in figure 9.4 is drawn so that

its length is 2.5 times its width, we may expect then that

the vibrations shown on the right-hand side will have

frequencies that are more than four times those belonging

to the left-hand ones. A simplified calculation of the ratio

shows as a matter of fact that it is greater than 6 to 1,

making the lowest of the right-hand vibration frequencies

higher than the fourth characteristic frequency belonging to

the left-hand set of oscillations.
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Fig. 9.4. Pairs of Similar-Appearing Modes

Digression on Wooden Plates.

Wood has a pronounced grain, which results in its bending

stiffness being much greater in one direction than the other.

If for example a plate whose proportions are similar to those

of figure 9.4 is cut out of wood with the grain running

lengthwise, the low stiffness of the wood for bending modes



of the right-hand type so far reduces their frequencies as to

make them comparable to their counterparts on the left-

hand side.

By tinkering around with the analogies between bars and

rectangular plates we have come up with two conceivable

families of natural modes of vibration. In one family the

humps are arranged along the length of the plate, with

nodal lines crossing it (as shown on the left side of fig. 9.4).

In the other family, the humps run crosswise on the plate,

with longitudinal nodal lines (right side of fig. 9.4). Ordinary

curiosity prompts the question as to whether vibrations are

not somehow possible in which there can be humps running

both ways. Our recollection of the twisting mode illustrated

in figure 9.3 confirms that the question is by no means

absurd. Tapping experiments, or other, more formal studies

of the vibrations of a rectangular plate, show that our

expectations are correct. Mode shapes exist that have

humps running both ways, such as the one shown in figure

9.5. This particular mode has features that are reminiscent

of modes 1 and 2 of the bar (shown in figs. 9.1 and 9.2). It

turns out that the natural frequency belonging to any one of

these more complicated modes is always higher than that of

either of its “ancestors.” This should not surprise us, since

we have always found that increased complexity in the

vibrational shape (i.e., increased numbers of humps

separated by increased numbers of nodal regions) is

associated with higher frequency. Notice also that each

mode could be given a definite name, constructed out of the

names of its ancestors. For a string or a narrow bar, we

found that simply giving the serial number of the mode was

sufficient to let us know its characteristic shape. In the two-



dimensional world of a rectangular plate, we can similarly

indicate a mode’s shape by naming its longitudinal and

transverse ancestors. If the vibrations of figures 9.1 and 9.2

are named modes 1 and 2, then the one shown in figure 9.5

is called the (2, 1) mode.
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Fig. 9.5. A More Complicated Mode of Vibration of a

Rectangular Bar

Let us now go back to the peculiar twisting mode of

vibration of a glockenspiel bar. In chapter 5 we gave this

mode the name mode 3 simply because its characteristic

frequency was third in line when measurements were made.

In section 9.1 above we were able to figure out the

vibrational shape of this mode (see fig. 9.3). Notice that its

vibrational shape does not have ancestors among the tribe

of one-dimensional modes, as the above discussion might

lead us to expect. Its lack of such ancestors is the reason

this mode is sometimes mislaid in textbook discussions of

bar vibrations. This mode is also the one whose frequency is

an exception to the formula given in the digression above.

Despite its lonely position in the world of mathematical

physics, the frequency of this twisting mode turns up as an

important guide to the violin maker as he carves the top

and bottom plates of his instruments to their correctly

graduated thicknesses. For wooden plates that are two or

three times as long in the direction of the grain as they are

across it, and for uniform plates (i.e., without grain) that are

roughly square, this mode turns out to have the lowest

frequency of the entire set. Anyone who wishes to give his

own hands a tangible feeling for the truth of this remark

need only cut out a square of sheet metal (for example, 16

to 20 gauge, a hand’s breadth across) and compare the

feeling of stiffness it gives when it is twisted with what is felt



when an attempt is made to bow it into a shape similar to

that of mode 1 of a bar. In section 6. 1 we learned that the

frequency of oscillation of a mass on its system of springs is

high if the stiffness coefficients of the springs are high,

whereas the frequency is low if the springs are easily

deflected. Our hands find it easy to notice that a sheet’s

twisting stiffness is enormously lower than is its bending

stiffness, which leads us to expect that the twisting mode

will oscillate more slowly than the bending one.

9.3. The Effect of Various

Boundaries

In chapters 7 and 8 we confined our attention to vibrations

of wires such as those whose ends are fixed to the frame of a

piano or the body of a guitar. In chapter 5 and again in the

first section of the present chapter we have dealt with the

vibrations of a bar that is free at its ends, as well as its

cousin, a plate whose edges are left free. The front plate of a

guitar, the soundboard of a piano, or the stretched leather

head of a kettledrum are, on the other hand, vibrating

systems whose boundaries are more or less fixed. We should

therefore seek to adapt what we have learned about the

characteristic vibrations of free-edged rectangles for use

with sheetlike objects whose boundaries are fixed.2

It is possible to categorize the boundary conditions at the

edges of a sheet into three limiting main types. We must not

forget that in the real world one is certain to meet systems

having various other sorts of boundaries. However, it is

helpful to notice that the influence of these other kinds of

boundaries on the characteristic vibrations is more or less

similar to that of one or another of our prime categories. Let



us set down descriptions of our three major boundary

conditions in the form of numbered statements, each with

its own illustrative examples:

1. Free edge. No externally applied constraints are placed on

the edge, which is therefore free to move back and forth

under the influence of the rest of the plate. The free-edge

rectangular plate discussed in the previous section provided

us with many examples of this sort of vibration.

2. Clamped edge. Here the whole perimeter is clamped as in

the jaws of a vise. Not only is the edge fixed so that it

cannot move, it is also held so that it cannot tilt up and

down at the boundary. In forming a hump, the material must

curve away from the flatness imposed on it by the clamp. A

strip of steel clamped at both ends provides a clear, one-

dimensional example of a clamped boundary. The upper

part of figure 9.6 illustrates the mode shapes belonging to

the first two characteristic vibrations of such a bar. To

emphasize the generality of our classification, the bar

thickness varies along its length. Experiments 1, 2, and 3 at

the end of chapter 4 were performed on a closely related

system—a hacksaw blade with one end clamped in a vise,

the other end being left free.

3. Hinged edge. If one arranges a hinged fastening for the

edge of a plate or bar, it is kept from moving back and forth

as in case 2 above, but it is no longer constrained from

tilting. The lower part of figure 9.6 shows the first two mode

shapes for a nonuniform bar with hinged ends and contrasts

them with those for the clamped bar shown in the upper

part of the diagram.
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Fig. 9.6.
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Fig. 9.7. The First Four Modes of a Guitar Plate with Clamped

Edges

Figure 9.7 shows the vibrational shapes of the first four

modes of a guitar front plate mounted in a frame that

clamps its edges firmly.3 The shapes of the various modes

here are not wildly different from what we would expect

from a rectangular piece of wood, which is shown in figure

9.8. We may note in passing that the shapes belonging to

modes 2 and 3 in figures 9.7 and 9.8 would appear in

reverse order if the plates had been made not of wood

(having a grain that runs from left to right in the diagram)

but rather of some material having equal stiffness in both

longitudinal and transverse directions.

We should also compare the two parts of figure 9.6 to notice

that the general shapes of the various vibrational modes are

only slightly changed when we shift from clamped to hinged

boundaries. We can see this better in figure 9.9, the top part

of which shows the characteristic shapes of the first four

modes of a circular plate whose edges are solidly clamped.

The lower part of the figure shows similarly the vibrational

shapes that belong to the same plate when its edges are

fixed to its mountings by means of a hinged joint.

We have met many examples of the idea that the more

bending there is in a mode shape the higher the

corresponding frequency. Because of the additional bending

that is found at the edges of a clamped plate, we therefore

expect the natural frequencies of its various modes to be



somewhat higher than those of its hinged-edge counterpart.

We can go farther yet, and expect that the difference

between the two cases is less for high-numbered modes

than for the lower ones because the bending associated

with the ever-increasing number of humps will tend to

drown the relatively constant amount of bending forced by a

clamped edge. Such expectations are borne out in practice.

Mode 1 for a clamped disc oscillates at a frequency 76

percent higher than is the case for a disc with a hinged

boundary. The increase is 45 percent for mode 2, 32 percent

for mode 3, and falls to 17 percent at mode 9. Similar

changes are observed for rectangular plates, or for plates of

any other shape, for that matter.
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Fig. 9.8.

It is not difficult to recognize the connection between our

discussion of clamped plates and the properties of

soundboards on pianos and harpsichords. We have already

met the free-edged plates by way of the glockenspiel, and

one can go on to realize that cymbals, gongs, and even bells

are progressively more arched versions of the same thing,

somewhat in the way that the U-shaped tuning fork is an

arched cousin to the free-ended bar. It is perhaps not so

easy to understand the amount of attention that has been

devoted to the hinged-edge plates. A close look at a violin

or cello will reveal why: a groove runs all around the edges

of both the top and the bottom plates of the instrument, and

into this groove are inlaid decorative strips of hardwood. The

fiddle maker has to make sure that he does not wedge these

decorative strips (called the purfling) in too tightly or attach

them with too much glue, for by so doing he could spoil the

tone of his instrument. The purfling grooves provide a thin,

hingelike anchorage for the edges of the plates. Too much



stiffness imposed by wedging changes the plate modes from

a sort that approximate hinged-edge modes to ones that are

characteristic of boards having clamped edges.
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Fig. 9.9. Comparison of Modes of Vibration of Discs Having

Clamped or Hinged Boundaries. Adapted from Vibration and

Sound by Philip M. Morse. Copyright 1936, 1948, by the

McGraw-Hill Book Company, Inc. Used with permission of

the McGraw-Hill Book Company.

Digression on Neglected Violins.

A violin that has not been played for a long time sometimes

becomes unresponsive and has an unpleasant tone. One of

the ways in which this can happen is for the purfling to

become stuck too tightly in its grooves. Very loud and

vigorous playing of chromatic scales for a few minutes on

such a violin will often shake loose the impediments and

allow its plate modes to revert to their original, properly

adjusted state.

9.4. Adjustment of

Frequency Relations by

Variations of Thickness

We have progressed far enough in our study of musical

acoustics to have some appreciation for the possible

importance of arranging our vibrating objects to have

suitable patterns of characteristic frequencies. Not only

does the perceived pitch of a composite sound depend on

the frequency relations that exist between its components,



but also we have had hints that the clarity of a sound or its

apparent persistence may also depend on these relations

(see, for example, experiment 4 in chapter 5 where we

listened to the sounds made by snapping the keys on a

normal and on a slightly modified flute). It turns out that

many kinds of musical instruments depend for their

excellence upon the careful adjustment of their

characteristic frequencies. The reasons this adjustment

must be made and the means used to achieve it differ as we

go from drums to violins and guitars and thence by way of

the human voice to the wind instruments. There are,

however, a few basic principles common to all adjustment

procedures that can be explained easily at this point in our

study of two-dimensional vibrators.

In the present section we will sketch out two ways in which

variations of thickness from point to point on the surface of

a plate or membrane can alter its natural frequencies. We

then will devote the section that follows to a description of

the way the pitchless thump of an ordinary drumhead is

converted into the clear, ringing tone of a properly tuned

kettledrum.

A flexible membrane such as a drumhead is related to a

circular plate in the same way that a flexible string is related

to a bar. The analogy is closest if the plate and the bar have

hinged rather than clamped boundaries. In either case we

should recall that the spring forces which try to restore the

plate to flatness are produced by the stiffness of the

material. The flexible string and membrane are, on the other

hand, lacking in stiffness, so that they must be pulled tight

at the boundaries in order for their tension to supply the

restoring force.

Interestingly enough, the vibrational shapes of a circular

membrane under tension are exactly the same as those of a



plate having hinged edges (see the upper part of fig. 9.9).

Despite this similarity of vibrational shapes, the two

sequences of characteristic frequency ratios are not at all

alike, as the following tabular comparison shows:

Mode number Membrane Plate

1 1.000 1.000

2 1.593 2.092

3 2.135 3.427

4 2.295 3.910

5 2.653 6.067

Notice how much farther apart the plate’s lower few

frequencies are in comparison with those of a membrane.

This qualitative observation applies not only to circular

objects, but also to surfaces having boundaries of any shape

whatever.

Digression on the Average Spacing of Successive Natural

Frequencies.

In addition to the contrast between the first few frequency

ratios described above for membranes and plates of any

shape whatever, it is possible,to make general assertions

about the behavior of the high frequency modes. Once we

get above about serial number 5 in the sequence of modes,

we find in the case of a vibrating plate that the difference

between successive characteristic frequencies is roughly

constant, whereas for membranes this difference becomes

progressively smaller. These generalizations are once again

independent of the shape of the vibrating object. We find

that some of the features which distinguish the sound of a



concert grand piano from that of a small spinet arise as a

result of these general properties as they apply to

soundboards of various sizes. We will also meet a cousin to

the membrane generalization when we compare the

acoustics of a small music studio with that of a large concert

hall.

Let us ask now what the effect is of sticking a small lump of

wax onto a plate at some point. In section 6. 1 we learned

that the frequency of any characteristic sinusoidal

oscillation was determined jointly by the stiffness coefficient

S of some sort of spring and by the amount of moving mass

M which is oscillating back and forth, according to a formula

which is reproduced here:

f = e9780486150710_i0097.jpg times a numerical

constant

In a book such as this it is not possible for us to work out the

detailed interpretation of this formula for the case where M

stands for the mass of a diaphragm. We can however readily

understand that increasing M by the addition of a lump of

wax of mass m will lower the frequency. Furthermore, we

should now have enough understanding of vibration to

realize that adding the wax at a point of maximum

excursion will produce maximum effect on the frequency.

Adding the wax on a node will, however, produce no

frequency change at all, since in this case the mass remains

stationary and does not have to be dragged back and forth

as a part of the oscillation. Furthermore, if we add several

tiny lumps of wax, the net shift of the various natural



frequencies is simply the aggregate of the changes

produced by each lump acting separately.

Lord Rayleigh (whom we first met in chap. 5 in connection

with his work on bells) has provided the world of physics

with some extremely powerful mathematical procedures

which not only permit calculation of the effects of loading a

membrane or plate, but even allow us to discover some

universally applicable answers giving us the order of

magnitude of the effect without the need for further

calculation.4 The following set of three assertions is based

on application of Rayleigh’s methods, and is able to give us

numerical information to combine with what we have

already learned:

1. Attaching a lump of mass m to some point on a plate will

lower the vibration frequency of its characteristic modes.

2. The effect of such a lump on a given mode is the

maximum if the load is attached at a point of maximum

excursion. There is no effect if the lump is attached on a

nodal point or line.

3. Attaching a lump at a point of maximum excursion will

make a fractional change in frequency that is equal to about

twice the fractional increase of total mass produced by the

addition of the lump. That is, for each mode:
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This approximate result holds for systems with boundaries of

any shape.



Let us illustrate these assertions with the help of a simple

example. Suppose a 1/2-gram lump of wax is attached at

the exact center of a thin disc of sheet iron whose diameter

is 10 cm (a hand’s breadth) and whose thickness is 0.025

cm (1/4 the thickness of a dime). It has a first-mode

frequency of vibration of 250/second. Assume that the disc

is clamped at its circumference. The mass of such a disc is

close to 15 grams, so that assertion 3 tells us that the

fractional change in frequency produced by the 1/2-gram

load has an upper limit of about 7 percent, as shown by the

following arithmetic:
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That is, mode 1 for a loaded disc has a natural frequency of

about 250–16.7 = 233.3/second. A musician listening to the

sound of our disc would say that the pitch of mode 1 was

originally a little above B3 (next to piano middle C) and that

the added wax lowered the pitch by slightly more than a

semitone, to a spot just above A3#.

We now turn to a consideration of mode 2. Figure 9.9 shows

that when a discelibrates in its second mode, it has a nodal

line running across its diameter, so that our lump of wax is

sitting at a spot where it remains stationary. Mode 2 is,

according to assertion 2, not altered at all by the addition of

the wax. Reference to the table of frequency ratios given

earlier in this section shows that mode 2 for this plate has a

natural frequency of 250 × 2.092 = 523/second, which is

associated with a pitch that is a trifle lower than C5.

The musical interval between the pitches for modes 1 and 2

was originally about a semitone more than an octave (from



B3 to C4 approximately), while the addition of the wax

stretches this interval so that it becomes about two

semitones plus an octave (mode 1 being close to A3, while

mode 2 is still very nearly C5). We must understand clearly

that the change we have been discussing might be either

desirable or undesirable in a musical sense. The real point of

our example is to show that it is possible to adjust the

relations between modes if musical need arises.

Let us look briefly at one more example of the effect of

loading a diaphragm. Suppose that instead of putting the

wax at the center of the disc, we put it about halfway out

toward the rim, so that it now sits near a point of maximum

excursion for mode 2. It is now mode 2 that has its

frequency lowered by about 6.7 percent, to 488/second.

Meanwhile mode 1 is altered to a considerably smaller

extent, because the wax is at a point of relatively small

excursion. Numerical application of Rayleigh’s method to

this case is beyond our scope, but it turns out that mode 1

has its frequency lowered by only about 1 percent, to

247.5/second. In this second case, then, the musical interval

between the first and second modes becomes a shade less

than an octave (reaching from almost exactly B3 to a little

below B4).

From a musical standpoint, our two examples have shown us

that simply by moving an applied load from one point to

another on a vibrator we are able to widen or narrow the

musical interval between two modes. If for some reason a

craftsman decided to arrange mode 1 and mode 2 for a

clamped disc so that they would fall exactly an octave

apart, he could apply a lump of wax to the disc, and then

move it in and out radially until the desired pitch relation

were obtained. Another way to do the same job would be to

try different-sized lumps of wax attached at a fixed radial



position, again choosing the one that gives the desired two-

to-one frequency relationship.

Digression on Eccentric Loading.

We have just described how to lower the mode 2 frequency

by application of a lump of wax part way out from the

center, in the manner shown in the left-hand part of figure

9.10. The alert reader may ask about the case shown in the

right-hand part of the figure. Here we again have mode 2,

but this time its nodal line runs through the location of the

wax, so that no frequency change is expected! We seem to

have found two answers to a single physical problem. The

resolution to the apparent paradox is not difficult however, if

we recall from section 6.4 that whenever a particle is added

to a system of masses and springs, a new mode of vibration

becomes possible (see fig. 6.8). In the case at hand, we

originally had what was called mode 2 for the plate, and the

addition of a mass causes this mode to become two distinct

modes of roughly the same frequency. The vibrational

shapes of these paired modes are in fact exactly those

shown in figure 9.10. One of the characteristic frequencies

(in this special case) turns out to be exactly equal to that of

its plate-alone ancestor, while the other one lies somewhat

lower. All the old rules about excitation points hold in the

new situation, so that if we strike along either one of the two

nodal lines shown, only the other mode will be excited.

Striking at any other point will excite greater or lesser

amounts of both modes.



Up to this point we have confined our attention to the effect

of adding lumps of wax or other forms of mass-loading onto

a vibrating plate, tacitly assuming that the added load did

not change the spring stiffness of the system. When,

however, we think about the effect of altering the thickness

of a diaphragm or plate, it is at once obvious that we are

changing not only the mass of the plate but also its

stiffness. Our general formula for the vibration frequency of

an object, f = e9780486150710_i0100.jpg (times a

numerical constant), implies that thinning the plate at some

point not only reduces the moving mass M and so tends to

raise the frequency (as we have already seen), but also

reduces the stiffness coefficient S, which tends to lower the

frequency. We find then that it is necessary to find out which

of these two contrary effects predominates, and by how

much.
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Fig. 9.10. Vibrational Shapes of Two Forms of Mode Two for a

Loaded Disc with Clamped Edges

Rayleigh’s method of analysis allows us to deduce that

when one cuts away material at some spot on a plate, the

amount of frequency lowering produced by the stiffness

reduction is almost exactly three times the amount of

frequency raising associated with the loss of mass. The

frequency alteration that we actually obtain is then the

result of a large change in one direction which is partially

offset by a smaller change in the opposite direction. Let us

summarize what happens in this contradictory-sounding

situation by means of a fourth assertion that supplements

the three that were set down earlier in this section.



4. Scraping off a small amount of mass from some spot on a

plate reduces the plate thickness locally. When this is done

at a point of maximum excursion, the combined effect of the

resulting mass and stiffness changes is such as to lower the

vibrational frequency by an amount equal to about four

times the fractional decrease in the plate mass. That is, for

each mode of vibration:
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Notice the similarity of this assertion to assertion 3, and

note its relationship to assertion 1. Here, however, we find a

reduction in frequency arising from the thinning of a plate,

contrary to the implications of assertions 1 and 3, which

suggest an increase. It should be clearly understood that

assertion 2 stands almost unaltered when we take stiffness

changes into account. We give here the modified version:

2a. The frequency change due to localized stiffness changes

is a maximum if thinning is done at a point of maximum

bending. There is little or no effect if the thinning takes

place at a nodal point or along a nodal line.

Note that assertion 2 says that mass changes have their

maximum effect where the plate excursion is largest, while

2a associates the effect of stiffness changes with points of

maximum bending. It is an interesting problem for the

mathematician to satisfy himself that (for plates with

clamped or hinged edges) the regions of maximum bending

(curvature) and of maximum excursion (deflection) are

distributed quite similarly over the surface of the plate.

Similarly the nodal lines for zero bending closely match the

nodal lines of zero displacement. This permits us to treat



both forms of assertion 2 as being equivalent in their

practical implications.

We can neatly illustrate the interplay between assertions 3

and 4 and their connection with the implications of

assertions 2 and 2a by describing how a guitar or violin

maker who had acquired enough understanding might put

these ideas to practical use. We will take it for granted that

this craftsman already knows that the front and back plates

of a good instrument must be carved in such a way as to

give them certain specified characteristic frequencies

(measured before the plates are glued into the completed

instrument). We assume also that he has a fairly clear notion

of the characteristic vibrational shapes belonging to the

desired frequencies, and that he knows that a plate that is

slightly too thick but otherwise in good proportion will have

all of its characteristic frequencies coming out a little too

high. To begin with, our craftsman can experiment on his

plate with lumps of wax, adding mass but not stiffness, to

get the various vibration frequencies shifted from where he

finds them to where he wishes them to be. In carrying out

this program, he can use whatever understanding and

sophistication is available to him. He will, in other words,

make use (consciously or unconsiously) of the implications

of our various numbered assertions to guide him in putting

his loadings at points of large vibration of the modes whose

frequency he wants to alter the most, arranging them at the

same time to fall near the nodal lines of the modes whose

frequencies are nearly satisfactory to him. All this

preparatory tinkering can be done with confidence and

safety, since any errors or misjudgements can be corrected

simply by moving the offending pieces of wax.

Once the wax has been arranged to give all the

characteristic frequencies their proper values, our craftsman

is ready to proceed to the more permanent part of his



labors. Having noted the position of a particular lump of

wax, he picks it off and weighs it. He can then carefully

carve away at his plate to thin it in the region where the

wax had been, making careful observations of the various

natural frequencies, and watching them shift toward their

corrected values as the changes due to his carving take the

place of the changes that were originally produced by the

lump of wax. As a piece of insurance, our craftsmen might

also weigh his plate from time to time as he carves to make

sure that he is not thinning the wood too much. He would

expect that his correction process will be complete when the

mass of wood removed is equal to half of the mass of wax

that produced the same effect (compare the numerical

factors belonging to the mathematical expressions in

assertions 3 and 4 to learn the reason for the difference

between the masses of wood and wax that cause the same

change). At this stage of the process we see before us a

plate with part of its surface thinned by carving, while other

parts of it are still loaded with pieces of wax. Recall that this

plate, despite its motley and untidy appearance, is still one

whose natural frequencies have been adjusted by the skill

of its maker to the values which he believes will ultimately

lead to a good instrument. The process of picking off pieces

of wax and carving away wood where the wax had been

attached can be carried on slowly and carefully until all the

wax has been removed. By now, at least in principle, the

plate is finished, with all its characteristic modes of

vibration adjusted perfectly.

Digression on the Effect of Loading a Membrane.

You may be wondering why this whole section devoted to

the effect of added mass has been so carefully restricted to



a discussion of plates and diaphragms, rather than of

stretched membranes such as those used as drumheads. It

looks as though the whole argument could equally well

apply to membranes. There are, however, certain subtle

quirks in the nature of a membrane which lead to a very

surprising phenomenon: adding a lump of mass appears to

raise the frequencies of the normal modes! We cannot take

time here to account for this peculiar phenomenon,

although a distant cousin to it will show up when we

consider the interaction of a piano string with its

soundboard. Meanwhile we can console ourselves with the

knowledge that one of the very few mistakes ever made by

Lord Rayleigh led him to miss this backwards-appearing

behavior. 5

9.5. An Example: The

Kettledrum

The orchestral kettle drum (a set of kettle drums is called

the timpani) provides us with a good practical example of

the way in which the behavior of a membrane comes to be

adjusted for musical purposes. This drum consists of a more

or less hemispherical shell of metal (usually copper) over

which is mounted the “head,” a membrane of calfskin or

plastic sheet about 0.2 mm (0.008 inches) thick. Provision is

made for tuning the pitch of the drum by adjusting the

overall tension of the head, as well as for making corrections

to the tension at a number of points around its periphery.

We have recently seen the vibrational modes of a

membrane in the upper part of figure 9.9 and can find the

frequency ratios of the first five modes in section 9.4.

Because of our musical orientation, we should be disturbed

to realize that these ratios do not appear to have the whole-



number relationships which so often are found among the

partials of musical tones. Let us see how it comes about that

the sound of a complete kettledrum acquires these useful

relationships.

In his classic book, Theory of Sound (1877), Lord Rayleigh

sketches the earlier scientific history of vibrating

membranes in general and goes on to describe some of his

own investigations on kettledrums. Because of its brevity

and admirable clarity, it is worthwhile to quote:

In the case of kettle-drums the matter is further complicated

by the action of the shell, which limits the motion of the air

upon one side of the membrane. From the fact that kettle-

drums are struck, not in the centre, but at a point about

midway between the centre and edge [actually about a

quarter of the way in from the edge], we may infer that the

vibrations which it is desired to excite are not of the

symmetrical class. The sound is indeed but little affected

when the central point is touched with the finger. Under

these circumstances the principal vibration (1) is that with

one nodal diameter and no nodal circle [this is mode 2 of

the membrane—see fig. 9.9], and to this corresponds the

greater part of the sound obtained in the normal use of the

instrument. Other tones, however, are audible, which

correspond with vibrations characterized (2) by two nodal

diameters and no nodal circle, (3) by three nodal diameters

and no nodal circles, (4) by one nodal diameter and one

nodal circle. By observation with resonators upon a large

kettle-drum of 25 inches diameter the pitch of (2) was found

to be about a fifth [frequency ratio of about 1.5] above (1),

that of (3) about a major seventh [1.89 ratio] above (1), and

that of (4) a little higher again, forming an imperfect octave

with the principal tone. For the corresponding modes of a

uniform perfectly flexible membrane vibrating in vacuo, the



theoretical intervals are those represented by the ratios

1.34, 1.66, 1.83 respectively. 6

Notice how carefully Rayleigh distinguishes the behavior

expected of an idealized membrane from that of one

mounted as the cover on a tankful of air. In the years since

Rayleigh, only a few people have wrestled with the problem

of how the enclosed and the external air act to modify the

membrane vibrations; to this day the problem has not yet

been completely dealt with. My own interest in the subject

was stimulated by a letter I received in 1962 from the

distinguished South African ethnomusicologist, Percival

Kirby, who had an earlier career as the leading timpanist in

Britain.7 Kirby gave an admirably clear description of his

own observations of the sounds from a kettle-drum and of

the corresponding vibrational shapes of its head. He

asserted that by skillful adjustment of tensions around the

drumhead it is possible to produce a sound whose lowest

two components have a frequency ratio of exactly 1.5. This

ratio he deemed essential, along with a 2-to-1 relationship

and several other “in tune” ratios.

Kirby was most critical of Rayleigh’s experiments. In his

letter he wrote:

I know that he and his brother, the Hon. Richard Strutt,

conducted the experiments themselves, and without the aid

of an expert player (Richard Strutt told me this himself....

Strutt rather choked me off when I gently suggested that

there were certain things which they had overlooked)....

[Moreover, the drum was] a battered one at that, if one may

believe George Bernard Shaw, who, on page 126 of his

London Music in 1888–89, calls it “a second-hand kettle-

drum”.



Kirby’s letter was intended to interest me in the problem,

and the following paragraphs outline what I have learned

since by talking with timpanists, by reading, by making

experiments, and by doing a certain amount of calculation

myself.

First we may ask why some variant of the single-hump

lowest vibrational mode of the membrane is not heard.

Rayleigh’s comments give some hint, but even a direct blow

at the center of the head fails to elicit more than a pitchless

thwack. The answer is to be found in the presence of a vent

hole in the bottom of the bowl. The ostensible reason for it is

to equalize the air pressures inside and outside the drum as

the weather changes. If the hole were closed, the added

spring force distributed over the surface if the drumhead

due to the compression and rarefaction of the enclosed air

would raise the frequency of the oscillation in question, in a

manner that was worked out some years ago by the

American physicist, Philip Morse (the inertia of the enclosed

air turns out in this case to have negligible effect). However,

the vent hole prevents the frequency change phonomenon

and gives rise instead to a very heavy damping of the mode,

because of the viscous friction in the air as it is pumped in

and out of the kettle by the vibration of the drumhead. One

learns that conscientious and skillful drum makers carefully

adjust the size of the vent hole so as to give the best tone—

and we find that the musically optimum size is essentially

that which is efficacious in killing off mode 1.

Mode 2 of the drumhead is the one whose frequency is

associated with the pitch to which it is tuned. This mode has

two humps in its vibrational shape, one of which moves up

while the other moves down, and vice versa. Motions of this

sort excite a back-and-forth sloshing motion of the air

contained in the kettle, a sloshing very similar to that of tea

rocking in a teacup. It is significant that Rayleigh gives



extended and careful attention in his book not only to the

vibrations of isolated membranes, but also to the

oscillations of air in a spherical cavity. His ability to choose

and elucidate the basic ingredients of complex acoustical

systems is what has preserved his book as a standard

reference for nearly a century. An exact analysis of the

mutual influence of the two-hump oscillatory mode of the

drumhead and the sloshing mode of the air would be

extremely difficult to carry out. However, I have found it

possible to work out a simplified version of the problem

which shows that the resultant combined motion takes place

at a frequency that is considerably lower than that of the air

or the head taken in isolation. I have also verified that for

mode 2 there is no variation of air pressure at the position of

the vent hole, and therefore no dissipation-causing

oscillatory flow of air through it. This is true too for the other

musically significant modes.

The other modes of vibration of the drumhead also are

influenced by the sloshing air motions within the shell to a

musically significant degree, but the changes are

considerably less than those described in the preceding

paragraph. My various calculations give us a better

understanding of how the kettle helps move the drumhead

frequencies to their observed values (given below).

Digression on the Intertwining of Air and Drumhead

Properties.

It is important for us not to fall into the trap here of thinking

of air modes and drumhead modes as being actually distinct

systems that keep their separate identities. The air and the

head make up a single system the two parts of which are of



equal importance in determining the frequencies and

overall vibrational shapes. The springiness and mass

coefficients of the two parts are inextricably intertwined in

the mathematics, just as are the corresponding coefficients

of the two masses in the systems discussed in sections 6.3

and 7.1.

Actual measurements of sounds from a drum tuned to C3

(130.8/sec) were carried out in 1973 using a tape recording

made in Cleveland’s Severance Hall, with Cloyd Duff,

timpanist of the Cleveland Orchestra, playing one of his own

very fine instruments. The frequency ratios of the first ten

recorded components of the complete sound follow:
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We notice at once that Kirby’s claims for the true nature of

the sound are quite correct: for example, P, Q, and S have

almost exactly the specified relationship. Looking back at

what we learned about pitch perception in chapter 5, we are

struck by a remarkably clear pair of patterns in the sound of

a kettledrum. Components P, S, and X form an almost

precise set of harmonics whose fundamental component is

130.8/sec. These three components together then define a

tone whose pitch is the nominal C3 to which the drum is

tuned. Components Q and X also fit together as

fundamental and second harmonic of a tone whose

repetition rate is close to 196/sec, having the pitch name

G3. There is yet another way in which the extreme

orderliness of the sound may be displayed: components P,

Q, S, U, and X range themselves as second, third, fourth,

fifth, and sixth harmonics of a tone whose pitch is C2,



exactly an octave below the nominal pitch C3. No mention

has been made yet of components R, V, W, and Y. These are

scattered around in the tone as a sort of flavoring, and are

not always particularly heard as separately pitched sounds

in their own right.

We will return in chapters 14 and 15 to a closer examination

of the musical implications of sounds having multiple

patterns of regularity in the frequency ratios of their

component partials, but we should at least comment here

that the timpani produce an interesting mixture of diversity

and unity in the perceptual impressions they give. The tone

can simultaneously serve as a single low-pitched sound and

as the two parts of the musically important tonic-dominant

relationship. Musicians who enjoy number games may also

notice that component T has almost exactly the same

frequency ratio (1.5) to component Q as Q does to P.

You may at this point be wondering whether the acoustical

regularities described above are essential to the tone of a

good drum as the player alters its tuning over the half

octave of its usable range. After all, it is not obvious that the

influence of the air in the kettle of fixed size can produce a

proper modification of the membrane vibrations as the

tension is varied over what turns out to be a range of nearly

two-to-one. It was a particularly challenging part of my

mathematical analysis to verify that the air in kettles of

normal proportions is in fact able to preserve the desired

relationships to a considerable degree of accuracy over the

tuning range. The varying degree of perfection in preserving

the correct air-to-membrane relationships is what explains

the observation by musicians that every drum plays best at

one particular frequency in its range of usability. We also

come to understand better why only a few variants among

many possibilities for kettle shape give a musically

acceptable result.



It is not sufficient merely to get the overall skin tension

correct for the desired pitch of the kettledrum, one must

also make small additional changes in the tensions

produced by the various screws around the periphery of the

drum. Cloyd Duff has a particularly apt word to describe this

process of subsidiary adjustment which compensates for the

inherent irregularity of the skin and for the possible

eccentricity of the kettle rim. When everything is in perfect

adjustment, the drum is said to have been “cleared.” It is a

revelation to listen to an expert such as Duff “clearing” a

good drum, making the tone ring with smoothness and

clarity. This clearing in fact is a process of persuading the

partials to more closely match the ideal. As a matter of fact,

Duff apologized for his drum’s lack of tonal clarity—a

season’s hard use had battered the skin to a point where he

no longer considered it possible to bring it into proper

adjustment.

9.6. Examples,

Experiments, and

Questions

1. The general nature of the oscillations of two-dimensional

objects can be explored very conveniently with the help of a

teacup, a washbasin, or a bathtub filled with water. As a way

to get started in your researches, re-read the descriptions of

experiments using a water trough given in section 6.6 and

try to devise their two-dimensional analogues. You will also

find it worthwhile to seek trends in the variation of mode

shapes as the shape of the container is altered. A rather

challenging project would be to seek out the kinships and

contrasts between water-surface oscillation shapes and

those characteristic of clamped, hinged, or free-edged



plates having the same boundary shape as the water

surface. Your acquaintance with the basic principles of

vibration physics may allow you to discover many useful

relationships.

2. The strings of a guitar provide an excellent laboratory for

experiments on the effect of loading a vibrating system at

different points. First lower the pitch of one of the strings by

slacking its tension, until it is halfway down to the pitch of

the next lower string. Then increase the tension of this lower

string until it plays at exactly the same pitch as its

slackened neighbor. One of these strings can then serve as a

reference against which the other one can be tested. Wrap a

short length of soft copper or lead wire closely around one of

these strings exactly at its midpoint, and notice how all the

odd-numbered modes are lowered in frequency, leaving the

even-numbered ones unaltered. Next, slide the wire

wrapping to a point exactly one-third of the way from one

end of the string. Why do you expect a lowering of all the

characteristic frequencies except for modes 3, 6, 9, ... ? Is

mode 2 affected more, or less, than mode 1? (Note: the

factors of two and four relating the fractional change of

frequency to that of the mass in assertions 2 and 4 found in

section 9.4 are halved when one is dealing with their one-

dimensional analogues.)

From time to time musically inclined engineers undertake to

counteract the smoothly varying part of the inharmonicity of

piano strings by adding a small mass to a carefully chosen

point very close to the fixed end of the string. The nature of

the piano string inharmonicity is described briefly at the

end of section 5.4. Make careful sketches of the first half

dozen modes of a piano string, and verify the plausibility of

this sort of project.



3. In section 5.2, we met the clock chime, made up of a set

of steel rods, each one clamped at one end. The fact that

these rods are thinned by grinding near the clamped end

gives them a set of characteristic frequency ratios that are

intermediate between those of a uniform bar clamped at

one end and a bar attached to its support by means of a

hinge. For the bar in our example the frequency ratios

referred to mode 2 come out thus:
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Why does frequency P fall all the way to zero in the case of

the hinged rod? Verify by means of freehand sketches that

the characteristic vibrational shape belonging to Q has one

node, that for R has two nodes, and so on for modes S and T

(for the moment we ignore the fact that two frequencies are

listed under R). The thinning of the rod was done by

grinding it away roughly, so that in the thinned region the

rod is not perfectly round. Vibrations excited in one plane

involve the bending of a thicker and stiffer rod than those

excited in a plane at right angles to the first. As a result

there are two complete sets of vibrations which the hammer

can excite. By chance, only the two R components were

different enough to be noticed separately in my

measurements. If you simplify things by assuming the rod to

be thinned in a perfectly symmetrical fashion, you might

find it possible to work out some sort of thinning procedure

(at points along the rod) by means of which components Q,

R, S, and T could be modified to work them toward a whole-

number relationship such as 1, 3, 6, 9. In the light of your

present understanding, figure out some of the ways in which

such a sound would be perceived. Why might it not give as

successful a bell sound as does the original?

4. The calfskin head of a kettledrum cannot, by its very

nature, have a uniform density and strength. The region



which came from along the animal’s backbone and shoulder

is distinctly different from the skin from the sides. There is

also a difference between the neck and rump regions. While

additions of mass in lumps on a membrane give peculiar

alterations in modal frequencies, smoothly varying additions

of mass over the surface can be dealt with by means of the

methods outlined in section 9.4. Left-right symmetry of the

skin and increased density along the backbone will lead to a

frequency for component P, when it is excited by a blow at a

point on the backbone line, that will differ from that

produced by a blow one quarter of the way around the

periphery of the drum. Assuming the tension to be uniform,

you will be able to figure out which striking point gives the

lower frequency. Note that the heavier skin lies along the

nodal line in one case but not in the other (see the

Digression on Eccentric Loading in sec. 9.4). Figure out how

the timpanist might vary the tension around the head to

minimize the effect of skin nonuniformity described above.

Can you convince yourself that adjustment of tone P will

pretty well take care of the rest of the sound? How would the

timpanist go about guiding his adjustments? For an earlier

example of the effects of frequency ratio on clarity of tone,

refer back to the experiments with snapping keys on a flute

that were described in experiment 4 in section 5.9.

5. Alterations in shape and size of a guitar bridge or of the

braces glued to the inner surface of the top plate can make

profound changes in the instrument’s tone and response.

You can get an initial view of what is going on by figuring

out the alterations to the mode frequencies for the guitar

plate shown in figure 9.7. Notice that adding various wood

parts does not particularly alter the damping (frictional

force) acting on the vibrating system; it merely changes its

stiffness and mass coefficients. Notice further that adding

mass to some point of a vibrating plate does not necessarily

reduce the amplitude of the vibrations at the point relative



to the motion at other points on the plate’s surface. To see

this, compare the amplitudes of motion at various points

along the tapered chain with corresponding points on the

uniform chain of figure 6.9.

Notes

1

While the basic behavior of vibrating bars is quite

straightforward, the mathematical physics of their

description is quite complicated. Different readers may find

one or another of the following references accessible. They

are all worth at least a cursory examination because of the

variety of diagrams and the references to musical

implications. Lawrence E. Kinsler and Austin R. Frey,

Fundamentals of Acoustics, 2d ed. (New York: Wiley, 1962),

chap. 3; Horace Lamb, The Dynamical Theory of Sound, 2d

ed. (1925; reprint ed., New York: Dover, 1960), pp. 126–35;

and Philip M. Morse, Vibration and Sound, 2d ed. (New York:

McGraw-Hill, 1948), pp. 157–70.

2

Morse, Vibration and Sound, chap. V, “Membranes and

Plates.” Many students of musical acoustics will find Morse’s

mathematical discussion difficult, but anyone will find

rewarding the beautifully executed diagrams of various

types of vibrations that are possible on round and

rectangular objects. See also John Tyndall, Sound, 3rd ed.

rev. and enlarged (New York: Appleton, 1896), pp. 170–79.

This nineteenth-century book is a classic, devoted to the

nontechnical exposition of acoustics. For present purposes

this book is particularly useful for its pictures of various

vibrational shapes that result from the simultaneous



excitation of several modes on a plate, as well as for a clear

account of how one can go about deducing these combined

shapes from the shapes of the characteristic modes

themselves. See also Alfred Leitner, “Vibrations of a Circular

Membrane,” Am. J. Phys. 35 (1967): 1029–31.

3

This figure is based on photographs obtained by E. V.

Jansson of the Speech Transmission Laboratory, Royal

Institute of Technology, Sweden, which are published in an

article, “A Study of Acoustical and Hologram Interferometric

Measurements of the Top Plate Vibrations of a Guitar,”

Acustica 25 (1971): 95–100.

4

G. Temple and W. G. Bickley, Rayleigh’s Principle and Its

Applications to Engineering (New York: Dover, 1956).

5

E. T. Kornhauser and D. Mintzer, “On the Vibration of Mass-

Loaded Membrane,” J. Acoust. Soc. Am. 25 (1953): 903–6.

6

Lord Rayleigh [John William Strutt], The Theory of Sound, 2

vols, bound as one, 2d ed. rev. and enlarged (1894; reprint

ed., New York: Dover, 1945), 1:348.

7

P. R. Kirby was the author of The Kettle-drums (London:

Oxford, 1930), which is considered by timpanists to be one

of the basic books about their instrument.



10

Sinusoidally Driven

Oscillations

When one plucks a guitar string or strikes a piano string

with its hammer, the string is given a complicated motion

made up of a collection of characteristic sinusoidal

oscillations belonging to the string. We have already

investigated this sort of composite motion in considerable

detail. We have also seen that soundboards and other two-

dimensional objects respond to excitation in a similar

fashion. We should now inquire about the way forces

exerted by any one of the characteristic sinusoidal

oscillations of one object (for instance, a piano string) excite

the vibrations of another object (for example, the

soundboard on which it is mounted). In simplest terms this

question can be reduced to one about the behavior of a

single spring-and-mass system when it is driven by a

sinusoidally varying force. Once we understand what goes

on here, it will prove easy to generalize in familiar ways to

learn what takes place when a more complicated system

(having several characteristic modes) is sinusoidally driven.

Each of these modes will respond to the driving force in the

same basic way.

Many coffee drinkers have observed that the liquid in a cup

has a side-to-side sloshing mode which oscillates with a

frequency of about two repetitions /second. This mode is, as

a matter of fact, a very close cousin to the single mode of

oscillation that was found to take place in a U-tube filled

with water (see sec. 6.1 and fig. 6.3). The coffee drinker may



also know from experience that if he waves his filled cup

gently to and fro at a frequency that is even approximately

equal to the natural frequency of the fluid, the coffee

oscillates ever more wildly, and soon slops out of the cup.

That is, repetitive excitation of an object can build up a very

large amplitude of oscillation if the excitation frequency is

roughly equal to the natural vibration frequency of the

object.

10.1. Excitation of a

Pendulum by a Repetitive

Force

Let us think about an easily studied example of sinusoidal

drive. Figure 10.1 shows a board suspended like a pendulum

from screw eyes in a door frame and connected by means of

a long string of rubber bands to a crank that is rotated by a

geared-down variable-speed motor. If the hanging board is

long enough to reach nearly to the bottom of a door frame

of ordinary size, we find that its natural swinging frequency

is somewhat less than 0.4 repetitions/second (2 oscillations

in 5 seconds).
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Fig. 10.1.

When the motor is running, the circular motion of the crank

gives rise to a regularly repeating cycle of increasing and

decreasing tension in the rubber bands, so that the board is

subjected to a repetitive driving force which varies in step

with the crank’s revolution rate. If the rubber band is long,

this varying force is quite accurately sinusoidal in its nature.



It is our expectation that if the motor is run so that the crank

makes about 0.4 revolutions /second, the pendulum will be

caused to swing with a considerable amplitude. We also find

it plausible to expect that a faster or slower motor speed will

give rise to a much smaller response on the part of the

board, since we expect that the driving force might get out

of step with the board’s swinging from time to time.

Now that we have our expectations somewhat organized so

that we know what to look for in the behavior of the board,

let us turn on the motor and see what actually happens

under a variety of conditions:

1. Regardless of the crank’s rate of revolution, we find that

whenever the motor is switched on, the board starts out

with a random-appearing initial motion which eventually

settles down to a steady sinusoidal oscillation.

2. This steady, final oscillation always takes place at exactly

the driving frequency set by the motor, independent of the

natural frequency of the pendulum itself.

3. The amplitude of this steady-state sinusoidal oscillation

depends on the relationship between the frequency of the

driver and that of the pendulum. The amplitude of the

pendulum’s oscillatory response to the driver is at a

maximum when the driving frequency matches that of the

pendulum.

Figure 10.2 shows examples of the messy beginnings that

are characteristic of the response of an oscillator to a



sinusoidal driving force. The top part shows the sort of thing

that can happen when the motor’s driving frequency is

lower than the pendulum’s characteristic frequency (35

percent of it in the present example), while the lower part

shows a typical response for the case where the drive

frequency is well above the natural frequency (1.5 times as

large). The horizontal dotted line drawn across the middle of

the figure between the two parts indicates the natural

frequency of oscillation of the system if it were left free to

take its own way. Notice in the upper and lower sections of

the figure that after the completion of the complicated

initial part of the motion (the transient, as it is technically

labeled), the motion settles down to a sinusoidal oscillation

that agrees in frequency with that of the driver.
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Fig. 10.2. Initial Response of an Oscillator to Sinusoidal

Driving Forces above and below Its Own Natural Frequency

Figure 10.3 shows diagrammatically the relationship

described in assertion 3 above. The amplitude of the

pendulum’s eventual sinusoidal response is weak if the

driving frequency is very much larger or very much smaller

than the natural frequency, and the response is very strong

when the two frequencies match reasonably well.

If we continue our study of the sinusoidally driven steady-

state oscillations of the pendulum, we can record four more

observations whose essential features are shown in the four

parts of figure 10.4.

4. When the motor’s driving frequency is much lower than

the pendulum’s own characteristic frequency, we find that



the pendulum moves almost exactly in step with the applied

force. The pendulum is observed to move toward the motor

during the part of the cycle when the rubber band is most

stretched, and away from the motor when the rubber is least

stretched.

5. When the pendulum is driven at a frequency that is near

to, but lower than, its natural frequency, the pendulum lags

behind slightly in its motion, always coming to the end of its

swing and reversing its motion slightly after the driving

crank has stopped its progressive stretching of the rubber

bands and has begun to let them relax.

e9780486150710_i0107.jpg

Fig. 10.3. The response of a driven oscillator becomes very

large when the excitation frequency matches the natural

frequency of the oscillator.
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Fig. 10.4.

6. When the motor drive frequency is exactly equal to the

pendulum frequency, the lagging behavior of the pendulum

is more manifest. The pendulum reaches its mid-swing

position when the rubber band arrives at its state of

maximum tension. In other words the pendulum lags one-

quarter cycle behind its driving force.

7. At the highest driving frequencies the lagging is

complete, so that the motion runs exactly half a cycle

behind the driving force. That is, we see the pendulum

moving away from the motor when the rubber bands are

given their maximum tension, and toward the motor as the

pull is relaxed.



10.2. Properties of the

Initial Transient Motion

Let us turn our attention now to a closer examination of the

complicated-looking initial (transient) motion of the

pendulum. Repeated trials, in which the pendulum starts

from rest and the drive motor is started to run always with

the same revolution rate, seem to give randomly differing

initial motions even though the eventual steady-state

motion is always the same. This variation of the start-up

motion is upsetting to minds accustomed to associating

cause and effect, so it would be a good idea to look a little

closer at what we have been doing. In our initial

experiments the crank rotation would begin from whatever

random angle it was left at when the motor was last

switched off. If we now make sure that the crank is always

started from the same angle, then all the details of the

pendulum motion will reproduce themselves from trial to

trial, allaying our scientific discomfort.

Because we find that the complicated initial motion of a

sinusoidally driven pendulum eventually sorts itself out into

a smooth sinusoidal motion, we are led to speculate that

perhaps the complexity is something that dies away in a

manner similar to the familiar dying away of an ordinary

free oscillation. Perhaps we will find that the driven

oscillator will sort itself out more quickly when the damping

is adjusted so as to make the characteristic free oscillations

die away quickly. This is a possibility which we can test by

arranging some sort of variable damping for our pendulum,

so that the halving time of the free oscillation amplitude can

be varied (see sec. 4.8 and fig. 4.6).
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Fig. 10.5.

Figure 10.5 shows how our pendulum board can be supplied

with an adjustable friction of a suitable kind for these

experiments. One or more wooden pegs are attached to the

bottom of the board and allowed to project down into a

shallow tray filled with water or oil. Varying the number of

pegs, the depth of their immersion in oil, or the viscosity of

the fluid (see sec. 6.1) will allow us to obtain any desired

halving time for the pendulum’s characteristic free

oscillations. Experiments using the motor drive will now be

able to show us that our suspicion was correct about the

relation between the duration of free oscillation and that of

the complex initial part of the driven oscillation.

The influence of viscous damping on the duration of the

initial transient is shown in figure 10.6. The top part of this

figure is a reproduction of the top part of figure 10.2. The

driving frequency is 35 percent of the pendulum’s natural

frequency, and (we can say it now) the oil damping is such

that the amplitude of free oscillation falls to one half in the

time of 1.32 periods of the characteristic oscillation. The

lower part of the figure shows what happens when the

damping is doubled to make the halving time 0.66 periods

(1.32 divided by 2). Heavily damped oscillators do indeed

settle down to their steady-state vibrations much more

quickly than do lightly damped oscillators.
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Fig. 10.6. The Influence of Viscous Damping on the Duration

of the Initial Transient

So far we have not found out exactly what is going on

during the time of the initial transient, even though we do

know that it dies away at the same rate as does a free



oscillation of the pendulum. We can examine the transient

part of the motion in the same way we did in the latter part

of section 3.4 in which we worked at sorting out the nature

of a skillet clang. We find that the initial transient is in fact

the combination of a damped oscillation of the free type on

top of the steady oscillation that is the eventual survivor!

The nature of this assertion can easily be seen from figure

10.7, in which the oscillation already shown in the top parts

of figures 10.2 and 10.6 is shown along with its two newly

discovered ingredients.

It is a little hard to use our pendulum for a direct

experimental proof of the presence of the damped free

oscillation in the initial transient. However, in order to

illustrate what is going on, we can show an interesting

special case—that in which the frequency of the driving

force is exactly equal to the natural frequency. The upper

part of figure 10.8 shows how the transient develops in this

special case, with the two ingredients of the transient shown

in the lower two lines. Let us record our new knowledge

(gained from figs. 10.6, 10.7, and 10.8) as the eighth

member of our collection of numbered observations.
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Fig. 10.7.
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Fig. 10.8. Initial Transient When Driving Force Is Equal to the

Natural Frequency

8. The complex initial transient motion of a sinusoidally

driven pendulum is always made up of a damped oscillation

running at the natural frequency of the pendulum, plus a

driven oscillation that takes place at the driving frequency.



This latter oscillation is all that persists after the transient

has died out.

10.3. The Influence of

Variable Damping on the

Steady Response

In the course of our experimenting we have half-noticed a

number of subsidiary things whose importance begins to

grow as we get a deeper understanding of what is going on.

For one thing we realize that while changes in the damping

have a major influence on the duration of the initial

transient, they have a curiously small influence on the

amplitude of the final steady-state oscillation, as long as the

driving frequency of the motor is not very close to the

natural frequency of the pendulum. In other words, what we

might call the skirts of the response curve in figure 10.3

apparently are little influenced by changes in the damping,

whereas the central portion is considerably changed. We

need therefore to go back and repeat the experiments of the

sort that gave us figure 10.3, with the pegs and the oil tray

arranged to give us various amounts of damping. The

results of these additional experiments are summarized in

figure 10.9. The tallest curve in this figure represents the

behavior of a system having half the damping of the

pendulum whose starting behavior is shown in the top part

of figure 10.6. The second tallest curve is calculated for the

same damping as that assumed in the upper part of figure

10.6. The third tallest response curve in figure 10.9 belongs

to the pendulum whose initial behavior is shown in the

lower part of figure 10.6 (for which the damping was

doubled). The lowest curve shows what one gets when the

damping is again increased twofold. Our informal



impressions are well confirmed, and certain quantitative

relationships are also made visible between the maximum

response observed when the driving frequency matches the

pendulum’s natural frequency and the amount by which the

response is reduced when the driving frequency is altered

by a small amount. In terms of the picture we can say this

more easily by talking in terms of the relationship between

the height of the response curve at its tallest peak and its

width in the neighborhood of this peak. Let us define a half-

amplitude bandwidth or resonance width W1/2 as being the

range of driving frequencies within which the pendulum

swings with a steady-state amplitude of at least half the

maximum it can attain (the maximum being indicated by

the height of the resonance peak in our diagram). These

bandwidths are indicated in figure 10.9.
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Fig. 10.9. Effect of Varying the Damping

Digression on Various Definitions for the Bandwidth.

There are a number of ways in which engineers and

physicists describe the relation between the strength of

maximum response and the range of driving frequencies

over which a driven oscillator shows appreciable response.

Each of these ways has a certain simplicity or computational

convenience for a particular set of practical problems. Our

definition of W1/2 (sometimes written FWHM, i.e., full width

at half maximum) corresponds to what electrical engineers

would call the 6-dB bandwidth; it is 1.732 times as large as

the 3-dB bandwidth to which they are more accustomed.

Our choice has been made chiefly for conceptual simplicity

in a book where we do not plan to do a lot of computation.

Our definition has, however, certain other virtues which will

become apparent in due course. You might find it



worthwhile at this point to review the way in which the

strength and duration of a hammer blow was described in

section 8.2, since there is a striking similarity between

figures 8.7 and 10.9.

Inspection of the curves depicted in figure 10.9 shows us

that if the damping is increased by an amount sufficient to

halve the amplitude of maximum response, the

corresponding bandwidth W1/2 has been doubled. This

observation can be put together with our earlier ones to

form a pair of interlocking numbered observations as

follows:

9. As one increases the damping D of a pendulum, we find

that variations of halving time T1/2 for free oscillation and of

maximum response amplitude Amax for sinusoidally driven

oscillation run exactly parallel. Mathematically speaking,

both damping T1/2 and Amax are inversely proportional to

the damping.
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10. As the damping of a pendulum is increased, we find that

the half-amplitude band-width W1/2 grows in a way that is

directly proportional to the damping. That is:

W1/2 = a constant times D

Let us combine the results summarized in assertions 9 and

10 into a formula that is convenient in many real-life



situations. Our intuitions can be comfortable with the notion

of describing the damping of an oscillator in terms of the

number N of free oscillations it makes during the time T1/2

that is required for the amplitude to die away to one half. In

the same spirit, we can define a percentage band-width

(PBW) that tells us the range of excitation frequencies over

which our oscillator will respond with at least half its

maximum amplitude, the range being expressed as a

percentage of the natural oscillation frequency:

11. The percentage bandwidth PBW gives a measure of the

selectivity of the response of an oscillator to an externally

applied sinusoidal force. It may be expressed in terms of the

number N of its free oscillations that must elapse for the

amplitude to decay to one half, as follows:

PBW = (38.2/N) percent

Our list of eleven numbered observations adds up to a

heavy dose of physics. It is time to put some of it to use in a

musical context in order to clarify its meaning and to show

some of its utility.

Digression on Frequency Labeling.

So far in this book, we have always been very explicit in

talking about frequencies and repetition rates. We have

made a habit of spelling out our exact meaning by means of

expressions like “oscillations per second” or “repetitions per



second. ” By now we are familiar enough with these ideas

that it is convenient and safe to follow the engineering

custom of writing the two-letter combination Hz to represent

the written-out version. Thus we can say that the musical

tone A4? which is the note sounded by the oboist when an

orchestra tunes, has a 440-Hz repetition rate, and that the

second, third, and fourth (etc.) harmonics of a 100 Hz

fundamental are found at 200 Hz, 300 Hz, 400 Hz, .... The

letters Hz come from the name of Heinrich Hertz, who is

honored as the first to observe the electromagnetic waves

whose application in television and radar is familiar to us.

Musicians sometimes use the 440-Hz tuning fork to check

up on how well they are in tune in a way different from the

usual one of striking the fork to set it in motion. The oboist,

for example, will play his A in front of the fork in the

expectation that acoustical forces exerted on the fork by the

fundamental component of this tone will drive the fork into

oscillation in the way we have been discussing. If he plays a

little bit sharp (or flat), the driving frequency will be above

(or below) the fork’s natural frequency, and so the response

of the fork will be small (after the transient has died out). If

the oboe tone is right on pitch, the fork will respond

strongly, telling the player he is doing well. It takes about 5

seconds after a tuning fork is struck for its vibratory

amplitude to die away to one half, so that the number N of

oscillations taking place in this time is:

N = 2200 ( = 440 osc/sec times 5 sec)

The formula in observation 11 implies that when an oboist

tries to get his fork to sing, he must be in tune within a

percentage margin of error of only:



PBW = 38.2/2200 = 0.017 percent

This corresponds to a pitch error of less than 0.003

semitone! The conclusion that follows from this little

calculation is that a musician must be very good indeed if

he is to persuade the fork to respond to his blandishments.

In the real world of the musician’s studio, however, we find

that his life is a little bit simpler than this even though the

physics of what goes on is somewhat more complicated, as

the following anecdote will show.

10.4. A Flute Player’s

Unplanned Experiment

Several years ago my daughter, who is a serious and

competent flute player, was checking up on her tuning with

the help of a tuning fork. I overheard her playing the A4 in

long and short toots, first sharp, then flat, then slowly

varying in pitch. It was not possible for me to hear the fork,

but it did seem a little odd that these tuning experiments

went on so long without the pitch settling down in the quick

and tidy fashion I was accustomed to hearing. Then I heard

an anguished (or perhaps only puzzled) call for help: “This

tuning fork has gone crazy!” It seems that the fork would

sometimes respond strongly to tones that were off pitch by

as much as a third of a semitone. Even more upsetting to

my daughter was the fact that the fork seemed to put forth

the accustomed 440-Hz sound even when it had been

stimulated by an out-of-tune note from the flute. From the

heights of my superior knowledge of physics I was not

surprised that the fork would ring on pitch when left to its

own devices—it was simply finishing off its starting transient

after the original stimulus was gone. The fact that the fork



would respond appreciably to an out-of-tune flute note was

less quickly understood. I knew that the PBW for a tuning

fork is only a fraction of one percent, which at first makes

the idea of strong response here rather surprising. However,

there is a good explanation.

A short toot of sound lasts only a small fraction of the time it

takes for a tuning-fork transient to die out. As a result, the

fork is started into its initial complex wiggles and then is

deserted by the flute to make its ordinary free decay (on

pitch). A random set of short notes from the flute is quite

likely to start up a strong initial vibration of the fork,

regardless of the pitch relation between the fork and the

flute. This can be true even though the eventual response of

the fork to the sustained sound of an out-of-tune flute will

be miniscule. My daughter and I also confirmed

experimentally that a flute tone having unsteady pitch

would excite the fork fairly well, as long as the pitch would

“visit” the exact value reasonably often.

The chief practical conclusion that can be drawn from these

informal experiments is the following: if one wishes to use

the excitation of the fork’s vibration as a criterion for the

accurate tuning of a musical instrument, it is necessary to

play long, steady tones whose duration is several seconds (a

time comparable with the decay time of the fork). The fact

that a tuning fork will sing softly and steadily in one’s studio

during a practice session is a respectable check on the

correctness of every A4 that comes along in the music (and

therefore an indication that the other notes are reasonably

correct as well). However reassuring this sort of a check may

be, we must always remember that these tuning notes come

and go quite rapidly, so that there is considerable latitude

to the response of the fork in such a playing situation.



10.5. Steady Excitation of

a System Having Two

Characteristic Modes of

Vibration

In previous chapters we learned that a vibratory system

possesses one or more characteristic modes of oscillation.

Each of these modes has its own frequency, decay time, and

vibrational shape. In the case of impulsive excitation (as by

plucking or striking), we found that once the act of

excitation has taken place, each mode carries out its own

sinusoidal motion independently of the others. The

disturbance taking place at any point in the system can

then be calculated by simply adding up the motions that are

associated with the various modes. We can now extend

these ideas to a description of the response of the individual

modes of a system when a long-continued sinusoidal driving

force is applied in place of an impulsive excitation.

Consider a hypothetical mechanical setup of the sort

sketched in the upper part of figure 10.10. Here we have

two equal masses, m1 and m2, joined into a chain by three

equal springs. The ends of the chain are anchored to solid

supports. We will drive this chain by means of a long, weak

spring (or rubber band) that connects m1 to a driving crank

whose rate of rotation can be controlled. This system is the

two-mass (and therefore two-mode) elaboration of the

single-mode driven oscillator we have studied so far in this

chapter. The lower part of figure 10.10 reminds us of the

vibrational shapes that are characteristic of the two modes

of this system of springs and masses—a system we first met

in section 6.3. For convenience in describing our later



investigations, we will assume that the spring stiffnesses

have been chosen to produce a first-mode characteristic

frequency of 10 Hz, which implies (for the case of two equal

masses and three equal springs) that the second mode has

a natural frequency of 17.32 Hz. We will also suppose that

the viscous damping exerted on the masses by the

surrounding air is such that the amplitude of each mode

dies away with a halving time that is 0.567 seconds; this is

the time required for mode 1 to make 5.67 oscillations.
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Fig. 10.10.

Let us confine our attention initially to the directly driven

mass m1, which when driven will presumably behave very

much like the pendulum we studied earlier. Because each

vibrational mode has all the ordinary properties of a single

oscillator, we may expect that a steady driving of our

system at a very low frequency will produce only a small

excursion of m1. As the drive motor is speeded up to the

neighborhood of 10 Hz (the frequency belonging to mode 1)

we presumably will observe a large amplitude motion for

m1, with a subsequent decrease in amplitude until the drive

frequency is in the neighborhood of 17.32 Hz, where mode 2

is expected to respond most strongly.

The heavily dotted curve in figure 10.11 shows what we

would in fact observe for the steady-state amplitude (A1) of

the driven mass as the driving frequency is varied.

Qualitatively what can be observed is very much in

accordance with assertions 1 through 9 that were found to

apply to a single-mass oscillator. Closer inspection shows a

number of significant differences. For example, the widths

W1/2 of the two response peaks are not quite consistent with



what one calculates from the decay time and the formula in

assertion 11. The calculated widths are shown in the

diagram. These small discrepancies need not disturb us

particularly, however, because we realize that m1 is actually

participating in two different modes of oscillation

simultaneously. For example, when the drive motor is

running at 5 rev/sec, the mode 1 aspect of m1’s response is

that corresponding to driving at half the 10 Hz frequency

natural to this mode. The other contribution to the motion

comes from the fact that the system is being driven at about

29 percent (5/17.32 = 0.29) of the second-mode natural

frequency. What one observes is the sum of these two types

of response.

e9780486150710_i0116.jpg

Fig. 10.11. Response of a Two-Mass System Observed at the

Driven Mass

Something new happens when the drive motor is run at a

speed that lies between the two natural frequencies.

Observation 7 tells us that when mode 1 is driven well

above its natural frequency, the driven mass moves so that

it lags nearly half a cycle behind the driving force, which

means that when the drive spring pulls, m1 moves away

from the crank. On the other hand, the mode-2 aspect of the

motion keeps in step with the drive force, with only a slight

lag. Since m1 is being asked to move in two contrary

directions at the same time, the magnitude of actual motion

will be the numerical difference between the corresponding

distances.

If there were almost no damping at all, the contrary effects

of mode 1 and mode 2 on the motion of the driven mass

would almost completely cancel one another at a 14.14 Hz

driving frequency, where the responses of the two modes



are equal. Because of the lags produced by damping, the

cancellation is not in fact complete. Figure 10.11 shows

however that the amplitude of motion is at a minimum at

this driving frequency. We also find here that the mass

moves in such a way that it lags almost exactly a quarter

cycle behind the driving force, just as is the case when the

drive frequency matches one of the natural frequencies. The

presence of a quarter-cycle lag near the frequency of

minimum response, as well as at maximum response, is a

general and useful property of many vibrating systems. We

should therefore provide ourselves with two more numbered

assertions that extend our formal understanding into the

territory of systems having more than one mode:

12. The motion of every mass of a sinusoidally driven

complex system reaches maximum amplitude when the

driving frequency is close to any one of the system’s natural

frequencies. In many cases this motion is out of step with

the driving force by a quarter cycle.

13. At certain frequencies lying between those frequencies

that are characteristic of the system’s vibrational modes,

the motion of all masses has a minimum amplitude. At these

frequencies of minimum response, the masses again usually

have a motion that is one-quarter cycle out of step with the

driving force.

Let us transfer our attention briefly to the steady-state

oscillations of the other member (m2) of our pair of masses.

The dashed curve in figure 10.11 shows that m2 also has the



expected two-peaked behavior, although the details are not

the same for m1. For one thing, the asymmetries of the two

peaks are more or less reversed from what we found for m1.

Below 10 Hz, m2 moves with a much smaller amplitude than

does m1. Between the 10 Hz and 17.32 Hz frequencies of

maximum response, m2 moves with a much larger

amplitude than does m1, while at frequencies above 17.32

Hz it has a much more restricted motion.

Another way to look at the whole behavior is to consider the

vibrational shapes associated with the settled-down

sinusoidal oscillation produced by different driving

frequencies. Figure 10.12 shows these shapes for a number

of driving frequencies. When m1 is driven at frequencies of

4 and 8 Hz, we find the two masses vibrating with slightly

un-equal amplitudes in an overall shape that is reminiscent

of the free vibration shape for mode 1 (look back to sec. 7.1

and fig. 7.2 to review how one superposes the characteristic

mode shapes to get things of this sort).
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Fig. 10.12. Vibrational Shapes versus Excitation Frequency

for a Two-Mass System

At 10 Hz, where mode 1 responds most strongly, our driven

vibration seems to have a pure mode-1 vibrational shape of

very large amplitude—there is no asymmetry here even

though a certain amount of mode-2 excitation is present!

The explanation of this phenomenon is a little beyond our

scope, but it has to do with the way in which the half-cycle

lag of mode 1 combines with the nearly zero lag of mode 2

at this frequency, as discussed in assertion 6 above.



At driving frequencies above 10 Hz we find that the

vibrational shape will change, as expected, from something

reminiscent of mode 1 to something more like mode 2 as we

approach the second charateristic frequency. Here at 17.32

Hz we again find a large and completely symmetrical shape,

this time of pure mode-2 type. At higher frequencies yet, the

size of the overall disturbance becomes progressively less,

but it always preserves its mode-2 character, with the two

masses moving in opposite directions.

10.6. A Summary of the

Properties of a

Sinusoidally Driven

System

We have now completed a rather grueling investigation of

the properties of a sinusoidally driven system having

several characteristic modes of vibration. Because in the

future we will need to refer back repeatedly to our collection

of numbered assertions, it is worthwhile at this point to

summarize the main ideas we have developed.

When one starts to drive a system of springs and masses at

any frequency, there is an initial transient which is

enormously complicated, since it is made up of the already

complex transient motions belonging to each separate

mode of oscillation. We therefore have present in the

vibrational recipe not only the driving frequency but also

the (decaying) complete collection of characteristic

frequencies, exactly as in the case of Impulsive excitation.



Once the transient has died out, all parts of the system will

settle down into a steady oscillation at exactly the driving

frequency. The overall vibrational shape of this oscillation is

one whose ingredients are the individual shapes

characteristic of the various natural modes of vibration. The

amounts of these ingredients that are present and the

degree of lag between the motion of these components and

the driving force can be found from the general properties of

each mode taken as an isolated pendulum. When the

driving force varies at a frequency close to one of the

natural frequencies of the system, the resultant vibrational

shape of the system is (very nearly) that of the

corresponding mode.

The response peaks belonging to the various characteristic

modes are not in general symmetrical when one looks at the

response of a complex system. Furthermore the widths W1/2

of these peaks are very nearly (but not exactly) equal to

those belonging to the modes if they could be studied in

isolation. For this reason, we can treat the easily observed

peaks as though they belonged to the individual modes. As

a matter of fact, there are certain physical systems (some of

musical interest) where the spacing between the response

peaks and other features of the system make even the slight

discrepancy disappear.

Digression on terminology.

Curves showing the response of a system to a sinusoidal

driving force are often referred to as resonance curves or

response curves. Peaks in such curves are usually called

resonance peaks, or simply the resonances of the system. If

one records the response of a system at the same point



where the driving force is applied, the response curve is

often referred to as a driving-point response curve. If, on the

other hand, one records the motion of some part of the

System other than at the driving point, the response curve

is called a transfer response curve. Thus the dotted curve in

figure 10.11 shows the driving-point response of a two-mass

chain, since it shows the motion of the mass m1 to which the

driving force is applied. The dashed curve in this figure, on

the other hand, is a transfer resonance curve. showing what

happens to mass m2 when m1 is being driven.

10.7. The Transfer

Response of a Tin Tray

In the earlier parts of this chapter we have taken the

description of the response of a single mass and spring

(pendulum) to sinusoidal driving forces and adapted it to

the case of two (or more) masses coupled in a chainlike

structure. Let us now look briefly at what happens when we

attach a magnetic driver at one point and a motion detector

at another point of a metal serving tray (a two-dimensional

plate of the sort we studied in chapter 9). Not only will our

observations have a direct bearing on the way in which the

soundboards of pianos and the front plates of guitars and

violins respond to the strings’ driving forces, it will also

prepare us for the greater complexity found in sound

transmission between musical sources and the listener in a

room.
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Fig. 10.13.



Figure 10.13 shows the tray clamped at three points along

its edges. The numbered triangles show the spots at which

electromagnetic motion sensors were successively located,

while the numbered squares show in similar fashion the

points where a driver was located. Response curves for the

tray are easily obtained. One has only to connect the

loudspeaker-like driver to an oscillator and the motion

detector to an amplifier and a strip-chart recorder. Figure

10.14 shows four such recordings obtained with various

combinations of the driver and the detector positions. The

first thing we notice about these (transfer) response curves

is that the curves look very different from one another. Tall

peaks and low squiggles appear to be randomly distributed

over the 0-300 Hz frequency range of the measurements.

Closer examination shows that at least small traces of a tall

resonance peak are found at the corresponding frequency

on all the charts. For example, in the upper left-hand

recording (chart A) one finds, at a point just above 70 Hz, a

small downward step marked by an arrow and the letter P. In

chart B this point is visible as a small response peak, as a

taller one in chart C, and as an upward step in chart D.

Another example of this sort of behavior is found for a

driving frequency just above 170 Hz. The arrows labeled Q

mark the corresponding points on the four recordings.

It is not at all difficult to understand why these transfer

response curves should look so different from one another

when we recall that the detector is blind (or deaf?) to any of

the tray’s vibrational modes which have a nodal line

running through the detector position. For example, figure

10.13 shows that detector position 2 lies on the midline of

the tray, and it follows that the detector at this position

becomes totally insensitive to plate modes of the sort

sketched in the upper part of figure 10.15, whereas it is

particularly sensitive to the excitation of modes of the sort

sketched in the lower part of the figure. In exactly similar



fashion, the ability of the driver to excite a given mode

depends on its position relative to the nodal lines and

humps belonging to this mode’s characteristic shape. In

other words, all the rules of the game of excitation and

detection that we discovered in chapters 7, 8, and 9 for

struck and plucked objects apply almost unchanged when

we make use of a sinusoidal excitation. We must always

remember, however, that no matter what the frequency of

the driving force, all of the modes are excited somewhat, so

that the degree of the steady-state response observed at

any given point depends on the summation of the responses

of all of these modes, with proper account being taken not

only of the fact that the predominant contributors are those

whose natural frequencies approximate the driving

frequency, but also of the presence of varying amounts of

lag between stimulus and response.

e9780486150710_i0119.jpg

Fig. 10.14. Response of a Metal Tray Driven at Various Points

and Observed at Other Points
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Fig. 10.15.

Quite aside from fluctuations in the number of plate modes

which happen to lie close enough to the driving frequency

to be appreciably excited by it and from accidents of driver

and detector placement which may affect the behavior of

any one of these modes, we can expect quasi-random

fluctuations in the observed response because of the

accidental way in which the different active modes may

happen to reinforce or cancel each other at the point of

observations. Figure 10.16 illustrates this in schematic

fashion for a rectangular plate for the case where only two



of its characteristic modes (labeled modes A and B) are

excited. The upper part of the diagram indicates the

vibrational shape belonging to mode A, which has five

humps each way; the lower part shows the corresponding

shape for mode B, which has four humps one way and five

the other. (On our metal tray, the frequencies corresponding

to these modes would differ by only a few Hz.) The shaded

areas on these diagrams show those parts of the plate that

are momentarily deflected upwards, while the unshaded

portions indicate those regions that are bulging downwards.

The grid of straight lines delineates the node arrangements

for our idealized vibrations. The pairs of black spots located

vertically above one another call attention to three typical

things that can happen as one surveys the vibrational

amplitude over the surface of the plate. There are places

where the two modes give deflections of the same sign, so

that the net disturbance is very large; there are spots where

the two modes give opposite and essentially equal

disturbances, which therefore cancel one another out to

give a negligible detector signal even though the actual

disturbance over the plate as a whole is very large; and

finally there are places where one mode contributes alone to

the detector signal because we are located on a nodal line

of the other mode.
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Fig. 10.16. Effect of Superposing Two Modes as Observed at

Different Places

Looking back over our experiments with the steady-state

transmission of sound from one point to another on a metal

tray, we are left with a sense of basic simplicity in the way

the resonant behaviors of many modes add up to relate the

driving force at one point to the resulting response of the

plate at another point. We are also left with a feeling of



dismay over the enormous complexity of behavior that can

result from these simple basic phenomena. We come to

realize that altering the position of either driver or detector

can drastically alter the nature of the transfer response

curve. Because everything depends on the addition of many

small contributions to the response, as well as on those of

one or two large contributors, we find a few spots on the

tray where the detector will discover a particularly strong

vibration and a few spots where the disturbance is almost

nil. At a slightly different driver frequency, the arrangement

of the points of strong and weak response will be totally

altered. In general, the overall patterns of response will have

no particular resemblance to the characteristic vibration

patterns of the modes which make them up.

10.8. Some Musical

Implications

The thoughtful reader may ask whether irregularity of

response of a plate is a good thing or a bad thing from a

musical point of view. He then would be likely to ask how

the nature of these irregularities might be controlled for

musical purposes. The answer to the first question does not

exist in any simple form. We have already had hints of the

fact that the excellence of a guitar or violin rests in large

measure on the details of the excitation of plate modes.

Irregularity turns out to be a requirement, but it must be

controlled by methods such as those described in the latter

parts of chapter 9. The exact placement of the soundboard

resonances of a piano or harpsichord turns out to be much

less critically involved in the musical nature of the

instrument, but we shall see that the average difference in



frequency between adjacent modes is of considerable

importance.

The transmission of sound from one point to another in a

room is another example of the transfer response of a multi-

resonance system (this time a three-dimensional one). The

irregularities of this transmission process in a room, which

we will take up in the next chapter, have a great deal to do

with the way in which the voices of musical instruments are

easily recognizable. The manner in which these voices keep

their identities when sounding together and yet manage to

combine in various musical blends turns out to be based in

part on the properties of rooms and in part on the ways in

which the human nervous system deals with complex

sensory patterns. Many different sorts of acoustical

messages come from the instruments to our ears, and our

minds simultaneously process these incoming messages in a

variety of ways.

10.9. Examples,

Experiments, and

Questions

1. The lowest mode of vibration of a certain guitar top plate

has a frequency of 185 Hz and a half-amplitude bandwidth

W1/2 of about 11 Hz (see figure 9.7). This means that if

someone were to finger the note F3# on the instrument and

pluck the string, the first string mode would be at the

frequency of maximum excitation of the plate mode. Verify

for yourself that the fundamental components of the tones

F3♮ and G3 will not give any particular excitation to this

plate mode. Notice that when one plays F2♯ at the lower end



of the guitar’s range, this same plate mode responds

strongly to the second harmonic component of the string’s

vibration recipe. One can be sure (from the relationship of

the bridge to the region of large plate motion) that the

string is well able to drive the mode in question. Assuming

that the string itself vibrates for a long time, it is possible to

figure out how long it takes for the plate mode’s starting

transient to die away. Try to use the relations described in

section 10.3, statements 10 and 11, to work out this

problem.

2. Guitar plate modes 2 and 3 (figure 9.7, p. 133) may be

expected to be only weakly excited by the bridge (why is

this so?). However, these modes will play some role in

determining the tonal flavor of the guitar sound. Mode 2 has

a frequency of 287 Hz and W1/2 is again about 11 Hz. The

fact that this resonance falls between two playing notes

makes its tonal influence somewhat different from that of

mode 1.

Mode 3 for this guitar has a characteristic frequency of 460

Hz and W1/2= 18 Hz. For what notes of the guitar scale can

you expect this mode to be active? Notice that the note F2♯

can have its sound altered by effects from plate mode 3,

along with those from mode 1.

3. When one strikes the G4 key of a well-tuned piano, the

strings vibrate with the following list of harmonically related

characteristic frequencies: 392, 784, 1176, 1568, 1960,

2352, ... Hz (we are ignoring the slight inharmonicity of real

strings here). All of these components serve to drive the

soundboard, and thence everything else that it is connected

to, including other strings. If we slowly but fully depress the

key for G3 in order to raise the damper for that note without

striking the strings, we supply ourselves with a system



whose natural frequencies are as follows: 196, 392, 588,

784, 980, 1176, ... Hz. Striking the G4 key (while the G3 key

is still being silently depressed) and releasing it quickly will

provide a short burst of excitation to the even-numbered

modes of the G3 strings, and these will continue to sing

after the direct sound of the G4 strings has been killed off

by their damper touching them on the release of the key.

Why do we hear a pitch belonging to G4 coming from the

open G3 string in this experiment? Reversing the

experiment, so that the G4 key is held down and the G3 key

is struck briefly, produces a closely similar result, with a

similar explanation. Your understanding of what is going on

here will be improved if you observe what happens when G3

is replaced by F3♯ or G3♯, with the G4 key being used as

before.

4. Another experiment on the piano that is closely related to

the one just described is the following. Hold down the G3

key and briefly strike the D4 key, which produces excitation

whose frequency components are 293.7, 587.3, 881, 1174,

1468, 1761, 2055, ... Hz. In this case, you will hear a clear,

ringing tone whose pitch is an octave above D4! Figure out

the resonance and perception reasons for this phenomenon.



11

Room Acoustics I:

Excitation of the Modes

and the Transmission of

Impulses

A room is a three-dimensional region containing air. Air in a

room (or elsewhere) has elasticity—a fact recognized by

anyone who has checked a bicycle tire for proper inflation

by pressing it with his thumb. The fact that air has mass is

perhaps less easily appreciated, but we might remark that

the air in a filled balloon generally weighs a little less than

the balloon rubber itself. In any event, the fact that a

volume of air possesses both mass and elasticity tells us

that modes of oscillation are possible in a room, with each of

these modes having its own vibrational shape and

characteristic frequency. The ideas that we have so carefully

developed concerning the response of oscillatory modes to

impulsive and sinusoidal excitation keep their validity for

oscillations in air, including those telling us that excitation

is at a maximum when we drive the system at points of

maximum oscillatory disturbance and that it is at a

minumum at the nodes.

11.1. Sound Pressure: A

Way of Describing the



Characteristic Oscillatory

Modes of Room Air

Most microphones have a diaphragm that is pushed back

and forth by the air pressure variations associated with the

sound which reaches them, so that their output electrical

signals are a direct measure of the pressure exerted by the

air molecules. Our own hearing apparatus has a similar

behavior, in that our nervous system operates upon signals

passed to it via motions of the eardrum caused by inward

and outward forces exerted on it by the air. For this reason

acousticians have found it natural and convenient to focus

their attention on the oscillatory pressure associated with

sounds, whether in rooms or in the air columns of wind

instruments.

The fact that oscillations of the air in a room are most

conveniently studied and described in terms of sound

pressure variations rather than mechanical displacements of

the molecules means that we should find out how to

translate the language of our earlier descriptions of

phenomena into the newer form. A convenient way to

accomplish the change in viewpoint is to make use of the

phenomena described in connection with the third

experiment of section 6.6. This experiment had to do with

the one-dimensional sloshing of water in a trough closed at

both ends. Here we noticed that, for each characteristic

mode of oscillation, the oscillatory shape belonging to the

horizontal motion of the water was quite different from that

of the water-level variation. In particular we noticed that the

nodes for horizontal motion were near points of maximum

up-and-down motion and vice versa. If we were to install

small, fast-acting water pressure gauges in the bottom of

this trough we would notice that the fluctuations of water



level above and below “mean sea level” correspond exactly

to the fluctuations of water pressure measured by the

gauges above and below the mean value associated with

the depth of quiescent water. The relationship between

these water pressure variations (which we also visualized

directly in terms of the water’s depth) and the variations in

horizontal water flow associated with a particular sloshing

mode in the water is identical with the relationship that

holds between air pressure and air flow in the corresponding

sloshing mode of air in a straight-sided pipe that is closed at

both ends. Because of this identity, the diagrams drawn in

figure 6.13 for each characteristic mode to show water

height can equally well be used to show variations of

pressure in an air-filled pipe.

It is a simple matter to adapt pictures of one-dimensional

sloshing modes in a trough to their two-dimensional

analogues in a swimming pool (of whatever shape!). In a

similar manner one can adapt pictures of pressure

disturbances in a pipe or a one-dimensional room (which is a

room having a very low ceiling and very small width) to

those belonging to a two-dimensional room (one having a

very low ceiling but appreciable width and length) and

thence to the somewhat more abstract three-dimensional

room, having a normal proportionality between length,

width, and height. In other words, we can draw diagrams

showing characteristic shapes of oscillatory pressure

variations in room modes in exactly the same way as we

earlier drew diagrams showing the oscillatory variations of

displacement in the characteristic modes of strings and

drumheads. Figure 10.16 can be understood to represent

the water surface shape for two modes of water oscillating in

a rectangular swimming pool. It can then also be taken as a

picture of the air pressure distribution for these same modes

in a two-dimensional room.



11.2. Excitation of Room

Modes by a Simple Source

In earlier chapters it was not particularly hard for us to

visualize the impulsive excitation of a plucked or struck

string or the sinusoidal excitation of a hanging board

pushed by means of a motor-driven crank and some rubber

bands. The impulsive and sinusoidal excitations of air in a

room can similarly be made understandable with the help of

a couple of introductory experiments.

When a balloon is pricked, one hears a pop as the air

compressed within it is abruptly released into the room. A

more violent version of the same mechanism for impulsive

excitation of air modes takes place when one sets off a

firecracker in a room. The rapid, explosive burning of

gunpowder releases a sudden burst of hot gas into the

room. Notice that in both cases additional gas has been

injected into the room from a small source.

For sinusoidal excitation of the room air we need only

arrange some sort of pump which alternately injects air into

the room and extracts it from the room at the desired

driving frequency. A “muscle feeling” of what is involved is

easily attained. One has only to raise his tongue to close off

the back of the mouth cavity and then move the tongue

back and forth, alternately expelling and taking in air

through pursed lips in a manner reminiscent of the way a

swimmer spouts a mouthful of water. The maximum

frequency of oscillation that is possible for this sort of crude,

physiological pump can hardly be above a sluggish 5 Hz.

Loudspeakers work in the same manner to push air in and

out, but at a wide range of frequencies. Most home

loudspeakers have a movable paper cone mounted on the



front side of an otherwise sealed box. When electrical

signals from the amplifier cause it to move in and out, the

cone is acting exactly like a pump piston, which provides us

with a very direct and literal example of what is meant by a

source.

In our earlier investigations it was very natural to talk about

the strength of the excitative stimulus in terms of the

magnitude of the force (either impulsive or sinusoidal) that

was exerted on the vibrating object. The need for similar

terminology to describe the strength of the excitative

influence on air moving within a cavity led acousticians to

borrow the term source strength from the study of fluid

mechanics. To specify the strength of any device acting as a

source of fluid, one makes a statement about the rate at

which the fluid issues from it (for example, the water faucet

in a kitchen is an adjustable source of water whose strength

may conveniently be said to range from zero when it is

closed to several cupfuls per second when it is fully

opened). In the case of a sinusoidally operating pump, the

flow takes place alternately in an outward and an inward

direction, with the flow rate passing through its maximum

outward value before it falls to zero and then reverses

toward a maximum inward rate. Such an oscillatory flow

device is customarily described in terms of the maximum

value of the flow rate (either inward or outward), just as in

the past we have described the sinusoidal motion of a

pendulum in terms of its maximum displacement on either

side of the midpoint. You will recall that in all cases of

sinusoidal disturbance we have found it convenient to

describe its vigor in terms of its amplitude, which is the

maximum value of the oscillatory disturbance.

In acoustics, what is known as a simple source (of given

strength) is one whose aperture is very tiny compared with

the distance between nodal regions of the characteristic



room oscillations. An easy way for us to understand the

meaning of the term is to relate it to things we have already

met in connection with our study of strings in chapter 7.

There we spoke of the excitation of strings by narrow plectra

and sharp-edged hammers. For room acoustics, then, the

simple source is the exact analogue of narrow hammers and

plectra. Moreover, the changes in room excitation brought

about by widening the source aperture are exactly like those

which were described in chapter 8 for the excitation of

strings by widened hammers.

Digression on Loudspeakers.

The behavior of a real loudspeaker as a generator of sound

is not quite like the behavior of the simple source we have

just described. For one thing the speaker cone is fairly wide,

so that at high frequencies it spans a number of humps in

the vibratory pattern of the air, therefore failing to drive

them effectively (see secs. 8.1, 8.2, and 8.5). Furthermore,

the loudspeaker cone acts like a mass mounted on a spring,

giving it its own resonance behavior. The suitable

coordination of these two phenomena with those that are

primarily electrical in nature is a serious problem for a

loudspeaker designer, but not one that we need to concern

ourselves with here. Suffice it to say that with suitable

equipment it is possible to arrange small, pumplike devices

that allow us to study the properties of rooms and the air

columns of musical instruments in terms of their pressure

response to excitation by a simple source.



Now that we have described the simple source as a basic

device for the excitation of the vibratory modes of air in a

room and contrasted its properties with those of the familiar

loudspeaker, we can adapt some of the principles studied in

earlier chapters to the new physical situation. Following

custom, we will do this by means of a set of numbered

assertions:

1. A given oscillatory mode in a room is maximally excited

by a simple source if the source is located at one of the

points of maximum pressure variation belonging to that

mode. There is no excitation at all if the source is located at

the position of a pressure node (see assertions 1, 2, and 3 in

sec. 7.2).

2. Sinusoidal excitation of a mode by means of a simple

source produces a maximum oscillatory pressure amplitude

when the excitation has a driving frequency that matches

the natural frequency of the mode (see assertion 3, sec.

10.1, also fig. 10.3).

3. Lightly damped room modes, when started and then left

to “ring,” will run for many oscillations before the pressure

amplitude has fallen appreciably. Such modes respond

strongly to the excitation frequency only when the

excitation frequency closely matches the characteristic

frequency of the mode. Put another way, when the damping

is low, the halving time T1/2 is long and the half-amplitude

bandwidth W1/2 is narrow (see assertions 9 and 10 in sec.

10.3, also fig. 10.9).

4. Each particular room mode responds sinusoidally to some

extent regardless of the driving frequency. The resulting



oscillation will have the characteristic shape belonging to

the mode and (after the initial transient has died down) will

oscillate at the driving frequency (see fig. 10.2).

5. All of the transient behavior of room air responding either

to sinusoidal driving by a simple source or to impulsive

excitation by explosions shows pressure variations which

follow all the rules that we discovered earlier for the

mechanical oscillations of masses, strings, bars, plates, and

membranes (review sec. 10.6).

11.3. Detection of Room

Modes by a Microphone or

by the Ear:

Interchangeability of

Source and Detector

In the previous section we learned that the oscillatory

pressures associated with the motion of air in a room are

excited by a simple source of sinusoidal air flow in a manner

we should find quite familiar since we have met it several

times earlier in this book. We turn our attention now to the

detection of these modes by a small microphone or by the

human ear. It seems almost a triviality to point out that the

amplitude of the microphone’s electrical signal will fall to

zero when the microphone is located at the position of a

pressure node; conversely, the signal will be of maximum

size if the microphone is moved to a point in the room where

the pressure variations belonging to the mode are at a

maximum. Such a point of maximum pressure variation in

the room is often said to be at a pressure antinode. In our



more informal terminology, it could be described as being at

the highest point of a hump in the characteristic vibrational

shape for the mode in question.

We are now in a position to recognize formally a connection

between the physics of the pressure variations which we

have been discussing and the perceived response to these

variations which comes about when a human nervous

system processes the signals coming to it from the ear.

Since ears are like microphones in being sensitive to

oscillatory pressure variations in the atmosphere, we would

expect to hear a loud sound when our ears are located at an

antinode and complete silence when they are placed at a

node. If we could in fact excite the room modes one at a

time by means of a simple source, this is exactly what we

would observe. One ordinarily does not find points of silence

in rooms, or points of sharply marked maximum loudness.

The reasons for this lack are to be found partly in the

physics of rooms in which many modes are excited

simultaneously (as described later in this chapter) and

partly in the way our hearing mechanism operates (see

chap. 12).

You may wonder why acousticians are in the habit of

referring to oscillatory variations of air pressure as sound

pressure. In its original meaning, the word “sound” referred

to a particular kind of perceived signal—the one received by

the ears of a living creature. As men came to understand the

connection between certain kinds of vibration and the

sounds they heard, the vibrations themselves were referred

to as sound. Now and then the question is posed: “If a tree

falls in the forest and there is no one around to hear it, is

there really a sound?” The answer, of course, depends on

the special interests of the questioner. To someone confining

his interest to the vibrations of objects and the resulting

pressure variations in the air, there is indeed a sound. On



the other hand, the student of perception might assert

(perfectly correctly) that if no auditory signals are being

processed in a nervous system, then there is no sound.

Musicians are of course vitally concerned with both the

generation and the perception of sound, which is why we

find ourselves continually moving back and forth between

the two viewpoints.

We close this section with an observation which has

remarkable consequences both for the physicist and for the

perception psychologist. Everywhere in this book we have

noticed that the modes of oscillation characteristic of any

system are most favorably excited as precisely the same

points as those where oscillation is most strongly

observable. In other words, there appears to be a

considerable similarity between the efficacy of excitation

and the ease of detection of an oscillation. This similarity is

actually complete: the points of excitation by a simple

source and of detection by a small microphone are precisely

interchangeable. This relationship is indicated schematically

for a one-dimensional room in the upper part of figure 11.1

If a simple source is located at one point in a room (call it

point A) and a small microphone is located at another point

(point B), then the pressure signal at B due to the action of

a flow source at A is exactly the same as the pressure signal

to be observed at A if the source is moved to B (see the

lower part of fig. 11.1). This assertion seems particularly

shocking when one realizes that it implies that a listener

seated on stage in a concert hall will hear from a violinist in

the balcony exactly the same sounds he will hear if the

player and listener take up their more normal positions! In

actual fact, the two versions will not sound exactly alike.

This is partly because a violin does not act quite as a simple

flow source and partly because we use two ears for our

listening, ears that are separated by a fairly solid skull, but



the difference arises chiefly as a result of the way our

nervous system operates.
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Fig. 11.1.

11.4. Measured Steady-

State Response Curves for

a Room

In the previous sections of this chapter we simply reviewed

the excitation and detection of room modes taken one at a

time. Our experiments in chapter 10 with the metal tray

have already given some indication of what can happen

when the disturbance at some point is made up of the

superposition of vibrational shapes belonging to several

modes. Except for those of us who sing in shower enclosures

or telephone booths, our experience is mainly with rooms

large enough to have scores of modes that are strongly

excited, even by a source that generates an oscillatory flow

at only a single frequency.

Figure 11.2 presents a graph of the average number of room

modes that lie close enough to a given (sinusoidal)

excitation frequency to be excited to more than half their

maximum amplitude. The curve is calculated for a typical,

well-cluttered, medium-sized room of 10,000 cubic feet (282

cubic meters) volume whose modes are damped enough to

make them die away in amplitude with a halving time T1/2

of 1/20 second (giving them a half-amplitude bandwidth

W1/2 of very close to 7.6 Hz). The figure shows that for any

excitation frequency above about 200 Hz, several dozen of



the room modes are willing to be strongly excited by the

source.
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Fig. 11.2.

Digression on the Number of Strongly Excited Modes for Any

Room at Any Frequency.

Figure 11.2 can easily be adapted to give the numbers of

actively excited modes at a given frequency in rooms of any

size and with any amount of damping. The curve can also be

made to give information for higher frequency sounds. First

of all, the number of active modes at any frequency is

proportional to the volume of the room. Because of this, if

we compare a million-cubic-foot concert hall with the

10,000-cubic-foot room described above, we can expect to

have a 100-fold increase (1,000,000 ÷ 10,000) in the

number of active modes at any given frequency, Secondly,

an increase in the damping raises W1/2 proportionately (see

assertion 10 in sec. 10.3) and so makes a corresponding

change in the number of modes that can be excited. Finally

it is a fact that the curve in figure 11.2 is one that rises

proportionately to the square of the frequency. As a result,

at a frequency that is, for instance, ten times any of the

listed ones, the number of strongly excited modes is

increased 100-fold (10 × 10).

Let us now see what actually happens when a simple source

is arranged to excite my laboratory room, whose volume is

nearly that assumed in figure 11.2 (78 percent of it) and



whose damping is exactly the same. I should remark that

musicians find the room a pleasant one to play in and that it

is particularly satisfactory for instruments that play above

the note A3, whose fundamental frequency component lies

at 220 Hz. Figure 11.3 shows two transfer response curves

measured for this room over the restricted frequency range

from 400 to 700 Hz. In both cases a carefully checked

simple source was located on the floor exactly in one corner

of the room; however, the detecting microphone was moved

several feet between the two tracings. Notice first of all that

the sound pressure amplitude recorded at the microphone

position is extremely variable as the steadily operating

simple source runs through its range of frequencies. Notice

also that the curves for the two microphone positions have

no similarity in the arrangement of their peaks and dips.

This is in contrast to the way in which various small details

of the resonance peaks kept reappearing in all of the

resonance curves of our metal tray (see fig. 10.14). The

explanation is as follows. The individual resonances of the

tray modes were separated widely enough (a few Hz apart)

in comparison to their half-amplitude widths (W1/2) that we

could see their separate contributions on the chart; in the

room, however, over the frequency range of interest the

resonances are so closely spaced that a very large number

of modes are appreciably excited at any driving frequency.

In this room, for example, at a 400-Hz excitation frequency

there are about 110 modes whose characteristic frequencies

lie close enough (within about 4 Hz on either side) to be

strongly excited by the source. What we are seeing in the

response curve, then, is the randomly varying combination

of these strongly excited modes as “heard” by the

microphone (look at fig. 10.16), along with the more

smoothly varying contribution from the “tails” of the

resonance curves of tens of thousands of other room modes

which, though they are only weakly excited, make up,



through sheer numerousness, an appreciable part of the

measured response. If I had made hundreds of tracings,

each with the microphone in a different position in the room,

numerical averaging of the magnitude of the responses

would have given a rising straight-line graph for the

aggregate behavior of the room, as is shown by the dashed

lines on the two parts of figure 11.3 (see also the remarks

made in connection with fig. 11.6 in sec. 11.8).
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Fig. 11.3. Variation of the Signal Detected at the Microphone

at Two Points in a Room as the Excitation Frequency Is

Varied

This average curve for the response of a room to driving by

a simple source can actually be calculated by correctly

integrating the contributions of all the thousands of weakly

responding high-frequency modes with those of the more

obvious modes that have strong responses when taken one

by one.1

In section 9.4 there is a digression pointing out that the

frequency difference between successive resonances of a

plate is constant as one explores ever-higher modes of

vibration, whereas for a membrane this spacing gets smaller

at high frequencies. We have found that rooms have a

somewhat similar behavior in that the frequency spacing

between successive resonances becomes less and less as we

study the higher frequencies. It is this that gives rise to the

sharply increasing number of strongly excited modes at

high frequencies that is implied by figure 11.2. Ordinary

ideas about the regularizing effects of averaging many

numbers might lead us to expect that the response curve

should become smoother at high frequencies if there are

more strongly driven modes to contribute to the behavior.



Such is not the case, however, as we can verify at a glance if

we examine figure 11.3. The general wiggliness is no less

near 700 Hz than it was near 400 Hz, despite the fact that

there are more than twice as many active modes at the

upper end than there are at the lower. About twenty years

ago, it was discovered that under the conditions of our

experiment the mean spacing of the peaks in the random

fluctuations of a response curve depends chiefly on what we

have called the halving time T1/2 for the decay of

oscillations. 2 A long decay time is associated with a steady-

state pressure-response curve which has many squiggly

peaks over any interval of frequency, and a short decay

time is associated with a smaller number of wiggles. The

heights and depths of the wiggles, however, do not depend

on the size of the room or on the halving time! The fact that

our response curves are uniformly wiggly over their entire

frequency range is then merely an indication that the decay

time is nearly the same for all modes over the measured

frequency range.

11.5. The Influence of

Furniture and Moving

Objects on Room Modes

In the preceding section we learned that the observed

response at any point in a room varies wildly as the

excitation frequency is changed. Our earlier studies of the

influence of added mass, etc., on plates and drumheads

suggest that the presence of furniture and people in a room

will rearrange the frequencies of the various modes and also

change the oscillatory pressure distributions which

characterize them. Such alterations to the individual room



modes turn out to be small in magnitude. Whatever is

observed in the room comes about, however, through the

piling up of many thousands of strongly and weakly excited

modes, nearly all of which are altered to some extent, and

one does in fact observe a quite significant net effect.3

The upper part of figure 11.4 shows what the microphone

response signal looked like when I walked slowly around my

laboratory room and back to my starting place. In this

experiment the corner-mounted source was running at a

particular frequency near 600 Hz (the microphone position

was the same as in the lower part of figure 11.3). The graph

shows a certain amount of fluctuation in the microphone

signal as my body altered the arrangement of the

characteristic patterns of the room modes. In the middle

part of the trace we see that my perambulations took me

into a region that had a particularly large influence. It is a

matter of pure chance that this region happened to lie clear

across the room. Notice that the pressure signal was the

same after my return to the starting point as it had been

originally; you may also realize from the horizontality of the

trace in the immediate neighborhood of the starting point

that in this region of the room small changes in my position

have almost no effect on the detected acoustic signal.

Look now at the lower part of figure 11.4. In making this

curve, the source and detector positions were left

unchanged, as was my point of departure for the room

circumnavigation. The chief alteration was a small change

(some 5 or 10 Hz) in the excitation frequency. The new

frequency was critically chosen to give an especially small

response at the microphone position. The electrical drive to

the source was also turned up, so as to bring the level of the

microphone signal back approximately to its value at the

beginning of the first experiment (the sound to my ears

under these conditions was almost unbearably loud). The



chart recorder trace made under these conditions shows

enormously large and complex fluctuations in the

microphone signal. Experiments like these, where one looks

into changes in the sound transmis-sion that are associated

with changes in the arrangement of the room, show a

number of features which I will summarize as follows:
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Fig. 11.4. The Effect of Someone Walking Around in the

Room on the Detected Signal. Upper trace, the fairly uniform

transmission observed at a selected frequency for which the

transmission to the microphone is particularly strong; lower

trace, the much wilder fluctuations observed for a nearby

frequency that produces particularly small transmission to

the same microphone position.

1. For any particular frequency of excitation and source

location there are microphone positions in a room at which

the detected sound pressure is particularly insensitive to

the effects arising when objects are moved around in the

room. There is generally a strong transmission of sound to

the microphone at such positions, and things are little

changed if the frequency is altered slightly.

2. For any given excitation frequency and source location,

there are a few microphone positions in the room at which

sound pressure amplitude is extremely low. These regions

are very small (about fist-sized for frequencies in the

neighborhood of 500 Hz). When objects are moved around

in the room there are enormous fluctuations in the

microphone signal. The positions in the room of such points

of minimum sound pressure and wild signal fluctuation are

considerably displaced if a small change is made in the

excitation frequency.



11.6. Room Response:

Some Apparent Problems

We have so far given our attention to the way in which

steady-state responses of many modes combine to give the

microphone signal in a room. We have yet to look at the

related problems of the starting transient, the decay of

sounds in a room when sinusoidal excitation is shut off, and

the related responses of the room to impulsive excitation.

Before taking up these matters, however, we should pause

briefly to glance at some of the problems which steady-state

room behavior might raise in the mind of a musically

oriented reader.

In chapters 7 and 8 a great deal of care was invested in the

explanation of various vibration recipes produced when

strings are struck or plucked in various ways. As a reader

you were entitled to deduce from this that what we call tone

color was somehow associated with these vibration recipes,

and that skillful manipulation of the recipes belonging to

different musical instruments is one of the resources of

composers and performers.

Even without worrying about the detailed manner in which

an actual musical instrument acts as a sound source in the

studio or concert hall, we may be led by figures 11.3 and

11.4 to fear that the properties of rooms may somehow

destroy all possibility for well-defined tone color. Depending

on where the listener sits (and also, by symmetry, on where

the source is located), the strengths of the various partial

components of the tone apparently can have almost any

relationship whatever to one another at the listener’s ear.

Furthermore, if either the player or the listener moves to



another part of the room, these relative strengths will be

reshuffled into yet another new and random arrangement!

It is of course a fact that for many centuries music has been

satisfactorily performed in rooms. It is also a fact that most

of us quickly recognize the individual voices of our friends

and even of particular musical instruments when they are

heard in rooms. Obviously there are some gaps in our

understanding of what is going on. Some of these gaps

belong to the territory of physics and will be filled somewhat

later in this chapter. Other pieces of missing information will

be supplied in chapter 12, where we will consider how our

ears not only cope with but also exploit the sound-pressure

complexities of a room. Meanwhile, let us look at one semi-

practical implication of what we have learned so far.

In section 11.4 it was remarked that an arithmetical average

of a room’s response behavior observed at many different

points gives a good representation of the output from the

source. This might lead us to leap to the conclusion that

connecting together the outputs of a whole set of

microphones which are placed throughout the room would

allow one at least to record something that is not “spoiled”

by the vagaries of room acoustics. This turns out not to be

true, because the electrical adding-up of a set of sinusoids,

one from each microphone, each with its own amplitude and

degree of lagging behind the driving stimulus, is not at all

the same thing as sitting down with pencil and paper to

average the measured amplitudes of these same sinusoids.

As a matter of fact, if you feed two or three microphones

together into a commercial microphone mixing circuit and

record the combination, the resulting signal will normally

have an increased irregularity when compared with a

recording made with any one of the microphones used alone

(there was mention of this same phenomenon in the final

experiment in chapter 8 having to do with the use of dual



pickups on an electric guitar). Because of the symmetry that

holds between point sources and small detectors, we should

realize that the use of several interconnected loudspeakers

in the room will for the same reasons fail to increase the

regularity of the excitation process. I hasten to add that at

this stage it is premature to say whether the use of multiple,

interconnected microphones or of similarly related

loudspeakers is good or bad. One merely has to remember

that the steady-state transmission of sound between source

and microphone is made (if anything) more irregular by any

reduplication of source or detector.

11.7. Transient Response

of Rooms to Sinusoidal

Excitation

So far in this chapter on room acoustics we have confined

our attention to microphone signals picked up under steady-

state conditions. All changes of frequency, microphone

position, or my own position as an adjustable perturbation

of the room modes were made very slowly, and the system

was left running long enough that the initial transient

behavior had time to decay away. We will now focus our

attention on the transients themselves. We recall from

section 10.2 that when a single mode of oscillation is

excited by a sinusoidal driving mechanism, the initial

motion of the vibrating object can be a very messy-looking

combination of a steady oscillation at the drive frequency

plus a damped sinusoid characteristic of the free oscillations

of the mode. However, if one drives the mode at precisely its

own natural frequency, the initial transient can have a tidy-

looking motion (see fig. 10.8). When one thinks about the

initial behavior of a room when it is driven by a sinusoidally



varying flow, it is not obvious what sort of microphone

signal to expect. Will the fairly orderly-looking response of

the set of strongly excited modes (whose frequencies match

that of the driver) predominate in the observed microphone

signal? Will the aggregate effect of the thousands of off-

resonance modes pile up to give some recognizable

pattern? Will the whole thing degenerate into hopeless

complexity? The fact that the percussionist can make use of

elaborate rhythmic patterns in his playing and the fact that

a competent instrumentalist exploits variations in the

phrasing and articulation of his successive notes certainly

suggest that there must be some sort of regularity in the

transient behavior and that this regularity is something our

ears have learned to use.

Figure 11.5 shows what happens in my laboratory room

when the excitory signal is first switched on and then turned

off a few tenths of a second later. The source and the

microphone are located where they were during the making

of figure 11.4. In all these cases the drive frequency was

close to 600 Hz. The vertical displacement of the

oscilloscope spot is a measure of the sound pressure at the

microphone, while the horizontal axis is marked off in 1/10-

second intervals (compare these pictures with those taken

with the microphone placed near a tuning fork, figure 4.2).

The top picture in figure 11.5 was made using the same

driving frequency used in making the top tracing of figure

11.4. The oscilloscope trace begins at the left at the instant

the excitation was turned on, and we can see that the

sound-pressure amplitude grows to nearly its full value in

the course of the first 1/10 second. The source was turned

off after a little more than 0.55 seconds, as shown by the

fact that the sound begins to die away at a point lying

between the fifth and the sixth timing marks. After this time

the sound pressure fades out in a manner very reminiscent

of the decay of a single mode, with a halving time of about



1/20 second (a half square on the oscilloscope grid). The

narrow, blurry stripe that runs along the last 0.2 seconds of

the trace shows merely that the room’s ventilating system

supplies a little stray noise which covers up the last vestiges

of the decay. If one were to see this picture by itself, it would

be easy to decide that the first of our rhetorical questions

has an affirmative answer: the build-up and the decay of

sound in a room are dominated by the strongly excited

modes, which somehow manage to give a total response

that looks like that of a single spring-mass system taken by

itself. However, we have two other oscilloscope pictures to

think about.
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Fig. 11.5. Transient Behavior at One Point in a Room for

Three Nearby Frequencies. Upper trace, made under the

same conditions as upper trace in fig. 11.4; lower trace,

made under the same conditions as lower trace in fig. 11.4;

middle trace, conditions midway between the other two.

The bottom one of the three oscilloscope traces in figure

11.5 shows the room response when the driving frequency is

altered by only a few Hz to give it the value used in making

the lower chart recording of figure 11.4. You will recall that

at this excitation frequency the microphone signal was

particularly tiny. When the tone is switched on we find an

almost immediate ragged burst of sound arriving at the

microphone, and then this drops away over the next few

tenths of a second to an amplitude only about twice that of

the background noise in the room. The excitation is turned

off 0.37 seconds after it begins and, immediately following

this switch-off, the microphone receives a second irregular

burst of sound which decays to leave only room noise.



The middle picture in figure 11.5 shows the build-up and

decay of sound at the microphone position when the source

frequency is set at a value intermediate between those used

for the other pictures. To produce this picture, the excitation

was shut off 0.43 seconds after it was switched on. Notice

that the overall shape of the response is midway between

those shown in the other two pictures. There are initial and

final bursts of large amplitude sound, although they are

smoother and less pronounced than in the bottom picture.

After the initial transient has settled down, the steady-state

response shown here for the room is intermediate between

that shown for the other two excitation frequencies.

Let us distill the information that can be gleaned from the

comparison of figures 11.4 and 11.5 into a set of numbered

statements:

1. The transient behavior observed at any point in a room

after the excitation is turned off is very similar to that

observed immediately after the source is turned on.4

2. The duration of the onset and decay transients is as long

as, or longer than, what one might expect on the basis of

the known halving time for individual room modes.

3. When the excitation frequency is set at a value that

makes the microphone signal insensitive to the position of

objects moving around the room, the onset and turn-off

transients have a form very similar to the build-up and

decay of a single mode acting by itself. The steady-state

signal at the microphone is relatively strong under these

conditions.



4. When the drive frequency is set to produce maximum

sensitivity of the microphone signal to rearrangements of

the furniture, the onset and turn-off transients are in the

form of irregular bursts of sound. During the steady part of

the excitation the microphone signal is particularly small.

5. At driving frequencies other than those described in

statements 3 and 4, the transient behavior is intermediate

between the two extreme forms.

6. Moving the source and the microphone to new positions

in the room causes a total rearrangement of the frequencies

at which the various forms of transient and steady-state

response take place.

Before we leave the subject of the transient response of

rooms to sinusoidal driving for a look at their response to

impulsive sources, we should see how much we can figure

out about how the air modes work together to produce the

phenomena described above. Statement 1 can be

understood if we recognize that shutting off a steadily

running source at some instant is exactly equivalent to

leaving it running while starting up an immediately

adjacent second source at that same instant. The new

source must be arranged to suck in air at those precise

instants that the original one is ejecting air, and vice versa.

If we think about the room’s response to this late-starting

(and reversed) source acting by itself, we should expect a

new transient that is exactly like that belonging to the first

except for the interchange of positive and negative pressure

maxima in the course of each individual oscillation. After

this transient has died out, the effects of the two sources

exactly cancel each other out everywhere in the room to



produce silence. In other words, we can think of the start-up

transient as being due to the initiation of an indefinitely

continued excitation, while the shut-off transient can be

thought of as the start-up transient of a later, reversed-

phase source which also continues indefinitely, eventually

canceling the first one.

Statement 2 is somewhat harder to make something of.

However, we can get an idea of what is important by

recalling that all of the strongly excited room modes have

approximately the same frequency (within about 3.8 Hz of

each other in our example). Because they run at nearly the

same frequencies, their individual transient responses will

tend to pull out of step with one another; this has a

noticeable effect over any period of time that is longer than

their individual halving times.

In a book of this sort there is really very little that can be

said of an explanatory nature about statement 3. We will

have to content ourselves with remarking that the

experiment is done at a frequency for which there are many

ways in which the room modes can respond to the driver to

give essentially the same microphone signal.

Statement 4, on the other hand, is amenable to a slightly

more detailed explanation. To produce zero response at

some point in the room during steady excitation, there has

to be an extremely precise adjustment if the aggregated

and reasonably stable contributions of the thousands of off-

resonance modes are to cancel exactly the combination of

the relatively fewer strongly excited modes. During the

onset and turn-off epochs every one of these modes is

undergoing its individual transient oscillation, with each

transient oscillation including a good helping of the mode’s

own characteristic frequency component along with the

driven component whose magnitude was so carefully



adjusted. It is the collection of individual mode transients,

then, that gives rise to the bursts of sound at the

microphone when the source is first turned on and when it is

shut off.

Statement 6 is merely a reminder that the pressure

variations detected by a microphone at some point in the

room are the result of superposing the contributions of

many modes. The amount of each mode’s contribution

depends not only on the position of the microphone relative

to the nodes and antinodes of that mode’s oscillatory

pattern, but also in the same way on the position of the

source.

11.8. Response to

Impulsive Excitation I:

Signal Delays and

Reverberation

In this section we will look into the way a room responds to

an impulsive flow excitation and learn of a new

phenomenon in the evolution over time of the pressure

distribution. This phenomenon is observable not only in a

room, but also in certain one-dimensional objects such as

piano strings and straight-sided pipes containing air (the

phenomenon in its simplest form does not take place in two-

dimensional objects!).

The top part of figure 11.6 shows the particular variety of

impulsive flow behavior that I have arranged as a stimulus

to the laboratory room. The laboratory source is electrically

driven in such a way that it first sucks air into itself briefly



and then expels some air before settling down into

inactivity. The downward dip at the left-hand end of the

oscilloscope trace indicates the sucking-in phase of the

action while the succeeding upward hump shows the

pumping-out action. The oscilloscope is set up so that each

square of rightward motion represents the passage of

1/1000 second (1 millisecond) of time, which means that

the complete in-and-out flow impulse takes place in about

1.5 milliseconds.
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Fig. 11.6. Top, impulsive flow pattern of a source; bottom,

corresponding pressure signal at a nearby microphone.

The lower part of figure 11.6 shows the pressure disturbance

recorded when the microphone is placed immediately next

to the flow aperture of the source. The fact that the initial

twitch of the oscilloscope trace is downward agrees well

with our intuitive idea that a sudden extraction of air from a

region should momentarily lower the atmospheric pressure

there. Beyond this point, however, our intuitions fail us: the

pressure signal is not a copy of the flow signal—not only

does it have a different shape, it also seems to have

acquired one additional wiggle! The proper explanation of

this phenomenon is not something we can give in this book,

but we should know that the effect is a consequence of the

three-dimensionality of the room and is closely related to

the linearly rising averaged room response that was shown

by the dashed lines in both parts of figure 11.3 (see sec.

11.4).5 An experiment using the same flow source signal to

excite the modes of a long, air-filled pipe (a one-dimensional

room) would show not only a pressure disturbance that is an

exact copy of the flow disturbance, but an averaged “room”

response that neither rises nor falls as the frequency is

changed.



Figure 11.7 shows (top trace) the microphone signals

recorded with the micro-phone right next to the source

aperture, (middle trace) those recorded with the microphone

a few feet away from the source in the middle of the room,

and (bottom trace) those recorded with the microphone at a

greater distance from the source. In all three cases the

horizontal motion of the oscilloscope spot was electrically

initiated an instant (about 0.0005 seconds, or 0.5

milliseconds) before the flow started. As in figure 11.6, each

division along the horizontal scale represents 1 millisecond

of time. Comparison of these three pictures shows us that

impulsive excitation of the room modes gives rise to a

curious phenomenon. The separately started sinusoidal

oscillations of these modes pile up on each other in all parts

of the room in such a way that the more distant the

microphone is from the source, the longer it takes after the

impulse for the microphone to “find out about it” by

recording a pressure variation. It turns out that the speed

with which the initial part of the message runs outward from

the source to the microphone is the same for all directions of

travel in the room; it is also the same for all sorts of

excitations. This speed at which the front ends of signals

travel in a room is what is formally known as the speed of

sound in air. In a reasonably warm room the speed of sound

has an easily remembered round-number value of 345

meters/second (i.e., 1133 feet/second). Measurement of the

middle picture in figure 11.7 shows that the microphone

waited almost exactly 4 milliseconds for its message,

whence we deduce that it was located a distance of 345 ×

4/1000 = 1.38 meters, or 4.53 feet, away from the source.

Similarly, there is a delay of 6.3 milliseconds associated with

the microphone signal in the lower picture, so the distance

traveled was 2.17 meters (7.14 feet).

e9780486150710_i0128.jpg



Fig. 11.7. Microphone Signals in a Room Measured at

Varying Distances from the Source

It takes only a cursory examination of figure 11.7 to show us

that the pressure disturbances picked up by the microphone

at various distances from an impulsive source are not at all

the same, even though repetitions of the excitation always

produce identical signals at a given location (as long as no

one moves himself or the furniture). We do observe,

however, that the very first part of the signal preserves its

shape fairly well. Let us look once more at the pressure

signal picked up at the more distant microphone position.

This time we will use a slower horizontal traverse rate for the

oscilloscope spot, so that the traces show the pressure

variations over a longer time interval.

The top part of figure 11.8 shows the microphone signal at

the 2. 17-meter distance, using a time scale in which each

square represents 20 milliseconds. This trace covers a time

interval twenty times longer than before, so that the

beginning of the microphone signal lies near the left side of

the picture instead of being past the middle as it was in the

lower part of figure 11.7. In the new picture the whole

pattern is compressed so that we can no longer make out

the details of the individual wiggles. We can, however, see a

larger, though irregular, pattern which dies down in a way

reminiscent of the decay of sound from a struck skillet or

from a room after sinusoidal excitation is shut off.
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Fig. 11.8. Decay of an Impulsive Sound in a Room

The lower part of figure 11.8 confirms that the decay pattern

shown in the figure resembles that for a struck skillet. Here

the trace speed has been cut down so that each square



represents 100 milliseconds (identical to the 1/10-second-

per-division rate that was used in making the pictures in

figure 11.5). The halving time for the whole messy decay of

sound from impulsive excitation is the same as that

measured using sinusoidal excitation, an observation that is

not surprising when we recall that in both cases a collection

of room modes has been set into oscillation and then

allowed to die away freely, each mode according to its own

tendency.

We can now draw together the results of our observations of

rooms in the form of three numbered statements. The

section will then close with a careful definition of the term

reverberation time, which is an important part of the room

acoustician’s working vocabulary.

1. The pressure signal observed in the immediate

neighborhood of a simple source acting in a three-

dimensional room has a shape that is descended from but

not identical with the flow pattern of the source output

itself. In a one-dimensional room (a pipe), however, the two

patterns are alike. (Both these statements are subject to a

simple limitation which will be made clear in section 11.9)

2. The signal from a microphone that is placed some

distance away from a simple source will detect the

beginning of the excitatory signal only after a short delay

time. This is because the room modes combine in such a

way that signals travel in the room with a velocity of 345

meters/sec (1133 ft/sec).

3. The decay of sound after excitation, as observed at some

point in a room, is of the same general type whether the

excitation began impulsively or sinusoidally. This decay is in

general quite ragged, but, taken overall, it has a form



reminiscent of that found for the dying-away of the

sinusoidal oscillation of a single characteristic mode.

If one makes observations of the decay of sound at many

points in the room and with shifts of furniture, source

position, etc., it is possible to construct a room-average

decay curve for the sound amplitude. This decay curve

shows a definite halving time behavior. That is, the instants

of successive halvings of the averaged amplitude during the

decay are observed to occur at equally spaced intervals of

time. It is possible to show mathematically that the

averaged halving time just described is very nearly equal to

that of the room modes that were most strongly excited by

the source. Sound engineers and the designers of concert

halls make use of a somewhat simpler way of getting a

value for the average halving time for modes whose

frequencies lie near a certain one. They drive the source by

means of an electrical signal in such a way that its vibration

recipe contains many components of roughly equal

amplitude whose frequencies lie within a range of about 12

percent above and a similar amount below the frequency of

major interest (occasionally the limits are increased to about

19 percent). The sound pressure decay curve observed

when such an excitation is interrupted can then be

measured to find the halving time. For historical as well as

practical reasons having to do not only with wave physics

but also with the mechanisms of hearing (see chap. 12),

acousticians are in the habit of specifying the reverberation

time Trev rather than the halving time T1/2 that has been

our choice so far. This reverberation time is defined as the

time required for the averaged sound pressure in a room to

die down to one-thousandth of its initial amplitude, instead

of half its initial amplitude, as we specified for T1/2.6 There

is a very simple relationship between T1/2 and Trev. The

reverberation time is almost exactly ten (9.97) times the



halving time, and it follows that the bandwidth W1/2 over

which a given mode is strongly excited can be calculated by

means of a simple formula:

W1/2 = (3.8/Trev) Hz

11.9. Response to

Impulsive Excitation II:

Reflections and Scattering

In section 11.8 we found that the aggregate behavior of the

room modes is such that when they are impulsively excited

it takes a little while for the disturbance to become

detectable at any point away from the source. Figure 11.7

illustrated for us the fact that while the travel time for the

Initial part of a disturbance was well-defined in terms of

what we identified as the speed of sound, the shape of the

pressure impulse did not seem to be preserved to any

recognizable extent as it traveled through the room. It is the

purpose of this section to show in simple fashion how these

distortions of shape come about, and also to lay the

groundwork for an explanation in chapter 12 of how the ear

manages to disentangle the “true” nature of the pulse from

the distortions and distractions that seem to overlay it.

To begin with, let us imagine a large, uncluttered room

which has such enormous dimensions that impulsive

pressure messages from the source do not reach the walls

during the whole time that we pay attention to the source

and its signals. In practice one could use an aircraft hangar

or an athletic field house for such experiments, making sure

that the source and the microphone are up on tall poles to

keep them away from the floor and ceiling. (One might



consider using the whole outdoors as an analogue to our

enormous room, with the source and the microphone

perhaps being hung in midair by means of balloons!) In

such a large room, we would find that the shape of the

pressure signal remains unchanged whether the microphone

is placed next to the source or far away from it. In this sort of

room all three pulse shapes recorded as in figure 11.7 would

have the same dip-peak-dip shape as the one appearing in

the top picture. The amplitudes of the observed signals,

however, would decrease with distance in such a way that at

5 meters the amplitude would be only 1/5th of that

measured at 1 meter. If the room is big enough to permit

observations at 100 meters, the amplitude of the (still

undistorted) pressure impulse would be only 1 percent of

the 1-meter value.

If our experiments had been carried on within a few meters

of one wall of a huge room, we would find that a second

(undistorted) pressure signal would make its appearance at

the microphone. To produce such a pair of signals, the

original impulse travels past the microphone (making the

first pulse) to the wall and is reflected back to the

microphone, in the manner sketched in the top part of figure

11.9. The time delay between the first and second

appearances of the disturbance is simply the time required

for sound to make one round trip from microphone to wall

and back. The pressure amplitude of the second pulse is

reduced relative to the first for two reasons, first because it

has traveled an additional distance in making the round trip

to the wall and back, and second because of dissipative

effects produced during the reflection process (by, for

example, porosity of the wall).

We are now in a position to understand the simplest way in

which the pulse observed by a microphone in an ordinary

room can have a different shape from the one sent out by



the source. The microphone need only be close enough to a

wall for the front end of the reflected pulse to arrive before

the tail end of the original pulse has gone past. The

microphone then responds to the sum of the two pressure

signals that act upon it, which means that we could

calculate the resulting signal by use of the graphical

methods developed in section 4.5. The lower part of figure

11.9 shows an example of such calculation. Notice how the

earlier part of the composite signal is a perfect match for the

original pressure wave, while the later parts have a strongly

modified shape.
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Fig. 11.9. Superposition of an Impulse and Its Reflected Echo

In an empty room having perfectly flat walls, the

microphone receives first the direct sound from the source

and then the six reflected sounds coming from the floor,

ceiling, and four walls, plus an ever-weakening train of

successive re-reflections as the original impulse travels

around in the room. It is the superposition of these multiple

reflections that accounts in large measure for the grassy,

irregular appearance of the pictures in figure 11.8. We

should note, however, that in such a room the actual shape

of each individual reflected pulse would always match that

of its ancestor, the direct sound. The eventual complications

in the shape of the pressure disturbance would arise solely

from the adding up of successively delayed overlapping

replicas of the original impulse.

In any real room, one is not dealing with a simple, flat-

walled rectangular box. There is always furniture in it, and

people are present along with musical instruments,

scientific equipment, books, record players, and the like. In

a concert hall one also finds many sorts of architectural



details, chandeliers, catwalks, and spotlights, not to

mention human beings. Sound that is reflected or, more

properly, scattered from these irregularities does not

preserve the shape of the original impulse. Furthermore, we

find that even very small objects can scatter a rather

considerable amount of sound, in ways that have a

noticeable effect on what is heard in a musical performance.

Suppose that the object, or scatterer as it is usually termed,

is a compact object whose crosswise dimensions are much

less than the distance which sound travels in the time

required for the completion of one hump in the oscilloscope

pattern for the original pressure disturbance. An object of

this sort acts somewhat like a new but enslaved additional

source that generates a modified version of the original

pressure wave; this modified wave leaves its birthplace to

travel pretty much in all directions along with its more

ordinary, undistorted cousins. As an example of what we are

talking about, notice that the pressure impulse shown in the

lower part of figure 11.6 has humps, each of which has a

duration of about 0.0005 seconds. Scattering objects that

behave toward this sound in the manner just described

would have to be smaller than 0.17 meters (0.0005 sec

times 345 m/sec), or about 7 inches across, which is roughly

the size of a man’s head. If the source had produced the

same shape of pressure disturbance, but had taken twice as

long in doing so, then objects up to about double this size

would produce scattering of the kind under discussion.

Digression on the Waveform of Disturbances Scattered by

Small Obstacles.

For an impulsive type of original disturbance, the newly

created scattered pressures wave acquires two more humps



than the number possessed by its pressure ancestor,7 in

somewhat the way that the original pressure disturbance

coming from the source acquires one more hump than was

present in the pattern of air flow ejected by the source. We

also find that rapidly wiggling impulses incident on the

scatterer give rise to very much stronger scattered pressure

disturbances than do more slowly oscillating ones.

A larger object, such as the oscilloscope that sits on a cart in

my laboratory or the television set in someone’s living room,

acts differently upon many sounds which reach it because it

does not meet the smallness criterion specified earlier.

Instead of making neat reflections of the sound without

changing its shape on the oscilloscope screen as would a

large wall, or strewing a newly created impulse about itself

as would a small object, a large object produces a somewhat

distorted reflection of the original disturbance. This

reflection does not, however, spread out evenly throughout

the room but rather tends to concentrate more or less in the

directions in which light would go if a lamp placed at the

sound source were to shine its rays on mirrors fastened to

the sides of the object. There is also a certain tendency for

acoustic shadows to form behind such objects, a tendency

that is not apparent with small scatterers.

We have now met the last of the contributors to the

elaborate behavior of rooms when they are subjected to

impulsive excitation, so it is appropriate to consolidate

everything with the help of a set of summarizing remarks.

The pressure disturbances caused by impulsive excitation of

a room by a simple source (which disturbances we can



record by means of a microphone) are controlled in various

ways:

1. The original pressure impulse travels to the walls (and

other large, flat objects) and is reflected from them without

change of form. The reflected signals are then detected by

the microphone along with the original signal from the

source. The nature of these reflections is strictly analogous

to the reflection of light from an ordinary mirror.

2. Compact, small, solid objects act somewhat as new

sources of sound that originate new impulses of modifed

shape whenever an impulse is incident upon them.

3. Articles of furniture that are somewhat larger display a

behavior that is intermediate between that described for

large, flat walls and that for small, compact objects.

4. In the absence of any obstacles, acoustic pressure

impulses travel across the room with unchanged form at the

speed of sound, which is 345 m/sec (1133 ft/sec). Out-of-

doors or in a one-dimensional room with straight-sided walls

(a uniform duct or one having a uniform taper), the impulse

also travels unchanged with this same speed.

5. The pressure amplitude of a given impulse arising from a

simple source becomes less and less as it continues its

travels about in the room. For one thing, the amplitude

decreases to a value inversely proportional to total distance

traveled; for another, porosity (etc.) of the walls or

scatterers will also take its toll, resulting in further reduction

of the reflected or scattered amplitudes. If this latter process

alone were present, then a simple source would produce a

sound whose decay observed at one point in the room would



show a true halving or reverberation time behavior. The

presence of the distance effect modifies the nature of the

observed decay somewhat.

6. All of the transient behavior which we have described in

terms of traveling impulses can also be dealt with entirely

upon the basis of our knowledge of the characteristic

oscillatory modes of the room. Similarly all of the steady-

state behavior of rooms can be worked out using traveling

impulse methods. The two different-appearing viewpoints

are entirely equivalent. It is merely a matter of

mathematical or intuitive convenience which method one

chooses in a particular situation. One must, however, be

very careful to be strictly consistent when trying to switch

from one viewpoint to the other in midstream.

In closing this section I should like to emphasize that while

there are certain great similarities between the behavior of

sounds in large rooms and their behavior out-of-doors, it is

extremely hazardous to pursue the analogy between them

unless one is capable of working out everything in each

situation. The difficulty arises chiefly through the fact that

the outdoors acts simultaneously like a room of infinite

reverberation time, since it never “fills up” with sound, and

like one having zero reverberation time, since there is no

“ringing on” of the modes after the source is turned off.

11.10. Examples,

Experiments, and

Questions



1. It is possible to get a good idea of the way in which room

modes behave one by one if you can find a sufficiently

small, hard-walled room to sing in as you move around.

Once you have found two or three singing pitches that make

the room resound strongly it is easy to verify that there are

points in the room where the excitation and response are

particularly strong, and others where they are weak. It

requires the help of a friend listening in the room to verify

that the points of strong excitation are also points of loud

sound. If the room is of fairly rectangular shape and lacking

much furniture, you will find that the interaction of both

source and detector with any one of the modes is strong

near the walls, stronger yet in a corner between two of

them, and strongest of all at the junction of three of the

boundaries of the room. Perhaps you will be able to figure

out why this is so. Save your conclusions so as to compare

them with the discussion of this point that appears in

chapter 12.

2. The slow build-up and decay of sound in a small room can

also be experimented with. It is worth playing with the

effects of changes in the room decay time by bringing in

some cushions, carpeting, bedding, etc.

3. Many experiments on the excitation of sounds in a room

may be carried out at home with the help of the family hi-fi

set using a test tape or a record that gives sinusoidal tones.

Ignore the directions that come with such tapes or records

and simply use the sounds as something to listen to as you

move around the room or as you sit still and a friend moves

around. Don’t forget to distinguish between what you hear

when two sound sources are in action (the so-called “stereo”

mode) and when one loudspeaker is in action by itself.

Confine your present attentions to the latter. Also, do most

of your experimenting with one ear plugged by a finger, in

order to reduce the complications that arise through your



neurological processor. A better but more elaborate way to

do the experiments would be to carry the microphone of a

tape recorder around the room, holding it at arm’s length to

reduce the complicating effects caused by scattering from

your body. Listening to the recorded sound by means of

headphones will reduce the efficiency with which your

nervous system “covers up” the fluctuations, so that what

you hear will better match what we are talking about in this

chapter (chapter 12 deals further with these matters). Be

sure that your tape recorder does not have an automatic

level control, lest its operations succeed in eliminating

everything that is being sought.

4. While much of what is important in the home playing of

recordings depends upon the activities of our nervous

system, it might be interesting for you to prepare for the

discussion of these matters by reading and thinking about

the relation between what we have learned so far in this

book and the commonly available popular literature and

advertising about high fidelity systems. In particular, you

might at this point focus attention on the possibility of

constructing an “equalizer” to make the sound produced in

the room on playback into an accurate match of that which

the microphone picked up in a concert hall.

5. Hi-fi addicts commonly talk about something they call the

“standing waves” in a room. These turn out to be evidences

of individual modes that lie at low enough frequencies to be

separately excited. In my laboratory room, for example, one

must explore the frequency region well below 100 Hz to find

much of this sort of behavior. Use figure 11.2 and the

dimensions of your own living room to help you figure out

the frequency domain in which so-called standing-wave

behavior is to be expected in it. Notice that phenomena

associated with these individual modes can be observed

everywhere in the room, so that it might be sensible to



install an equalizer that can minimize their effects. Why is it

not true that putting partitions and hard-surfaced furniture

into a room can “break up the standing waves”? What will

be the effect of bringing in porous items such as sofas,

curtains, and carpeting on these separately observable low-

frequency room modes? What about the effect at higher

frequencies, where the room response becomes more a

matter of statistics?
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Room Acoustics II: The Listener

and the Room

When one first learns about the complicated and irregular

manner in which sound gets from one part of a room to

another, it is tempting to conclude that music lovers who

insist on hearing music under the best of all possible

conditions should hire musicians to play in a room lined with

elaborate arrays of rock-wool wedges arranged to prevent

any echoes from bouncing off the walls, floor, and ceiling

(such a room is known as an anechoic chamber).

Furthermore, the listener might, if he were an absolute

fanatic about “correct” sound transmission (and rich enough

to afford it), insist that no one else but himself could come to

the concert. He would object to having company, of course,

because of the way in which his fellow listeners and the

chairs they sit upon would scatter the sound. When one

looks into what actually happens in such surroundings, it

turns out that he would find himself feeling frustrated and

insecure, and his musicians would feel even more so.

It is true that scientific investigators can sometimes

simplify the analysis of their experiments if sounds are sent

from source to listener in an anechoic chamber. They can

often further simplify their labors by working with

electrically generated sounds supplied directly to the ears

by means of headphones. However, it is almost universally

true that the human ear’s ability to discriminate small

changes of pitch, loudness, or tone color, or otherwise to



“make sense” out of combinations of signals, is immensely

better in a room than it is under acoustically more sterile

surroundings.

Resolution of the apparent paradox implied in the

foregoing two paragraphs depends on the fact that musical

sounds are continually changing in pitch, in time, in

loudness, and in the way the various instruments join their

voices together. Not only that, but the musicians themselves

are continually moving, as are their listeners. Our nervous

system is admirably suited to the job of exploiting these

changes: it uses them, instead of being confused by them.

This is the reason that our ears can outdo our laboratory

instruments in many situations and for many purposes. In

this chapter we will look at a few examples of what the ear

can do and examine some instances of the way in which

these abilities can be put to use.

12.1. Hearing Sustained Sounds in a

Room

Suppose that (for example) a trumpet player sounds a long,

steady note upon his instrument as he stands on the stage

of a concert hall. If he is playing A3 (which is a note having a

repetition rate of 220 Hz), then the room is being driven by

a source (the open end of the trumpet bell) having a

vibration recipe whose components have frequencies of 220,

440, 660, 880, 1100, 1320, ... Hz. It is a property of trumpet

bells that they behave almost exactly like simple sources for

frequency components below about 1200 Hz, while radiating

higher frequencies more in the fashion of an extended

source. This means that the half-dozen lower components

listed above may be expected to behave in the room almost

exactly as would our carefully built laboratory source.

Measurements made upon sounds within the trumpet show

us that any particular instrument played at a given loudness

by almost any reasonably competent player acts as an



extremely well-defined excitatory source. That is, source

strengths belonging to each partial are definite, and the

ratio between the amplitude of the first (harmonic) partial

and those of the second, third, etc., partials are also well-

defined and reproducible. All of this is to say that when a

rumpet is played, the excitation acting on the room has a

very stable and definite nature.

In section 11.4 we learned that at the listener’s ear, the

sound pressure associated with any partial is ill-defined

indeed. Any point in the room where the ear might find itself

has its own relationship between source strength and

measured sound pressure, this relationship being different

for every frequency component that may be emitted by the

source. The vibration recipe that relates the amplitudes of

the partials in our trumpet tone at a listener’s ear will

therefore differ wildly from point to point in the room. One’s

right ear might for example be at a spot where the collection

of room modes excited by the first partial combine to give a

particularly large amplitude, yet at this same point the

pressure amplitude associated with the second partial might

be very small. At the location of the left ear the situation

might (by chance) be reversed, so that the fundamental

component of the trumpet tone would be represented with

less-than-average strength while the second partial would

have a greater-than-normal pressure amplitude. Even

though it looks at the moment as though chaos would rule

the situation, we have here the physical basis for one of the

ways in which ears go about making sense of a trumpet tone

or other sound. Let us state it as the first of three assertions

describing aspects of human interaction with sound in a

room:



1. Our nervous system is able to operate in many ways

simultaneously. One of the things it is able to do is to make a

preliminary assessment of the strength of the partials of a

musical tone by forming a kind of averaged amplitude

measurement based upon the different signals received from

the two ears (see sec. 11.4 and the last paragraph of sec.

11.6).

This assertion, when applied to actual hearing in the

concert hall, is helpful only for sorting out partials whose

frequencies are higher than about 1000 Hz. Let us go back

to the physics laboratory to find the cause of this 1000-Hz

limitation.

Imagine that the sound field of a room has been explored

by means of a slowly moving traveling microphone which

uses a fixed excitation frequency. Measurements of this sort

give wiggly-looking chart recorder traces whose appearance

is almost exactly similar to the traces shown in figure 11.3,

except that in the present example the horizontal axis of the

chart represents the traversal of the microphone rather than

a progressive variation in the excitation frequency. Our new

kind of chart recording is a way of showing the fluctuation

observed in the sound pressure as the microphone visits

various parts of the room. Comparison of traces obtained

with different excitation frequencies shows us that high

frequency excitation is associated with closely spaced

random wiggles in the sound pressure trace, whereas at low

frequencies one must move the microphone much farther to

get from one part of the fluctuation to the next. In the

precise but rather terse jargon of the statistician, our results

can be summarized by saying that the autocorrelation

distance for sound-pressure fluctuations in a room is about

one-half of the wavelength belonging to the excitation



frequency. Before we can say this in plain English, we should

first observe that in this context the word “wavelength”

means the distance through the air in the middle part of an

uncluttered room that a sinusoidal acoustic disturbance

travels in the time of one complete oscillation. The width of

what we have called a hump in the characteristic vibrational

shape of the room mode turns out to be equal to one-half of

the wavelength we have just defined. Figure 12.1 shows the

relationship between frequency and this half wavelength,

with a few note names added to show the pitch relationship

of various frequencies. The curve is calculated from the

formula:



Fig. 12.1. Half Wavelengths in Air for Sounds of Different

Frequency

The phrase half wavelength directly connotes the width of a

hump in a room mode, and, if we could excite one of these

modes by itself, the travels of our microphone would give us

a smoothly varying trace on the chart, with each hump

following the next in proper order. Under these conditions a

look at any point on the trace lets us predict accurately what

the trace will look like farther along. In an actual room,

however, the superposition of contributions from thousands

of modes leads to a great irregularity. A look at one part of

the chart tracing then lets us “predict” only a very short way

ahead. The statistician’s statement merely tells us that the



relationship between two points a half wavelength or more

apart is totally random: there is no chance of telling the

sound pressure at one of these points on the basis of what

we find at the other point. Between points much closer

together than a half wavelength, however, it is possible to

make rough predictions. An approximate measurement of

the human head to find the distance between our ears may

be used along with the wavelength data of figure 12.1 to

show that only at frequencies above 1000 Hz are ears

spaced so as to get independent views of the room sound for

averaging purposes. (The actual figure is affected not only

by the minimum half wavelength as measured between the

ears through the head but also by acoustic properties of the

head.) We can also deduce from the figure that at the 220-

Hz fundamental frequency of the trumpet tone the ears are

close enough together that they receive rather similar

messages from the room and therefore are unable to eke out

extra information about the trumpet by use of an amplitude-

averaging process.

We have just been discussing one of the ways in which our

two ears can work together in an effort to extract the high-

frequency part of the “true voice” of the steadily blown

trumpet from the welter of sound in the room. It does not

take a very great leap of the imagination to recognize that if

we simply sway around a little in our seats while the player

sounds his trumpet, we supply each of our ears with an

interestingly varied set of sound pressure samples which can

be melted down into an improved average for each partial

making up the tone. There are two aspects to this

improvement. First of all, moving one’s head puts the ears at

new positions. For all ordinary swayings, this directly adds

only a restricted amount of additional low-frequency

information, for the same reasons as before: the two samples

are taken too close together to do a good job on low

frequency sounds. There is an additional and fairly



considerable effect, however: the displacement of one’s

head and shoulders alters the characteristic frequencies of

the various room modes by a very tiny amount and so makes

small changes in the individual responses to excitation (as

we learned in sec. 11.5). Measurements show, however, that

even in a concert hall of considerable size, the reshuffling of

room statistics by a moving listener can increase the

fluctuations at his ears enough to provide them with almost

as much averaging material at 500 Hz as they get at 1000

Hz! As an additional help to the listener, we have the normal

swaying of the musician himself as he plays (remember

there is complete similarity between what goes on at the

source position and what goes on at the detector). If there is

an audience, its movements serve to make an enormously

effective addition to the net fluctuations that are available

for averaging by our hearing mechanisms.

We will close this outline of how ears operate on a steadily

maintained sound with a simple example of how all these

phenomena are put to use, plus two more summarizing

statements. When a conductor wants to know how a chord

sounds from his orchestra, he is very likely to start it playing

and then pace around a little, either on the podium or out in

the hall. Usually this is a completely intuitive action on his

part, and he has little conscious awareness of all the peculiar

acoustical things that are going on. The sensible fellow

simply listens to the sound and makes his decisions. Earlier

we made a statement that the human nervous system is

able to make running averages from the signals arriving at

the two ears, to deduce more precisely the true nature of the

sound recipe. We can now extend this statement a little:

2. Our nervous system is able not only to make running

averages of the signals at the two ears as a means for

determining the strengths of various partials, but also to pile

up information from both ears over a short period of time

and average all of it, so as to exploit fluctuations arising



from moving objects in the room. The listener only feels

secure and certain about a sound if he has the chance to

exploit most of the physical opportunities for making

averages.

3. The human body is of such a size that ordinary small

motions of a listener or player are sufficient to provide

appreciable help to our aural averaging mechanism—for

steady sounds only—for frequency components above about

500 Hz.

12.2. The Role of Early Reflections: The

Precedence Effect

One almost never meets with long, steady sounds in a

musical performance, so that the listener’s ear is offered all

the complexities of start-up and decay of sound in the

concert hall on top of those belonging, so to speak, to the

middle portions (in duration) of the notes as they are played.

It was this middle part that we were dealing with in the

preceding section of this chapter. We will now look at some

of the things that happen when our trumpet player attacks

(starts) each note and when he cuts it off or shifts to a new

note in the music. Actually, there are two parts to the

beginning and ending phenomena. The trumpet itself

begins and ends its notes in its own characteristic way that

is somewhat under the player’s control, and then the room

operates upon these beginnings and endings in ways that

we explored in chapter 11. At the moment we wish to

confine our attention to the latter set of phenomena since

our present concern is with the interaction of room acoustics

with the hearing process. Because of this, we will

temporarily pretend that trumpet tones are started and

stopped by electrical means in some prompt but featureless

fashion.



When our musician sounds a note, each sinusoidal

component launches itself from the bell and travels through

the room. If we confine our attention briefly to the lower-

frequency partials, those for which the trumpet acts like a

simple source, we find that they are sent out with equal

strength in all directions. Each of our ears is supplied with

the direct sound within a few milliseconds, and is also

supplied with the six first echoes off the walls, floor, and

ceiling of the room (a few more, reasonably orderly,

additional echoes will also come in, but they need not be

dealt with separately). Recall from section 11.9 that pressure

disturbances reflect from large, flat walls without change of

form; this is simply another way of saying that reflection

takes place without altering the relative strengths of the

partials. In the initial stages of the room transient, then, our

ears are supplied with half a dozen repetitions. of the actual

sound recipe of the trumpet, and, to the extent that our

nervous system can exploit this, it will already have

acquired a good view of what the player is doing for

comparison and checking against information it will gather

later on during the middle part of each tone. Furthermore,

the stopping of a sound produces what we might call “un-

echoes” that provide the ear with information that is more or

less identical with that presented during start-up (see the

explanation of this phenomenon in sec. 11.7). This

duplication provides further trustworthy data for our

neurological grinder to operate upon.

The high-frequency partials of a trumpet tone (and those

from many other instruments) do not excite the room modes

in the manner of a simple source. In particular the sound

leaving the bell does not spread out evenly in all directions

through the room. In the case of a trumpet, the high

frequencies are launched so that the start-up disturbance

propagates mainly in the direction in which the bell is

pointing. If the player happens to point his instrument



directly at us, then the first news of the tone to arrive at our

ears has a very much stronger representation of high-

frequency components than do the later-arriving, reflected

sounds. Under these conditions we get an aggregate

impression of the sound that is somewhat different from

what is received by the majority of listeners in the room, for

whom the higher partials are less strongly but similarly

represented in both the direct and the reflected initial

sound.

Now that we have outlined some of the physics involved in

getting the start-up and shutting-down parts of the trumpet

tone to our ears, it is time to sketch a few of the things

which our ears do as they go about performing a synthesis of

the information that comes to them. Our story goes back to

the middle of the nineteenth century when the American

physicist Joseph Henry (who is best known today for his

researches in electromagnetism) was led, in connection with

his duties as secretary of the newly founded Smithsonian

Institution in Washington, to make a study of the acoustics

of lecture halls. The result of his investigation were

published in an interesting paper entitled “Acoustics Applied

to Public Buildings,” which was reprinted as a part of the

1856 Annual Report of the Smithsonian. Among other things

in this report, Henry describes experiments in which he

determined the smallest time delay that would permit the

human ear to perceive the returning echo of an impulsive

sound as an entity distinct from the original sound. We can

understand Henry’s interest in this question when we realize

that human speech consists of a rapid succession of

impulsive sounds and that, if the room is large enough for us

to hear the various echoes separately, the echoes may prove

to be a distraction and a hindrance to our understanding.

Figure 12.2 illustrates the sort of things that Henry was

concerned about. He found that if the reflected sound has

traveled an extra distance of about 60 feet (call it 20



meters) as compared with the direct sound, it can just barely

be heard separately from its ancestor. Larger path

differences make the separate sounds more clearly

distinguishable and so increase the danger of their

confusing the listener. Let us say this in another way: the

speed of sound in air being about 345 m/sec (1133 ft/sec), it

is possible to calculate that we can separately perceive an

impulsive signal and its reflection if the time delay between

them is much more than about 60 milliseconds. We will not

look here into the ways in which a properly designed hall

can sometimes be arranged to permit satisfactory

communication even when its size is larger than the limits

implied by the foregoing numbers. Instead we will focus our

attention on how our ears deal with reflected sounds which

reach them with time delays that are less than about 35

milliseconds.



Fig. 12.2.

In the 1930s William Snow and John Steinberg of the Bell

Telephone Laboratories found that when the same sound

reaches our ears from two sources at different distances, we

hear the sound as though it all came from the nearer source,

rather than from the two places at once, or from some

imaginary spot between them.1 This work attracted

relatively little attention. Later discoveries have stemmed

mostly from an account published in 1951 by Helmut Haas

of the University of Goettingen.2 It turns out that our

nervous system can combine a whole collection of early

echoes into a single perceptual whole. The following

numbered statements set forth a description of the

phenomenon, which is properly referred to as the

precedence effect:

1. The human ear will combine a set of reduplicated sound

sequences and hear them as though they were a single

entity, provided (a) that they all arrive within a time interval

of about 35 milliseconds of the arrival of the first member of

the set and (b) that the sound pressure recipes of all

members of the set are sufficiently alike.

2. The singly perceived entity is heard as though all of the

later arrivals were piled upon the first one without any delay.

That is, the perceived time of arrival of the set is that

belonging to the first version of the sound, and the loudness

of this first sound appears augmented.

3. The apparent position of the source of this perceived

sound coincides with the position of the source whose sound

arrives first, regardless of the true direction of arrival of the

later sounds (see sec. 12.3).



4. The functioning of the precedence effect persists even

when the later arrivals in the set of sounds have pressure

amplitudes that are larger than that of the first signal,

provided these amplitudes are no more than about three

times that of the first sound.

Notice that statements 1, 2, and 3 tell us that our nervous

system’s processor has in fact been set up so as to exploit all

the the transient sound pressure data which a room offers to

it when music is played. In other words, practically all of the

descriptive material about trumpet sounds given in the

earlier parts of this section reappears in condensed and

generalized form in the numbered statements.3

As a way to consolidate our understanding of the

precedence effect, let us go beyond our description of how a

trumpet tone travels to the listener’s ear to a brief glance at

the way one goes about designing a modern loudspeaker

system for a church or for an outdoor orchestra shell. We

will, however, continue to postpone any discussion of the

perceived effects of reverberant sound in the room, whose

influence may well be felt for several seconds, long after the

precedence phenomenon has ceased to function.

Suppose we have to deal with a church whose nave is so

long that the minister’s voice does not reach his

congregation with loudness sufficient to make the sermon

understandable. For one thing, the spreading out of the

sounds from the speaker’s mouth (which functions

acoustically as a simple source) leads to small pressure

amplitudes at a distant listener’s ear. Furthermore, the size

of the room is such that the early echoes (of comparable

amplitude) arrive well after the 35-millisecond precedence

limit, so that they become annoying and distracting in the

fashion that worried Joseph Henry. For example, a single



echo whose amplitude is equal to that of the original sound

would produce about a 50 percent disruption of speech

intelligibility if the delay time is 100 milliseconds. Suppose

now we start our engineering job by installing above the

minister’s head and a little behind it a loudspeaker, chosen

to project most of its sound down the length of the hall. This

will permit approximately threefold reinforcement of the

sound (see statement 4), as long as the minister’s direct

voice can be heard at all in the absence of this

reinforcement. An arrangement of this sort will assure that at

least the closer segment of the congregation gets enough

sound for it to hear what is going on. They will not be aware

of the loudspeaker if it is a good one, because its output

sound recipe will closely match that of the preacher and also

because the sound from it has to travel slightly farther to the

listener’s ears than does the direct sound from the pastor’s

mouth.

If the church is a very large one, we will have to take

additional measures to provide adequate sound farther

back. A few carefully chosen, small, non-directional

loudspeakers can be installed, spaced along the side walls

toward the back of the room. These loudspeakers would call

attention to themselves if they were simply connected to the

same amplifier that drives the directional speaker at the

front of the church (because they would then supply the

first-arriving signals). We can, however, make them

unobtrusive and at the same time useful if each one is

driven via a properly chosen electronic delay circuit to make

sure that a listener gets the minister’s initially reinforced

voice signals slightly before the same message issues from

the local loudspeaker (see statement 1 in this section). As

before, the sound pressure due to the local loudspeaker

must be arranged to be no more than three times the

amplitude of the direct sound (in agreement with statement

4.). The reason that nondirectional loudspeakers must be



used along the walls is to be found by implication in

statement 1. For successful operation, the recipe reaching

every listener’s ear must be a good match with the original

sound (otherwise the loudspeakers will be perceived as

sound sources in their own right). It is necessary to use

nondirectional loudspeakers because directional

loudspeakers have a path of strong transmission, and at the

edges of this path the sound recipe is drastically altered.

Listeners who (unavoidably) are seated a little out of the

direct line of aim of such a loudspeaker would, as a result,

fail to get any benefit from the precedence effect, since the

loudspeaker sounds would regain their individuality.

12.3. Localization by the Ears of Sound

Sources in a Room

When we listen to music in a concert hall or converse with a

friend in a noisy room, it is possible for us to focus our

attention on particular sources of sound with an accuracy

that is often astounding. We can usually perform these feats

with more confidence of success in a room than we can

outdoors, because we are able to put together all sorts of

clues concerning what the source is doing and where it is

doing it from the way in which its sounds are reflected and

scattered by the room. The fact that we can manage pretty

well at all this even when using only one ear gives us our

point of entry into some understanding of what is going on.

From the physicist’s point of view, the simplest clues to

the position of a musical source to be expected for monaural

(single-ear) listening are the time relations between the

arrival of the direct sound and the first half dozen echoes

which come to the ear. Some knowledge of the way in which

sound spreads around the listener’s head as it undergoes

scattering can also suggest the availability of additional

directional clues. The amplitudes and shapes of these



pressure signals depend on the direction from which they

come to the head.

It would be an oversimplification, however, merely to

compare the times of arrival of an impulse at each ear, one

of which may be closer to the source than is the other one.

The listener’s head scatters the sound in such a way as to

alter the shape of the impulse, and we have just learned that

another way to describe this scattering process is to say that

the acoustic pressure distribution at various points around

the head is different for high-frequency signal components

from what it is for low-frequency ones. We may clarify the

meaning of all this by making an oscilloscope picture of the

direct sound impulses recorded by two tiny microphones

located a headwidth apart in the room and comparing it with

a picture of the impulses recorded by the same microphones

when a human head is interposed between them.

The upper part of figure 12.3 shows how the two

microphones respond to the direct sound from a source that

is obliquely located about 2 meters away (compare these

pictures with those of fig. 11.7). The top trace belongs to the

microphone which we will shortly associate with a listener’s

left ear, while the lower trace shows the pressure variation at

the right ear. Because the impulse begins slightly earlier in

the lower trace, we can deduce that the source is located

somewhat to the “listener’s” right. The shapes of the

impulses recorded by the two microphones are, of course,

very much alike, since they both are responding to the

direct sound from a source. The lower part of figure 12.3

shows how the two signals are altered when a human head

is interposed between the microphones. The most obvious

change is the growth of the gross magnitude of the “right-

ear” signal, without a corresponding decrease of signal at

the (nominally shadowed) “left ear.” It only takes a moment

more to notice that in addition to the amplitude change

there is a rather drastic modification of the wave form



observed at each microphone. Since the two microphones

are located almost exactly at the ears of my experimental

subject we are entitled to make the following generalization

(which is the first of a set dealing with sorting out sounds in

a room): 4

Fig. 12.3. Signals at a Pair of Closely Spaced Microphones

with and without a Listener’s Head between Them

1. Because of the presence of the listener’s head, the

pressure signals arriving at his ears are not identical with

those that would be measured by small test microphones in

the absence of the head. However, the relations between the

actual ear-arriving signals and the disturbances otherwise

present in the room are definite for a given person’s head,

making it possible for him to exploit the relationship.



Fig. 12.4.

The example shown in figure 12.4 will illustrate some of

the possibilities for direction finding that are inherent in the

behavior of sound in a room. Here we have a musical source

M at one spot near one end of a bare, rectangular concert

hall, and a listener L at another point. The diagram shows

the listener facing forward in the hall (as indicated by his

pointed nose). Suppose for the moment that he has a plug in

his right ear so that he can only make use of sounds arriving

at his left ear. If the impulses coming to him by reflection

from the side walls (via the two paths MAL and MBL) are

simultaneous, this tells our listener that the two paths are of

equal length and that therefore the musician is

symmetrically located as far to the left of the hall’s mid-line

(shown dotted) as the listener is seated to its right. The

reflections from front and back walls will show up in the ear

at very different times because of their very different travel



distances. The fact that one of these reflections arrives

almost immediately after the direct sound is a clue that the

player is seated close to the front wall.

Let us return our attention to the signals which come to

the ear by reflection from the side walls. Suppose that the

source is displaced from its symmetrical position to one

slightly more to the left (as seen by the listener). Now we

find that the earlier-arriving signal travels via path MAL and

produces a large impulse at the eardrum, while the later

arrival (coming via MBL) is smaller in amplitude. It is the

presence of the human head that alters the relative

strengths and shapes of the earlier and later members of our

almost-coincident pair of echoes, and so allows them to

provide information about which side the source lies relative

to the point of symmetry.

When our listener has both his ears open, he can add

enormously to his ability to cross-check and reconfirm the

deductions he has made, since the right-ear signals from the

side walls are very like the ones on the left; all that changes

is the order of arrival of the larger and the smaller signals.

Digression on the Description of Two-Ear Effects in

Terms of the Sinusoidal Components of a Signal.

While we have not been very explicit about saying so up till

now, it is a fact that any sort of signal may be separated

into a collection of long-continuing sinusoidal partials. This is

true even for impulsive sounds and for the beginnings and

endings of ordinary musical sounds. Because of the general

applicability of the sinusoidal recipe idea, we should notice

that the two impulses recorded at the listener’s ears in

figure 12.3 may be described in terms of the relative

strengths of the various partials as observed by the two



ears. For example, when sounds come past the head from a

direction about 60° to the listener’s left, partial components

having frequencies near 600 Hz have amplitudes 1.8 times

as strong at the left as at the right ear. For components near

3000 Hz, the ratio is closer to 3.6.

There is one more piece of wave physics we should notice

before going on to see what our nervous system is able to do

with all the intertwined directional hints that are made

available to it. In chapter 11 we learned that various-sized

objects reflect or scatter sounds in different ways,

depending on the wiggliness of the impulses arriving at

them. As was remarked earlier in this section, we can think

about all of this in terms of the scattering (etc.) of the

individual sinusoidal components of the sound recipe. While

we have not met very much in the way of quantitative

information about these processes, everything has in fact

been predicated on the assumption that the scattering

object is at a considerable distance from the source. It is

important to know that at closer distances (less than one

wavelength), the details of scattering and the pressure

relations around one’s head become strongly modified. The

messages a musician’s ear receives will be affected by his

own head differently for messages arriving from (1) the

instrument of the player seated next to him, (2) the more

distant players in the orchestra, and (3) events at the back

of the hall.

Let us now turn our attention away from the physics of

sound localization in a room and investigate the extent to

which our ears can process the cryptic information that is

made available to them. Laboratory experiments carried on

over many years unite in showing that our nervous system



does in fact make use of the various kinds of physical

information coming to it. Formal experiments concur with

everyday experience in showing that a listener who is free to

move his head around can do better than one who is not,

and that binaural listening is immensely more informative

than is monaural. The correlation of the sound recipe

information coming to us (see the description in sec. 12.2

above) with the operation of our straightforward localization

machinery helps us follow the various orchestral voices with

confidence and accuracy, especially when we can also make

use of information coming to us through our eyes as we

watch the players perform.5

Listeners who attend many “live” concerts and, more

particularly, musicians who play such concerts often feel

that listening to music through headphones is an

uncomfortable and frustrating experience. This is

particularly the case when they are provided with

electrically generated signals or those recorded by using

electrically mixed signals from microphones placed

immediately next to each player (who may even be placed

in an isolation booth). The reasons for this discomfort and

reduced ability to hear subtle details should be clear to us

by now: the headphone signals and the recording technique

deprive us to a greater or lesser extent of a wealth of cross-

coupled, interrelated, and reiterated clues as to what the

sound sources are doing.

It is precisely because our hearing processes are so clever

at taking involved hints that the perception psychologist

makes use of headphones in his experiments. He is trying

deliberately to exclude all but one form of signal at a time

from the ear, in the hope that he can learn step by step from

a study of our responses to each aspect of the total acoustic

signal met in the world at large.



Let us end this section now with four additions to our set

of remarks which sum up our ability to track down an

interesting sound and hear it in the midst of a crowd of

competing sounds.

2. While it is not literally true, one can stay reasonably

close to the truth by assuming initially that if an acoustic

signal has distinctive features in its sound pressure makeup

at the eardrums, then our neurological processes will be able

to discover these features and recognize the signal by

making use of them.

3. Our auditory apparatus is able very quickly to “learn”

the scattering behavior of nearby objects and the acoustic

changes produced by moving the listener’s head, and can

separate the characteristic nature of these changes from the

identifying features of the original sound.

4. The human nervous system is so organized that, in

making its recognitions, it can make simultaneous use of

several kinds of auditory information coming to it.

5. We are also able to collect information over a short

period of time (as when one moves one’s head) and put all

of this information together into a single percept. We can

also combine such dribbled-in data with the sets of data that

come in simultaneously as described in comment 3 above.

The precedence effect described in the preceding section

and a modern cousin to Joseph Henry’s echo experiments

provide us with an interesting way to review the implications

of the above remarks. When a sound comes to us, we first

make a very quick and perhaps rough determination of the

position of the source and of the kind of sound that it is



generating, basing our determination on the first-arriving

train of signals. We then make use of the precedence effect

in taking the later part of the sound arriving during a 35-

millisecond time interval to reconfirm and elaborate our

picture of what is going on. (It is interesting to speculate on

the physics and the physiology that led us to evolve the

particular time of 35 milliseconds for the data accumulation

process.) We must not forget, however, that while one part

of our processor is melting together the signals over this

interval of time, other parts are busily looking at everything

through a fine-grained frequency and time analyzer that

extracts the pieces of primary information that are being put

together. It turns out that one can sometimes make

distinctions between signals that differ from one another in

the details of their variations down to a time difference of 30

millionths of a second!

Looking at the longer-term parts of what goes on, we

notice that Henry’s echo experiments involve the detection

and processing of two similar events which arrive 60

milliseconds or more apart. The fact that these are really

heard separately is confirmed by experiments in which

someone who is talking is supplied with a delayed earphone

version of what he is saying. When the delay is much more

than about 60 milliseconds, the conflict between what the

subject hears and what he is trying to say makes it

impossible for him to talk properly. Perhaps some of you

have noticed a similar difficulty when making a long-

distance telephone call—occasionally there is an electrically

produced echo in the earpiece whose delay is sufficient to

cause difficulty. By the way, the speech difficulty produced

by late echoes is greatly reduced if the echo’s component

recipe has been drastically altered in the course of the echo

process, even though the echo taken by itself may remain

perfectly intelligible.



12.4. Some Examples of the Interplay

between Room and Ear

The first three sections of this chapter have sketched out

some of the ways in which the wave physics of rooms and of

scatterers provides our ears and nervous system with

perception material out of which they can build a

trustworthy auditory composite. In the exposition of the

basic ideas there was little chance to provide everyday

examples of how everything fits together. We are now in a

position to understand several interesting illustrations of

actual auditory behavior in a room. For later convenience in

referring to these examples, each one will be given an

alphabetical label and a short title.

A. Flutter Echoes. If you clap your hands while standing

near the middle of a reasonably uncluttered rectangular

room, you may hear a sort of whine or buzz which quickly

dies away. If the room is very large, the sound resolves itself

into a rapidly repeating series of echoes whose repetition

time is equal to the time it takes sound impulses to make

the round trip from (for example) one wall to the opposite

one and back. Because this sort of large-room echo

sometimes reminds one of something fluttering (repetition

rates of a few per second), the whole phenomenon is given

the name flutter echo. In my living room the series of echoes

repeats fast enough to produce a sound whose pitch is a

little above that of the note C2, having a repetition rate close

to 65.4 Hz. A little arithmetic using the 1133 ft/sec value for

the speed of sound confirms that this particular train of

echoes is one that runs between floor and ceiling, these two

being 8.5 feet (2.6 meters) apart.

It would be worthwhile at this point to go back and reread

section 2.3 on the repetition rates of various rhythmic

patterns so that you can understand why a listener whose



ears are fairly near the floor or ceiling assigns the pitch in

accordance with the number of round trips made per

second, rather than twice this value. In brief, the

explanation is that we recognize true repetition times and

count each pair of downward- and upward-traveling

impulses as a repetition (see figs. 2.2 and 2.3). A

microphone placed exactly midway would receive

“identical” pressure signals from the upward- and

downward-moving impulses, and if one were to listen to the

resulting electrical repetition rate, the perceived rate would

in fact be double. However, if I stand so as to put both my

ears exactly halfway between the floor and the ceiling, the

perceived repetition rate does not double. Since my head

and body, like most people’s, are unsymmetrical, there is an

alternation between the shapes of the signals produced at

my ears by the upward and downward impulses. Obviously

the repetition rate could only be perceived as doubled if the

equally spaced signals matched each other exactly. It must

be admitted that the clear-sounding echo heard near the

floor is heard less clearly when both ears are at mid-room.

Apparently there is enough symmetry to confuse the

hearing process slightly. This little “theory” is immediately

confirmed when I tilt my head so one ear is somewhat above

the other. The clarity of perception is at once restored

because the two ears can now make an easy distinction

between impulses traveling in the two directions.

Incidentally, we have so far ignored the fact that there are

really two series of echoes going on in the room. One of

these is descended from the first echo from the ceiling, while

the other one follows the first echo from the floor. Perhaps

you can figure out why our general line of argument so far

needs only the most trivial alterations to make it apply to

the true situation.

There is no flutter echo to be heard associated with wall-

to-wall reflections in my living room because of the irregular



scattering that is produced by furniture, doors, windows, and

fireplace. All of these objects are of intermediate size

compared with the wavelength of the sound, and so conspire

to destroy rapidly any semblance of regularity in the

reflected sounds. Now and then one does, however, find a

bare room in which two or even three flutter echo repetition

rates can be discerned. The association of these echoes with

the pairs of boundary surfaces can sometimes be sorted out

by experiments in which doors or windows are opened and

closed, as well as by listening experiments in various parts

of the room.

When one attempts to follow the course of a flutter echo

by means of a microphone and an oscilloscope, it is unusual

to find more than one or two recognizable members of the

train of echoes we have been discussing, despite the fact

that they may be clearly audible for some time. In my living

room, for example, they can be heard for somewhat more

than half a second, which corresponds to about 30

recognizable repetitions. (By the way, in many situations

such as this where a single loud sound source shuts off, we

can hear the signal dying away over a time interval that is a

reasonably good approximation to the reverberation time for

1/1000 amplitude decay, as defined at the end of section

11.8. We will discuss the reasons for this somewhat

surprising fact in chapter 13.) The reason why the

oscilloscope trace is rapidly cluttered into unrecognizability

is simple: all the scattered impulses that propagate hither

and thither in the room pile up on top of the regularities,

and obscure them from our eyes. The explanation for the

ability of our ears to track the flutter despite all these

distractions is less straightforward. Basically it is a matter of

our ability to recognize a chain of repetitive regularity as a

characteristic feature of complex sounds. The precedence

effect can help explain this. The ear could perfectly well take

the first dozen impulses and understand them as what we



have called the “initial sound,” and then fuse in several of

the later echoes (about 35 millisecond’s worth) to reinforce

the impression. This process can operate over the whole

decay, with earlier parts always serving as the hook upon

which the later parts are hung.

B. Perception of Articulated Trumpet Notes Recorded in a

Large Hall. Not long ago I had occasion to carry out a series

of acoustical experiments in collaboration with the well-

known trumpet virtuoso Edward Tarr. One small part of our

observations is worth describing here because it gives an

illustration of how well our ears can extract musically

interesting information from the sound field of a large hall.

Mr. Tarr stood at the front of the hall, a large, high-ceilinged

room with a volume of somewhat over 400,000 cubic feet

(11,300 cubic meters) and a reverberation time of about 2.5

seconds in the frequency range particularly inhabited by

trumpet sounds. I listened on the main floor of the

auditorium and also made a tape recording of the sound

there. As a preliminary to our other work, we verified the

existence of various steady-tone fluctuation phenomena

involving the movement of listener and player (as described

in chapter 11). Our present interest centers, however, on

several sequences of repeated tones on one pitch, starting

slowly, about two per second, and working up to something

close to 9 per second. To my ears, these accelerating

sequences of notes sounded as crisp and clean as one

should expect from a first-class player who was thoroughly

prepared for a concert that evening. It was also perfectly

possible to tell when the player changed his mode of

separating successive sounds (usually called articulation)

from what is known as single tonguing to double tonguing. It

should be explained that a good player is able to minimize

the differences between the two articulations enough that

the changeover is unnoticeable to anyone who is not looking

for it. In other words, I could hear a rather subtle change in



the way notes were started and stopped. It was also possible

to make out small, random irregularities of articulation,

which are inevitable when many repeated notes are sounded

with no musical context to guide their timing. None of these

details will come as a surprise to those of my readers who

are musicians.

We know enough by now about room acoustics to presume

that an oscilloscope display of the tape-recorded version of

these trumpet sounds would look pretty irregular. Because of

the hall’s 0.25-second amplitude halving time (deduced

from the 2.5-second reverberation time) we are correctly led

to expect that even at the slowest tone repetition rate (two

per second), the sound hardly has a chance to decay during

the brief interruption of excitation that comes between

tones. One sees a clearly marked but rough and irregular-

looking pulsation in the pattern and this pulsation keeps in

step with the series of audible tones. The oscilloscope traces

associated with rapidly repeating parts of the tone

sequences form, on the other hand, such a jumble that even

the overall pulsation in amplitude is hardly visible.

We should be impressed by the contrast between the

distinctness of the auditory impression produced by the

trumpet tones and the messiness of the recorded pressure

wave forms that are its acoustical ancestors in the room. In

section 12.1 we learned that a trumpet produces very

definite and repeatable wave forms in its function as a

sound source, so that the tape-recorded irregularities must

be attributed to the properties of the concert hall. In section

12.3 we also learned of a number of ways in which our two

ears can work together to unravel some of the room’s

acoustical complexity. The example we have been

considering is a tape of a trumpet tone (responding to the

hall in which it was recorded), a tape which was then

listened to and analyzed in my laboratory room. This poses

questions having to do with the effects of two different



surroundings acting on the original sound. Let us review the

situation briefly: use of a single microphone eliminates all of

the two-ear, head-effect information from the recording. On

playback the sound issues from a single loudspeaker that

serves to excite the oscillatory modes characteristic of an

entirely different room. In this room the listener plausibly

enough attributes the sound to the loudspeaker itself, and

he has no trouble recognizing the tone color, articulation,

playing style, etc., as they were originally heard in the

concert hall! In short, it is a successful recording. Once

again, the listener in the laboratory feels deprived if he must

sit very still-or if he is restricted to the use of only one ear,

but basically he is able to cope with the combined properties

of two rooms as they are connected by a single track of tape.

In an informal way such an experiment verifies that it is

possible to record sounds in one room and to play them

back, meaningfully, in another one. Our thinking about this

possibility may leave us with a somewhat greater sense of

wonder at what the human brain can do.

C. A Harshness Problem of Certain Loudspeaker Systems.

Musicians and others who are more used to listening to live

sounds than to their recorded counterparts sometimes

complain bitterly of a particular sort of harshness in the

sounds produced by elaborate sound systems. This is an

effect which they do not perceive when they use lesser

equipment. Understandably, complaints of this sort are

likely to enrage the owner or designer of the troublemaking

equipment, leading him to provide all sorts of laboratory

evidence to prove its perfection. Let us look at one way in

which this sort of contretemps can come, about. We will

restrict our attention to single-channel rather than the so-

called stereo or quadriphonic modes of listening, since the

problem is one which arises in each channel by itself without

much regard to the presence of the other channels.



The fixed principles underlying the design of all cone

loudspeakers set upper and lower limits to their efficient

functioning. A loudspeaker’s acoustic output into a room is

minuscule for all frequencies below the natural frequency

(resonance) determined by the cone mass acting with the

elasticity of its supports and of the air within the cabinet.

This puts a lower limit to the frequency range over which a

given loudspeaker can be used. Above this lower limit a

properly designed loudspeaker can provide a fairly constant

(averaged) sound pressure in a room for all excitation

frequencies up to a certain value. The high-frequency limit

to the sound output is reached when the cone spans several

humps in the modal patterns for the room. A neater way to

express this criterion numerically is to relate the

circumference of the speaker cone to the wavelength of

radiated sound. High-frequency sounds whose wavelengths

are shorter than about half the circumference are more and

more poorly radiated. For example, a simplified loudspeaker

having a rigid cone about 30 cm (12 inches) in diameter has

a circumference of a little less than one meter (call it 3 feet).

Such a loudspeaker will already begin to show some

reduction in sound-production ability at 700 Hz (refer to fig.

12.1 for the relation between frequency and half

wavelength). An octave higher, at 1400 Hz, the averaged

amplitude set up in the room is reduced fourfold, and similar

decreases take place for successive doublings of the

frequency. An additional phenomenon takes place for

sounds whose frequencies lie above the limit for uniform

output: the sound no longer spreads uniformly throughout

the room, but rather gathers itself into increasingly narrow

beams that travel out along the axis of the cone, having the

same auditory significance that was discussed for trumpet

sounds in section 12.2.

The designer of a wide-range loudspeaker system is

expected to devise something that will provide uniform



averaged excitation throughout the room at frequencies

ranging from about 40 Hz up to about 15,000 Hz. To do this

he generally chooses a relatively large loudspeaker with a

cone massive enough to resonate below 40 Hz and with a

circumference that permits it to work fairly well up to about

1500 Hz. He then adds another loudspeaker, much smaller

in diameter, that behaves well over the remaining high-

frequency part of the desired range. Sometimes three

loudspeakers are used to share the duty instead of only two.

In order to make this composite system work properly it is

necessary to provide crossover networks whose duty it is to

steer the low-frequency partials of the electrical drive signal

predominantly to the low-frequency loudspeaker (the

woofer), the remaining components being sent to the

speakers designed to deal properly with the middle and high

frequencies (the mid-range speaker and the tweeter). Figure

12.5 shows the general way in which the various parts are

installed in a loudspeaker cabinet, and the way in which the

crossovers and the driving amplifier are connected.

A composite loudspeaker system can give trouble when

the loudspeakers are driven by sinusoidal components

oscillating near the crossover frequencies at which one of

the speakers gives up its predominance to another one. Near

crossover, the speakers have approximately equal source

strengths and (if the design is even roughly correct) they are

acting in step as they inject and abstract air to and from the

room. Suppose now that the distance D between the two

sources is equal to a half wavelength (or any odd multiple of

it) at the crossover frequency. The effect of one of the

speakers on almost any given room mode is then opposite to

the effect of the other source, because they are bound to be

acting on points in the characteristic mode pattern having

opposite directions of oscillation. In the half-wave case they

are acting on opposite sides of a nodal line (review the

explanation of fig. 8.3 in sec. 8.1 for a one-dimensional



example of what is going on). Our basic explanation implies

that in the neighborhood of crossover there is a particular

frequency at which the system totally fails to excite the

room! In practice, various details of the speaker cone shapes

and their differing sizes conspire with the effects of room

shape, speaker cabinet structure, and furniture to replace

this phenomenon of complete failure with one in which

every conceivable sort of excitatory irregularity can manifest

itself with particular obviousness. Since everything that

comes to the listener’s ear is processed through the coupling

of loudspeaker to room, the irregularities described above

become an inextricable part of the original sound. Our ears

can cope with the vagaries of the room itself because we can

move around in it and so dissolve each irregularity in the

sea of its neighbors. The motions of everyone in the

recording studio similarly provide something for our ears to

chew upon while they extract the music from the studio’s

properties. Through all of these processings the loudspeaker

continues to make its presence felt, as it operates inexorably

and impartially on singer, violin, and flute. Our highly

developed abilities for localizing anything having a stable

acoustical nature are trapped into the job of discovering the

loudspeaker instead of the music it is supposed to

reproduce.



Fig. 12.5.

Luckily not very many loudspeaker systems are built with

an interspeaker distance of (for example) 8.6, 25.9, or 43.3

cm which would combine with a 2000-Hz crossover

frequency to produce the most obtrusive effect. Other

spacings between loudspeaker elements produce lesser

effects, but they may still be discernible. Overall, you will

perhaps recognize the phenomenon described above as one

more manifestation of the general principle that the

irregularity of response in any vibrating system is increased

if two or three exciters are connected together or if the

signals from two or three microphones are added together.

There is yet another way in which obtrusive effects can

arise from a multiple-loudspeaker system. Electrical

crossover circuits that are used for selecting the frequency

components sent to each speaker are commonly designed

on the assumption that each loudspeaker has electrical

properties that do not change as the frequency is varied. In

fact, these properties usually change a great deal and in a

way that sometimes permits the nominally inactive parts of

the system to leak appreciable sound when the excitation

frequency is far from the crossover value. If this is the case,

our irregularity phenomenon can appear several times over.

We should take a moment now to ask how it is that the

various difficulties described above can sometimes escape

the attention of a competent and conscientious audio

engineer as he makes his tests. First of all, it has become

customary for him to make loudspeaker measurements in an

anechoic chamber, with the help of a microphone and a

chart recorder. He does this in order to avoid the

transmission irregularity of a room. Such tests are equivalent

to tests made out-of-doors, and so miss almost all hints of

the two-source mode excitation phenomena that are the



troublemakers. To be sure, there are sharply marked

irregularities in the directional behavior of the steady sound

emitted into an anechoic room near the crossover frequency,

and these arise from the same causes as does our

phenomenon, but since the sound is monitored in only a few

directions, it is easy to miss the anomalies, especially if one

is not aware of their significance. It is true that some

manufacturers use a reverberant room for measurements of

what is called the power response. They may still miss

spotting the crossover irregularity phenomenon if they use

an electrical drive signal containing a mixture of many

frequencies instead of using a single-frequency sinusoid.

The mixture provides the microphone with a kind of average

over the loudspeaker system’s acoustical irregularities. This

averaging technique is very familiar in acoustics, and was

inspired by the room-response averages that are obtained

with the help of a similar type of excitation (described near

the end of sec. 11.8).

Before leaving this topic we must see why the particular

problems described so far are less likely to arise when the

cheaper sort of loudspeaker system is used. In the very

simplest case, the manufacturer makes do with only a single

loudspeaker in the cabinet, and ekes out a slightly wider

range of effective sound production by playing various

games with the cone shape. Since the distance D is zero in

this case, there is no difficulty with cancellation across nodal

lines. A somewhat more elaborate system (which is also

found in certain high quality, expensive loudspeakers) uses

a woofer loudspeaker to take care of the low frequencies,

letting its acoustical output die away naturally for the highs

(the electrical drive to it remaining active). There is a

tweeter provided as well, with a simple electrical device

which lets it receive an increasing amount of the electrical

power as the frequency rises. The most common of these

devices causes the tweeter to oscillate about halfway out of



step with the woofer at the crossover frequency instead of

being exactly in step. That is, the tweeter cone is

momentarily at the extremes of its motion at instants when

the woofer is in mid-swing, and vice versa. Excitation of the

room modes under these conditions is not quite as strong

under favorable conditions as when the more normal in-step

excitation is used, but we find that the drastic consequences

of matching D with the crossover frequency half wavelength

are almost completely eliminated, to the greater comfort of

sophisticated listeners. I should remark here that devoted

audiophiles who are not bothered by the crossover

phenomenon provide us with an additional example of the

way in which our auditory system works. We are good at

hearing what interests us partly because of the recognition

facilities described already and partly because the nervous

system is enormously skilled at shutting out all sorts of

distracting and unwanted data.

D. Unexpected Observations on Visiting an Anechoic

Chamber. Some years ago a European colleague took me

into the magnificent anechoic chamber at his laboratory.

This chamber was an enormous room lined with sound-

absorbing wedges on all its surfaces, including the bottom

one. In such installations one walks and sets up equipment

on a net made of taut steel cables stretched across the room

half way between floor and ceiling, so as to keep everything

far away from the room boundaries. While I followed my

friend toward the center of the room, the normal oppressive

feeling one gets in such rooms developed at first, and then

something else called itself to the attention of my ears. On a

hunch, I asked my guide to stop and turn around so he faced

me. I then held out my hands about a foot (30 cm) apart and

said, “I get the strong impression that there is some object

about this big on the wall behind me.” My friend looked up

beyond my shoulders toward the wall in some astonishment.

There was indeed a small loudspeaker box hanging there,



out of my sight, but whose size was about as I had indicated.

Nothing else was in the room. How did this object make its

presence and its size known so quickly?

It is not difficult to understand how the existence and

position of the loudspeaker in the room were signaled to my

ears. We were talking as we walked in, and, because of the

perfection of the room for its purpose, sound scattered from

the loudspeaker box was the only indirect signal to reach my

ears. The direction from which it came and the time delay

between it and the direct sound of our voices was sufficient

information about the location of the scatterer.

The possibility of making a rough size estimate on the

basis of sound scattered back toward us by the loudspeaker

box is also fairly easily understood. The two of us in the

room had speaking voices pitched somewhat below C3,

where the repetition rate is about 100 to 130 Hz. For

simplicity let us assume the rate to be 120 Hz, so that the

sounds in the room were constructed out of varying amounts

of sinusoidal components at 120, 240, 360, 480, ... Hz. All

but the lowest three of these partials have frequencies

above 400 Hz. All of the higher-frequency partials were

equally well scattered back toward their source by a box of

the size in question. The first partial, on the other hand, was

scattered to my ears with about a sixteenfold reduction

relative to the higher partials, while the second partial

suffered a reduction of about fourfold in the scattering

process. This particular depletion of the strengths of the

lower partials in the scattered sound depends

characteristically on the size of the box. The changeover

from strong discrimination to uniformly returned sound takes

place at lower frequencies for large boxes than it does for

small ones (the change occurs somewhat above the

frequency whose wavelength corresponds to the

“circumference” of the scatterer if it is of compact, roughly

spherical shape). Apparently it is possible unconsciously to



learn the relation between changed recipes for scattered

sound and the size of the scatterer. Furthermore, it is

possible for us to do this in the course of everyday activities

—one does not need to practice in an anechoic chamber (I

have been in such chambers only briefly, on half a dozen

occasions spread over many years). A few minutes after our

unexpected contact with the properties of scattered sound

in a really good echo-free room, I was in another, less

elaborate chamber where I was totally unable to sense a

much larger object by means of my hearing. By all ordinary

standards the second room was a good one, but there was

enough scattering from various small objects in its structure

to completely drown any interpretable signals from the test

scatterer. The ease with which size and position estimates

can be made is a tribute to the cleverness of the human

nervous system. Blind people often become extremely

skilled at such activities; relatively few of the rest of us

practice enough or have sufficient confidence in our ears to

exploit their capabilities fully.

12.5. Examples, Experiments, and

Questions

1. Joseph Henry’s echo experiments are easily repeated

and will provide you with a convenient place to begin in

developing a conscious awareness of how your ears function

with delayed sounds. Do your experimenting in a wide

parking lot (or better, on a grassy lawn) bounded on one

side by a wide, flat wall to use as a reflector. It is worthwhile

to provide yourself with one or two sources of impulsive

sound. For example, a metal bucket struck on its bottom by

a stick serves well to provide sounds having a reasonable

amount of lower-frequency components (below 500 Hz) in its

recipe. A sound source whose recipe is concentrated more

toward the higher frequencies can easily be made from two

strips of thin wood tightly bound together at one end with



rubber bands in the manner shown in figure 12.6. Hold the

bound end of this device in one hand and smartly strike the

other end flat against the heel of your other hand to

generate a sharp cracking of sound. Clapping with cupped

or flat hands is another (less loud) way of generating the two

kinds of impulse.

Using first one and then the other of these sources, find

the shortest distance from the wall at which you must stand

for the echo to be clearly distinguishable by your ears. Don’t

forget that during the echo delay time the sound must travel

the round-trip distance from you (functioning as both source

and listener) to the wall and back. For making rough

estimates of time and distance, you may find it worthwhile

to recall that sound travels about the length of a man’s foot

in the time of one millisecond.

Once your ear has become experienced in listening to the

echo, repeat your experiment with the help of a talkative

friend who keeps up a running conversation as he walks with

you toward and away from the wall. To hear the echo of his

voice under these circumstances is a little more difficult, but

still possible.

2. If the surroundings are quiet, there is another sort of

experiment you can do with the help of a reflecting wall

outdoors. Close your eyes and try walking toward the wall

from a distance of 3 or 4 meters (10 to 15 feet). If there is a

hard pavement underfoot, the sound of your footsteps may

generate sufficient impulsive sound; otherwise, clap your

hands at the rate of one or two per second. With only a little

practice you will be able to use the reflected sound as a

means to sense the presence of the wall and even to gauge

your distance from it reasonably well. Very few blindfolded

people would walk right into a collision with the wall under

these conditions. Sightless persons, and those who are

otherwise motivated to develop their skills in using reflected



sounds for distance estimation, find it possible to use the

reflected sounds of their own footsteps, conversation, or a

tapping cane as a basis for such estimations.

Fig. 12.6. A Slap Stick for Producing Impulsive Sounds. At

the point marked A, a strand of rubber runs between the

strips of wood to act as a spacer.

I have suggested experiments of the sort described in the

preceding paragraph to call to your attention the fact that

even at the short times that lie within the domain of the

precedence effect (where the return signal may not be heard

in its own right), other parts of our brain can put the echo

time delay information to good use for distance

measurement purposes.

You might try to repeat the wall-approach experiments

using impulsive sounds produced by a friend standing still

at some distance from the wall. If you have success in this

enterprise, it may very well be possible for you to navigate

near the wall upon the basis of clues arising from the stray

sounds which are produced by passing cars or distant



machinery. Why might one expect, on the basis of these

experiments, that it would be easier to make wall-distance

estimates in a large, bare room than next to a wall outdoors?

3. Try to devise scattering experiments analogous to the

reflection experiments described in experiment 2 above.

Trees, architectural details, people, and parked automobiles

can all be used, each one showing its own relationship

between sound wavelength and the amount scattered in a

given direction. As a start, drive down a quiet street with

only the right front (and then only the right rear) window

open. Focus your attention on the different ways that tire

noise is scattered in through the window by the curbstone,

fire hydrants, trees in the lawn, bridge rails, and the like. For

present purposes you may assume the rushing sound of tire

noise to be made up of almost equal amounts of all possible

frequency components.

4. In one of his experiments, Joseph Henry observed that

he could stand outdoors at a distance of 100 feet in front of

a steadily talking man and understand what he had to say,

whereas the words were intelligible only to a distance of

about 30 feet when he stood behind the speaker. The

influence of the human head is such that voice partials

below 100 Hz are radiated uniformly in all directions. Those

partials having frequencies near 200 Hz are radiated to

produce a larger sound pressure amplitude in the forward

direction than in the backward direction, with a measured

forward-to-backward amplitude ratio of 1.5 to 1. For voice

partials near 1000 Hz the forward-to-back ratio is about 3 to

1, and above about 5000 Hz the ratio is approximately 8 to

1. Knowing that out-of-doors the amplitude of any given

partial falls inversely as the distance between source and

detector, you may be able to figure out what frequencies

among the various voice partials of the sound output from a

man’s voice are predominantly associated with the

intelligibility of what he has to say. The male voice may be



taken to consist chiefly of sinusoidal components whose

frequencies are whole-number multiples of about 100 Hz.

Recalling that the roles of mouth and ear are quite

interchangeable as far as physics is concerned, you might

expect the front-to-back amplitude ratios given above to

appear consistent with the 60-degree left-and-right ear

amplitude data given in the digression in section 12.3.

Compare these two sets of figures, with the help of diagrams

of a spherical head provided with a mouth and two ears, to

verify that the data are inconsistent. Perhaps you can invoke

your knowledge of the actual structure of the human head to

explain the discrepancy.

5. A two-channel (“stereo”) home music system can

provide the basis for many room-acoustics experiments. Set

the system to the “mono” mode, in which the two

loudspeakers are fed identical signals (regardless of whether

the source is mono or stereo). Verify that you identify the

nearer of the two loudspeakers as the source of the whole

sound, while the other one is essentially inaudible. If there is

a balance control that adjusts the relative amplitudes of the

signals sent to the two speakers, you will also be able to

verify that (in accordance with the precedence effect) the

ear’s localization on the closer source persists even when

the farther source produces a somewhat larger amplitude

signal at your ears.6

Notice how ambiguous the position of a radio announcer’s

voice can become if you sit at equal distances from the two

mono-connected loudspeakers. The apparent source seems

to skip about the room, or from one loudspeaker to the other.

Some of the skipping around comes from small inequalities

between the loudspeakers, and some from scattering effects

from furniture in the room. For many people, especially

those who have cultivated their ability to localize ordinary

sound sources, the sound of an announcer’s voice coming



from two loudspeakers is upsetting; it seems to come from

nowhere because of the conflicting cues supplied to the two

ears. These effects are present in some degree when one

listens to music through two loudspeakers in the mono

mode. Why would there normally be less confusion with

music than with the voice?

6. Use your present understanding of room acoustics and

perception to think through the implications of the following

varieties of two-channel recording and playback. Some of

your deductions may be at variance with the opinions

expressed in the hi-fi literature, but be courageous and

postpone all attempts to resolve the discrepancies until

later!

A. A recording is made of a string quartet playing in a

concert hall, using a pair of small microphones mounted at

ear position on a dummy head placed among the human

members of the audience. The recording is played back

using high-quality earphones properly fitted to the listener’s

head. How does the playback compare with what the listener

would hear if he were present in the audience?

B. A recording is made using a dummy head as in A above,

and it is played back over a pair of good loudspeakers in

someone’s living room. Why would the listener’s position not

make a drastic difference to the nature of the music as

heard? Hint: localization in space is not particularly

important to classical music, even though the ability to

follow the different voices is generally of great value.

C. A recording is made by means of a pair of microphones

spaced about 3 meters (10 to 12 feet) apart on a stage,

arranged so that the musicians are seated at the apex of a

roughly equilateral triangle, the microphones being at the

other two corners and well up away from the floor. Compare

what you would expect to hear using headphones with what



would be heard by a listener in the audience (for whom

there is no electronic reinforcement system).

D. A recording is made as in C and is played back as in B.

Verify by your analysis that the formal cues to localization

discussed in this chapter cannot function in this recording

and playback context. This is not to say that the nervous

system fails to construct a mental “picture” of the concert

hall. The listener is functioning in the same way as does a

sophisticated viewer who can see and appreciate the solidity

of objects drawn by an artist despite deliberate violations of

the rules of photographic perspective.

E. Figure out why the announcer’s voice on stereo

broadcasts is almost invariably routed to either the left or

the right channel, but not to both. Even when two

microphones are used to pick up the voice, one for each

loudspeaker, the effect tends to be unsatisfactory in the

listening room. Why should the announcer’s speech sounds

give trouble when the singing voice seems to work fairly well

under stereo broadcast conditions?

7. An ordinary small microphone is almost exactly the

detecting analogue of the simple source of sound in that it is

equally sensitive to sounds coming to it from all directions. It

is also uniform in its response to all frequencies. Sound

engineers from time to time make use of special

microphones that “hear” well only those sounds coming

from a certain direction. These have uniform frequency

response only in their preferred direction (review the

discussion of loudspeaker directionality in the church

acoustics discussion above). Each directional microphone

has its own characteristic way of altering its response as the

source is approached, whereas nondirectional microphones

display essentially no change in their detection

characteristics when used close to a source. As a result,

music simultaneously recorded close up on two adjacent



microphones, one one-directional and the other

nondirectional, will differ noticeably from one version to the

other. It is not, however, meaningful at this point to make

any statement about the relative “fidelity” of the two

recordings (should one perhaps mount pressure

microphones on a rubber dummy head?!).
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13

The Loudness of Single and

Combined Sounds

We have had occasion earlier in this book to deal in a

preliminary way with the relationship between perceived

pitch and the repetition rates of various components of a

sound. While the detailed relationship between pitch and

frequency is somewhat complicated, we have seen that,

overall, physical stimuli having high repetition rates give

rise to pitch sensations at the high end of the musical scale.

We have also noticed indications of a relationship between a

sound’s vibration recipe (the strengths and frequencies of its

various components) and what the musician calls the timbre

or tone color of a sound. In this connection we find that it is

necessary for our ears and their associated nervous system

to process a great deal of room-acoustics information on the

way to deducing the characteristic “voice” of an instrument.

In a similar vein, we have learned of the processing that is

done so that the beginnings and ends of musical notes can

be recognized as a part of music. In summary, then, we have

given thought to three of the four aspects of a single sound

as it interests a musician: pitch, tone color, and duration.

The present chapter is devoted mainly to an examination of

the remaining aspect—the loudness of the perceived sound

as it is determined by its mechanical correlates, which are

the magnitudes of the various components and the

relationships among their frequencies. Our study will also

reveal some basic phenomena that govern the aural

interactions between sounds from different instruments.



13.1. Thresholds of Hearing and Pain for

a 1000-Hz Sinusoid

We have already learned in chapter 12 that the ear (like

most microphones) is a pressure-measuring device in which

the eardrum is alternately pressed inward and pulled

outward in response to the oscillatory fluctuation of pressure

above and below the normal atmospheric pressure of the

room. Let us provide ourselves with a few reference values

for the magnitude of these pressure variations as a guide to

our future understanding, and as a way to impress upon

ourselves the enormous range of acoustic pressures with

which our ears can deal. The normal operating pressure in

an automobile tire, for example, arises because the air

within it has been compressed to a volume that is about 35

percent of its original value. This is an everyday illustration

of the fact that when a confined quantity of air is

compressed into a smaller space, its pressure rises. We can

make use of this basic idea to help ourselves imagine the

pressure amplitudes of various sounds. Figure 13.1 shows an

airtight tank (of original volume V) which is filled with air to

atmospheric pressure via an equalizing valve. When the

valve is closed, a leak-proof piston of diameter D is pushed

in a distance L so as to reduce the total volume of the tank

by an amount v; this causes the pressure to rise by a small

amount p above the original atmospheric value pa. The

relationship between a small volume change and the

resulting small pressure change may be illustrated by means

of an example: a 10-percent reduction in the volume raises

the pressure by an amount equal to 10 percent of the

original atmospheric pressure.



Fig. 13.1.

Suppose we listen to a 1000-Hz sinusoidal pressure

oscillation with both ears open in a very quiet room and

reduce the pressure amplitude of the sound progressively

until it is barely audible. One could ask what is the diameter

D of a piston and the length L of its displacement that will

produce in a 1-liter tank (holding about a quart) a steady

pressure change that is equal to the amplitude of the barely

audible acoustic pressure signal which oscillates at 1000 Hz.

The answer is surprising: if our imaginary pump has a piston

whose diameter is equal to that of one of my hairs—0.006

cm—one would have to move this tiny piston forward only

0.01 cm, somewhat less than twice its own diameter, to

produce the desired pressure change. This movement of the

pump will produce a volume change of only one part in

about 3.5 billion. Under the influence of oscillatory changes

of pressure having this amplitude, the eardrum is pushed

back and forth a distance that is considerably less than the

diameter of the atoms making up the air, and yet this

minuscule disturbance is something we can hear!

When the pressure amplitude is increased to a value 100-

fold larger, we will hear our 1000-Hz sinusoid with a

loudness that is roughly comparable to that of a normally

struck tuning fork held a handspan from the ear. A further



increase of 100-fold (to a pressure amplitude 10,000 times

the detectable limit) brings us into the range set up

everywhere in a studio or a large living room by a flute

player sounding his notes at what he would call a mezzo-

forte dynamic level. If we increase the electrical driving

signal to our sound source 100-fold further, making it so that

the sound pressure at the listener’s ear is a million times

greater than the threshold value, he will complain of

uncomfortable loudness and may stuff fingers in his ears to

try to shut out the unwanted sound. Let us summarize what

is shown by such a series of experiments done with a single

component sound.

1. At 1000 Hz, for normal healthy ears working together,

the minimum audible sound pressure amplitude at the

threshold of hearing is about 1/3,530,000,000 of

atmospheric pressure. We will take this value as our

reference in all future work (see sec. 13.2 for further details).

2. A 100-fold increase in the amplitude above the

reference value brings us to the lower region of musical

loudness, and a 10,000-fold increase in amplitude puts the

sound into the middle of the musical loudness range.

3. The threshold of pain is found to lie at pressure

amplitudes 1,000,000 times larger than the reference value

if we make our observations at a frequency of 1000 Hz.

4. The extent of the amplitude range for music shows that

the enormous physical variation in amplitude does not

manifest itself as an equally enormous variation in the

perceived loudness.

13.2. The Decibel Notation and Its

Application to Acoustical Signals



It is commonplace to make use of the term “decibel” in

today’s discussions of acoustics in the popular press as well

as in technical articles. We have reached the place in this

book where the term needs to be explained and a

preliminary indication of its usefulness sketched out. A

device whose readings are normally given in decibels, the

sound level meter, will be described in section 13.8.

The decibel and its close cousin the neper were terms

invented by telephone engineers who sought a convenient

way to deal with the gain and loss of wave energy as it is

transmitted successively through one member after another

of a communication chain of telephone cables, switchboards,

equalizing networks, repeater amplifiers, and the like. The

decibel is not a quantity of sound (or of electrical energy); in

essence it expresses an energy flow relationship between

any two signals.

Physicists and engineers are very much concerned with

the concept of energy flow. This is a unifying concept of

enormous power which can help clarify the nature of many

processes. The physics involved in the transfer of heat

energy from a glass of lemonade to the ice cubes which melt

as they cool it is nearly identical with what happens in the

transformation of chemical energy from my supper into

muscular energy that is deposited in the spring of my watch

when I wind it; some of this energy is in turn converted into

acoustical energy which I can perceive in the form of a

ticking sound.

Many of the physicist’s measuring devices are directly

sensitive to energy; however, the microphone and the ear

are not. Furthermore, our hearing process itself does not, at

the level of our concern, give a measure of acoustic energy.

It is for this reason (chiefly) that we have evaded the

concept of energy so far in this book. It will suffice for us to

note in passing that the energy involved in any vibrational



process is proportional to the square of the amplitude of the

vibration. Because of this, a 2-fold increase in amplitude

involves a 2 X 2 = 4-fold increase in the energy, while a

tripling of the amplitude is associated with a 9-fold increase

in energy. It naturally follows that a 10-fold energy change

calls for a  = 3. 162-fold increase in the amplitude—a

figure which turns out to be very useful in discussions of

acoustic energy.

If a telephone amplifier is said to have a gain of 10

decibels, the engineer is telling us that the signal energy

associated with every sinusoidal component sent down the

cable connected to its output is 10-fold larger than the

signal energy component coming to it from the input cable.

If the two cables are alike, we can also recognize that the

amplitude of the output signal from this amplifier will be

3.162 times larger than the amplitude of the signal coming

in. Two such amplifiers cascaded will of course produce a 10

X 10 = 100-fold increase in energy at the output, and an

engineer speaking decibel language will tell us that the

combined amplifier has an energy gain of 20 decibels

(abbreviated dB). We notice furthermore that the output

amplitude of the two amplifiers in cascade is 10 times larger

than the input signal amplitude. In general, whenever the

signal energy flow is increased by 10 dB, the associated

oscillatory amplitude goes up by a factor of 3.162. A 20-dB

increase, therefore, corresponds to a 3.162 × 3. 162 = 10-

fold increase in amplitude.

Figure 13.2 presents a curve giving the amplitude ratios

between two signals when the decibel relationship between

them is given. To help yourself to understand the use of the

curve, it would be worthwhile to examine the figure to verify

that a doubling of amplitude corresponds very nearly to a 6

dB change, and tripling it corresponds to a change of almost

10 dB, while an 8-fold increase in amplitude may equally

well be said to involve an increase of 15.6 dB. Notice that a



1 dB change corresponds to a 1.1220-to-1 amplitude ratio—

in other words, the amplitude is increased by 12.2 percent.

Let us go back now to the 1000-Hz experiments described

in section 13. 1 to see how the decibel notation can be

applied to them. The 100-fold increase of oscillatory

pressure amplitude above the threshold of audibility which

was described as giving a tuning-fork-like gentle sound can

now be said to correspond to an increase of 40 dB. The next

step up in amplitude was to a value 100-fold larger, so we

can say that the mezzo-forte sound has a level 40 dB above

the previous one, or a sound pressure 80 dB above our

reference value. Finally, we notice that the pain threshold at

1000 Hz is found 120 dB above our reference.

Let us now see in a more formal way exactly what the

sound engineer is talking about when he specifies a sound

level in decibels (at any single frequency). There is an

internationally agreed-upon reference sound pressure

amplitude for all acoustical measurements in air which we

may write as: √2 × 0.0002 = 0.000283 dyne/cm2. The factor

of √2 that appears here arises because engineers do not

customarily describe an oscillatory signal in terms of its

amplitude, choosing instead to specify what they call its

“rms amplitude.” One may specify the amplitude of any

acoustical signal in decibel form. When, for example, one

writes “the sound pressure level is 97 dB re 0.0002

dyne/cm2,” or, more compactly, “the SPL is 97 dB,” the word

level or its initial letter serves as a tipoff that the standard

reference pressure is to be assumed.



Fig. 13.2. Amplitude Ratios Corresponding to Given Decibel

Differences

We can use the facts presented so far along with figure

13.2 to translate an SPL (sound pressure level) of 97 dB into

a ratio between the pressure amplitude of that sound and

the amplitude of the agreed-upon standard reference sound.

For simplicity, we can deal with the 97 dB in two parts: 97

dB =(80 + 17) dB. We have learned already that an 80-dB

level difference corresponds to an amplitude ratio of 10,000

to 1, while figure 13.2 tells us that a 17-dB level change is

associated with a ratio of 7.08 to 1. As a result, 97 dB

corresponds to a 7.08 × 10,000 =70,800-to-1 amplitude

ratio between the pressure amplitude of the sound in

question and the standard reference amplitude.



The standardized reference amplitude used in calculating

SPLs is in fact identical with the 1/3,530,000,000th of

atmospheric pressure given in section 13.1 as being at the

threshold of audibility. This particular reference was chosen

to make it easy to recall roughly where it lies in the gamut of

our hearing. Another fact worth remembering is that a 1000-

Hz sinusoid has a pitch that lies slightly above B5 (which is

the B just above the treble staff).

So far everything has been fairly straightforward. Changes

in the sound level at our ears could easily be related to

changes in the gain of the earphone driver amplifier: the

signal flows along a single path from the oscillator, via the

gain control and amplifier, through the earphone and into

our listener’s ear. Suppose, however, we have our listener

sitting in a room in which there are two loudspeakers. Now

there can be two paths to the listener’s ear, and the initial

simplicity of the decibel approach breaks down. Let’s see

what happens in this slightly more complex case.

If we assume that the listener is reasonably far away from

the two loudspeakers, his ears are supplied with a piled-up

aggregate of the steady-state room mode response to each

loudspeaker. When we take into account that our two ears

are able to provide us with a good “averaging” (both

temporal and spatial) of the sound field in their

neighborhood, we find that, if a single speaker is used and

the amplitude of the cone’s motion is doubled, the SPL at

the listener’s ear will go up 6 dB (in agreement with the

predictions of figure 13.2). If, on the other hand, each of the

two loudspeakers when acting alone is set to produce the

same SPL averaged by the listener’s ears and they are

turned on together, then the statistical combination of one

set of room responses with the other leads to a 3 dB rise in

the SPL.



More generally, if we have several distinct sources A, B, C,

... in the room (having the same, or different frequencies)

which have various pressure amplitudes pa, pb, pe, . . . as

measured at some point in the room, then the statistically

averaged net pressure amplitude pnet at that point turns out

to be equal to the square root of the sum of the squares of

the different amplitudes, as shown in the formula:

(In a multi-path signal system of this sort involving the

statistical transmission process, or when the components

have differing frequencies, the decibel description becomes

complicated. One must first convert each SPL to its

corresponding pressure amplitude, combine these by our

formula, and then find the SPL belonging to pnet.)

Let us conclude this section with a piece of arithmetic

showing a curious property of the formula given above for

pressure amplitudes. Suppose that pa has a magnitude of 5

units, with pb and pc having a size of 2 and 1 units. Then the

formula looks like this:

We see from the arithmetic that if one contribution is more

than about twice the others, the statistically averaged net

pressure is hardly bigger than that of the largest contributor.

In the case at hand the increase is slightly less than 10

percent. We must remember, however, that our ears keep



track of a lot of things that a measuring microphone cannot.

If, for example, the weaker signal pb happens to arrive

earlier than the strong one pa (as in a sound reinforcement

system based on the precedence effect), we will attribute all

the sound to the source for pb. The perceived loudness of

such a combined sound will, on the other hand, be based on

pnet in a way that we will take up in sections 4 and 5 of this

chapter.

13.3. Hearing and Pain Thresholds at

Various Frequencies

Section 13. 1 pointed out that the healthy human ear is

incredibly sensitive to a sinusoidal pressure signal having a

frequency of 1000 Hz. That section also showed that

increasing the pressure amplitude of a 1000-Hz tone causes

it to become progressively louder, the point of discomfort

being reached when the amplitude is about 1,000,000 times

larger than the minimum audible value. In section 13.2 we

learned that acousticians have chosen for their laboratory

purposes a reference pressure amplitude whose value was

selected for convenience to be very close to the minimum

audible value at 1000 Hz. The decibel sound pressure level

(SPL) is then a way of specifying the ratio of any given

sound pressure amplitude to this reference pressure.

So far in this chapter we have confined our attention to

what happens at 1000 Hz, a frequency that has a rather

restricted utility in music! Let us now ask what minimum

sound pressure amplitude is required if our ears are to hear

something at other excitation frequencies. Suppose we

measure the minimum SPL required at a healthy listener’s

ears for him just barely to detect the presence of sounds of

various frequencies. Because our interests are directed

mainly toward sound as it is heard in a musical context, our

experimental listener is permitted to use both his ears and



to move around freely as he sits in a large, reverberant

room. Figure 13.3 summarizes the results of experiments

carried on throughout the world over a period of many years,

as discussed in Recommendations 226 and 454 of the

International Standards Organization (ISO).1 The horizontal

axis of this graph covers a range of frequencies extending

from 20 Hz to 16,000 Hz, plotted so that the various octaves

of the musical note C fall at equally spaced points along the

axis, just as they do along the piano keyboard. The vertical

axis of this graph is marked to show the relation, expressed

in decibels, between a given sound pressure amplitude and

the conventional reference pressure described in section

13.2. The corresponding amplitude ratios are also shown on

this axis.

Fig. 13.3. Threshold of Hearing for Two-Ear Listening

By looking at figure 13.3 we can verify immediately that at

1000 Hz the threshold of hearing is almost precisely equal to



the reference amplitude. That is, the threshold SPL is zero

dB and the amplitude ratio is 1.000. At an excitatory

frequency of about 125 Hz, 3 octaves lower, the curve shows

that the barely audible SPL is 20 dB; in other words, if we

are just barely to hear anything at 125 Hz, an oscillatory

acoustic pressure amplitude is required that is ten times as

large as that which was sufficient to produce an audible

signal at 1000 Hz. Down at 24 Hz we hear nothing unless

the sound pressure is increased to a value 1000-fold larger

(60 dB SPL) than that required for detection at 1000 Hz. The

overall sensitivity of our ears falls rapidly as we test them

with lower and lower frequencies.

We can similarly examine figure 13.3 to see what happens

above 1000 Hz. At 2000 Hz, the minimum audible pressure

amplitude is 150 percent of that measured at 1000 Hz,

whereas only about 80 percent as strong a signal is required

for audibility at 4000 Hz. In other words, our ears are slightly

more sensitive at 4000 Hz (the first partial of notes lying

near the top of the piano) than at 1000 Hz. To continue, at

8000 Hz the minimum amplitude is 5 times the 1000-Hz

value, while at 16,000 Hz it must be increased to an SPL of

about 26 dB (a 20-fold amplitude increase). The wiggles in

the sensitivity curve at high frequencies are produced partly

by natural-frequency resonance effects in the listener’s ear

canals and partly by perception games our neurological

processor plays when faced with the interaction of the two

sound pressure signals received at the two sides of the

listener’s head.

Looking at the general shape of the threshold curve in

figure 13.3, we notice that, roughly speaking, the healthy

ear is quite sensitive over a frequency range between 250

Hz and 6000 Hz; beyond these frequency limits the sound

pressure must be increased considerably if anything at all is

to be heard.



We must be careful not to take the standardized curve of

figure 13.3 too literally: it is in fact compiled for people with

extremely good hearing. If you bring people in off the street

and measure their hearing, three-quarters of them will

require about ten times the signal amplitudes given in the

curve. For the younger of these people, the shape of the

curve tends to resemble the curve in figure 13.3, though it is

displaced upward to larger sound levels, but as one grows

older in our noisy culture, the part of the threshold curve

above about 4000 Hz (the right-hand quarter of fig. 13.3)

rises much more steeply, so that the pressure amplitude

required for audibility at 10,000 Hz may rise to values

comparable to those required at 20 Hz! Individual variations

are extremely large at all ages. When I was a sophomore in

college, I was one of two or three people in a large physics

class who could easily hear sounds having frequencies

above 25,000 Hz produced in a big lecture hall by striking

the ends of short steel bars arranged to make a sort of

glockenspiel. There were others in the group who could not

hear similar bars if they vibrated above 4000 Hz.

We will close this section with one further observation: the

sound pressure amplitude that produced a feeling of pain

and discomfort at 1000 Hz is very nearly the same as that

which produces discomfort at all other frequencies. This

amplitude is about 1,000,000 times the reference value,

giving it an SPL of 120 dB.

13.4. Variations in the Perceived

Loudness of a Single-Component Sound:

Sones

We have so far learned that the sound pressure required for

mere audibility is very large at low and at high frequencies

as compared with what it takes in the range from 250 to

6000 Hz. Let us now turn our attention to the way in which

the perceived loudness of a sound changes if we supply our



ears with a variable frequency signal of constant sound

pressure level. We shall not take time to describe the many

ingenious psychoacoustic experiments that were done in

order to set up a scale relating the loudness of the sounds

we hear (a perceived attribute) to the acoustic pressure

amplitudes of the disturbances which give rise to them.2

However, it is important to realize that the ability to make

meaningful calculations of loudness is one of the

foundations of the modern, highly developed practice of

noise control engineering. It is this ability to predict the

loudness of sounds separately and in combination that

makes possible some of the legal requirements currently

being developed in the interests of environmental health

and safety. We will borrow from this body of knowledge only

certain parts that bear upon our particular musical interests.

We have introduced the idea of a sound pressure level,

which provides a means for comparing the physicist’s

measured quantity (sound pressure) with a suitably chosen

numerical reference value (1/3,530,000,000 of an

atmosphere). Similarly, to measure human perception of

sounds we need to provide ourselves with a standardized

unit of perceived loudness—the sone. If a listener with

healthy hearing sits in an anechoic chamber facing a distant

loudspeaker, he will hear a sound whose loudness is defined

as 1 sone when a source having a frequency of 1000 Hz

produces an SPL of 40 dB at his ear. There are many

situations, particularly in music, in which loudness figures

expressed in sones obey ordinary additive arithmetic (as

decibels do not) in the sense that the loudness of a 2-sone

source combines with that of a 3-sone source to produce a

sound which we perceive to be equal in loudness to a source

whose loudness was separately determined to be 5 sones.

Similarly, there are ways to predict how much it is necessary

to turn down the amplitudes of a set of contributing

loudspeaker sources so that their net loudness as perceived



will match the loudness of any one of the sources when it is

operated by itself. The implications of these various

possibilities will become clearer as we make use of the

loudness scale and its connection with the frequencies of

various sound components and their amplitudes.

Figure 13.4 presents a family of curves giving the variation

of loudness in sones when the listener in a room is presented

with sounds from a perfect loudspeaker sinusoidally driven

to produce constant (room averaged) SPL at his ears. I have

calculated the curves upon the basis of ISO

recommendations 126, 454, and R 131.3 Let us follow the 80

dB SPL curve first, which corresponds to a pressure

amplitude that is 10,000 times the conventional reference

value. The loudness of this sound is very small at a 20-Hz

frequency, as one would expect, since figure 13.3 shows

that an 80-dB SPL is only a little above the audible threshold

at this frequency. When the frequency is raised to the region

between 250 and 500 Hz (corresponding to pitches near the

middle of the piano), the loudness rises to about 18 sones.

The loudness dips to 13 sones near 1000 Hz, and then

shoots up to 34 sones near 3000 Hz before falling away in

wiggly fashion at higher frequencies.



Fig. 13.4. Loudness (in Sones) of Single-Component Sounds

in a Room as a Function of Frequency. Each of the curves is

marked with the sound pressure level (decibels) of the

stimulus. Note that a 10-dB increase in SPL approximately

doubles the loudness as long as the signal is about 40 dB

above threshold.

Our perception of the loudness variations associated with

uniform sound pressure excitation at our ears differs when

the chosen sound pressure is high from that observed when

it is low. For example, the loudness change between 1000

Hz and 3000 Hz is only about 4 sones when the ear is driven

by a sinusoid having a pressure amplitude 1000 times the

reference value (SPL = 60 dB), whereas between these same

frequencies the loudness changes by a much larger amount,

64 sones, when the SPL is 90 dB. If you have a test record



that provides a constant amplitude sinusoidal signal of

steadily rising frequency, you can observe this difference

yourself. Quite aside from the fine-grained irregularities

associated with the statistics of room acoustics, you will

barely be able to perceive the loudness peaks and dips

when the recording is softly played, whereas you will

become drastically aware of them when you turn up the

volume to make a loud repetition of the same test. The easy

availability of commercial equalizer circuits sometimes

tempts an unwary listener into adjusting his playback

system to produce an equally loud sound at every frequency

when it is fed from a test tape, instead of making sure that

the equalizer compensates for variations in loudspeaker

efficiency to assure uniform sound pressure response at all

frequencies. The equal-loudness type of adjustment leads to

the production of curious-sounding music when ordinary

records are played. In particular, records played under such

conditions appear to have an unnatural amount of bass and

treble sound, plus a lack of what the record reviewers

sometimes call “presence” (associated with the general

signal level in the region between 3000 and 4000 Hz). The

explanation is straightforward: since our nervous system is

built to deal with and even exploit the loudness variations

shown in figure 13.4, use of an equal-loudness filter creates

a conflict within our auditory apparatus; it suppresses the

work done by the recording engineer as he strives to

recreate in your living room the sound pressure

arrangements that his microphones detect in the concert

hall, leaving your ears to carry out their natural operations

in the room as they do in the concert hall.

While the curves shown in figure 13.4 cover the main

range of sound pressures commonly found for the partial

components of musical sounds, it is useful to know how to

adapt the diagram for use with higher ranges of SPL. We

may make use of the fact that, at any frequency, raising the



SPL by 10 dB (increasing the pressure amplitude by a factor

of 3.16) approximately doubles the numerical value (sones)

of the perceived loudness. To the extent that this

approximation is valid, if we want to make the figure apply

to sound pressure levels 10 dB higher, we can relabel each

of the curves accordingly and replace the 10, 20, 30, ... sone

sequence of numbers along the diagram’s left-hand side by

the sequence 20, 40, 60, ... sones. The results of such a

relabeling procedure are accurate within 15 to 20 percent

over the middle part of the diagram, as long as one deals

only with SPLs above about 60 dB. However, this shortcut

procedure fails badly for SPLs lower than 60 dB, especially at

low and high frequencies. This is because the perceived

loudness at the frequency extremes falls away rapidly as

one reduces the SPL toward its value at the threshold of

audibility (zero loudness).

13.5. Loudness of Combined Single-

Component or Narrow-Band Noise

Signals Having Identical or Different

Pitches

Now that we have provided ourselves with an initial view of

the relationship between the sound pressure amplitude and

the loudness of a single sinusoidal component at different

frequencies, we are in a position to compare the loudness

changes produced when one varies the amplitude of a single

source with the changes arising when different numbers of

equal-strength sources are used, all of them running at the

same frequency. From this we will go on to investigate what

happens when sources having different pitches are

combined.

The upper curve in figure 13.5 shows the variation in

loudness, expressed in sones, produced when the excitation

amplitude of a single source is progressively increased. We



assume that the initial amplitude is such as to produce a

loudness of one sone. Notice that the amplitude must be

more than tripled for the loudness to rise to 2 sones, and a

loudness of 4 sones is not reached until the amplitude is

increased tenfold. The lower curve in figure 13.5 shows the

loudness variation produced when a room has sources added

to it one by one, all sources running at the same frequency

and arranged (when acting separately) to have a loudness of

1 sone. The single-source and multiple-source curves differ

because of the statistical way in which the sound pressures

from several sources combine, as shown by the square-root

formula given in section 13.2. It is at once apparent from the

striking difference in appearance between the two curves

that loudness grows only slowly as more and more equal

sources are brought into action. It takes 10 sources running

together to double the loudness, and 100 would be required

to quadruple it!



Fig. 13.5. Changes in Loudness. A, produced by changes in

the amplitude of a single source; B, produced by changes in

the number of identical sources.

So far we have limited our consideration of loudness

effects to a simple 1000-Hz tone. You may recognize,

however, that a single musician, who may well be able to

vary the sound pressure output of his instrument over a 20-

fold range, provides a far greater dynamic range than a

composer could obtain by orchestrating different numbers of

players who are all constrained to play with a fixed

amplitude. The fact that in orchestral music many players

are given the same part has a musical function other than

the quite limited one of achieving a wider dynamic range.

We are ready now to investigate the combined loudness

produced in our hearing by a pair of signals having different

pitches. Our nervous system has two fairly distinct ways in

which it combines such sounds to produce a sensation of

loudness, one or the other of these ways being chosen

according to the nature of the signals themselves and the

setting in which they are heard. We shall begin with the

simpler one, which has had by far the most study devoted to

it partly because of its scientific implications and partly

because it is the one having most to do with such

applications as noise control. First we will consider a slightly

messy-looking pair of signals which nevertheless have

reasonably well-defined frequencies, and later we will adapt

our discoveries to the musically important case in which two

sinusoids are combined. To begin, then, we will consider

what happens when each of our pair of acoustical signals is

constructed out of a very large number of sinusoidal

components whose frequencies are randomly chosen but

constrained to be within about 10 percent of a particular

center frequency; in this case, the two signals have their

groups of components clustered about different center



frequencies. It turns out that the loudness of each of these

groups (which are usually referred to as being narrow-band

noise signals) is equal to that of a single sinusoidal

component having the same SPL and whose frequency

matches the center frequency of the group. A narrow-band

noise signal of this kind is perceived as a sort of rushing or

hissing sound that has a fairly definite pitch. Composers of

electronic music often make use of such sounds, and, at a

humbler level, similar sounds can be heard when someone

tries unsuccessfully to play a flute or blow across the top of a

bottle.

Let us assume that each of our signals is arranged to

produce a loudness sensation of 13 sones when it is turned

on by itself. If one of the two groups has a center frequency

lying above about 300 Hz and the other one has a center

frequency at least four times as great (two or more octaves

higher), then the two loudnesses are found to add arithme-

tacally when both sources are in operation, giving a total of

26 sones. When the pitches of the two “tones” are this

widely spaced, any two loudnesses will add similarly; for

example, a 13-sone signal sounded along with one having a

loudness of 5 sones will produce a composite sound whose

loudness is 18 sones.

Suppose now that the center frequencies of the two 13-

sone groups are brought closer together. When the pitch

interval between them is about an octave, the combined

loudness is found to have reduced itself from 26 sones to

something close to 24 sones, as shown by the solid curve in

figure 13.6. (At present we will ignore the existence of a

spiky protrusion shown at the left-hand end of the otherwise

smooth trend of the curve.) When the two sounds are

brought into a half-octave pitch relationship (6 semitones

apart, an interval of an augmented fourth), we find that the

combined loudness is only about 20 sones. Looking further

at the curve, we notice that if the two components have



about equal center frequencies, their joint loudness is 16

sones. This agrees with predictions which could have been

made on the basis of figure 13.5, which showed that two

equal sources combine to give a 1.23-fold increase (equal to

16/13) in loudness.

By examining figure 13.6 we can also realize that if the

frequencies of the two groups are initially made identical

and are then progressively separated, there will be

essentially no change in loudness until they are more than

about 3 semitones (a minor third) apart! Historically,

experiments of the sort implied here gave psychoacoustics

its first hint that in some ways our nervous system processes

closely grouped sinusoidal components as though they were

indistinguishable. This phenomenon also helps to

demonstrate that sounds in various frequency ranges are

parceled out for processing to different parts of the auditory

system. The frequency range within which a pair of

sinusoidal groups must lie if they are to show these lumping-

together effects is known as the critical bandwidth.4 By the

way, it is this melting together of the loudness perception of

signals having roughly the same frequency (well within the

critical bandwidth) that explains why we could replace a

single sinusoid by a narrow-band noise of the same

combined SPL.



Fig. 13.6. Combined Loudness of Two 13-Sone Sinusoids

For our purposes it will be sufficiently accurate to use

critical bandwidths that follow ISO Recommendation 532.

Here all the critical bandwidths for sounds above 280 Hz are

quite accurately conventionalized as being 1/3 of an octave

wide (4 semitones, an interval of a major third). In the

frequency region from 180 to 280 Hz the bandwidth is 2/3 of

an octave wide (8 semitones, an interval of a minor sixth),

and below that the critical bandwidth is treated as

extending over a full octave.

The dashed curve in figure 13.6 shows how the critical

bandwidth phenomenon influences the loudness summation



of our two 13-sone components when the lower one has a

frequency of about 200 Hz, while the dotted curve does the

same for a lower component having a frequency near 100

Hz. Spikes similar to the one drawn for the solid curve are

also associated with the dashed and dotted curves. The

implications of, and reasons for, these spikes will be taken

up in the next section of this chapter.

Sounds made up of harmonically related components (i.e.,

those having frequencies that are whole-number multiples

of a fundamental pitch-giving frequency) are musically very

important. Let us consider briefly the loudness of a very

similar kind of sound—one made up of a set of narrow-band

noises whose center frequencies are harmonically related.

For definiteness we will assume that it consists of five of

these noise-partials (as we shall call them) having center

frequencies at 300, 600, 900, 1200, and 1500 Hz. We will

further assume that each noise-partial has a loudness of 13

sones when heard by itself.

We start by asking about the loudness of noise-partials 4

and 5 when taken together in the absence of the other

components. It turns out that the pitches of these two are

separated by only 4 semitones (1/3 octave—a major third).

Figure 13.6 shows therefore that they combine to give a

loudness somewhat above 17 sones.

Let us now transfer our attention to the way that noise-

partials 3 and 4 would combine in the absence of everything

else. These two, having center frequencies of 900 and 1200

Hz, have pitches that are 5 semitones apart (a perfect

fourth), and we learn from figure 13.6 that their combined

loudness is close to 19 sones. I should remark at this point

that due to a phenomenon known as upward masking, the

presence of the lower-pitched component has the effect of

reducing the loudness with which the upper component is

heard. The reverse effect, downward masking, is only slight.



The net effect of the masking is that the 19-sone loudness of

our two noise-partials may be thought of (but only very

crudely) as being produced by the arithmetical addition of a

13-sone lower component to an upper component whose

loudness is reduced by masking to 6 sones.

Looking back to noise-partials 4 and 5 we notice in

similarly crude terms that upward masking has reduced the

loudness contributed by the 1500-Hz component to 17 — 13

= 4 sones, a value about 1/3 of its loudness when heard

alone. In similar vein, number juggling of the interaction

between noise-partials 2 and 3 (separated by 7 semitones)

reduces the loudness of the upper component to about 7

sones, or a little more than 1/2 its original loudness.

It is possible to put all of this masking arithmetic together

and construct a simple though admittedly very rough

arithmetical procedure for calculating the total loudness of a

sound made up of no more than 6 or 8 harmonically related

noise-partials. I shall give the formula first and then explain

it, along with its limitations.

We assume that sound pressure measurements have

already been made of the various noise-partials, and that

each one of these harmonically related narrow-band noise

components has been properly converted into sones with

the help of figures 13.4 and 13.5. In terms of these

loudnesses S1, S2, S3, . . . the total loudness Stnp of the

collection of noise-partials can be calculated from the

formula:

Stnp = S1 + 0.75S2 + 0.50S3 + 0.50S4 + 0.30S5 +

0.20 × (S6 + S7 + S8)



For the collection of five 13-sone components we have been

talking about, the total loudness is given as:

Stnp = 13 + 9.75 + 6.5 + 6.5 + 3.9 = 39.65 sones

In other words, the five equally loud components are

predicted to give a sound that is about 3 times as loud as

any one of its components. Our crude formula assumes (a)

that the first (fundamental frequency) noise-partial is the

loudest of the set, (b) that the loudnesses of the second,

third, fourth, and fifth noise-partials do not fall much below

the proportions S1/4, S1/6, S1/8, and S1/10 when they are

compared with the fundamental component—if they

decrease much more rapidly than this, some of them may

have so little strength as to be totally masked by their lower-

frequency neighbors—and (c) that the loudnesses of the 6th

and higher components, if present, are quite small. The use

of this formula will be illustrated in section 13.6, where its

predictions are compared with those of a formula that

applies to sounds made up of harmonically related

sinusoidal components.

The phenomena described in this section are relatively

insensitive to the means whereby they are studied. One can

use earphones and anechoic chambers, or signals

transmitted by a loudspeaker in one part of the room to a

listener seated in another part.5

13.6. The Combined Loudness of Two or

More Sinusoids; Relationships

Advertised by Beats

In several ways, the discussion of loudness effects in section

13.5 had the appearance of a detour, or of a leap from the



simplicity of single-frequency effects into the complexities of

signals having whole groups of frequency components. Our

need to ignore the spike poking up from the smooth curves

of figure 13.6 added yet another bit of mystery to the

proceedings. We are now in a position to go back and fill in

the gaps and explain why the detour was necessary. We will

begin by learning the origin of the spike at the zero-octave

(equal-frequency) end of the curves in figure 13.6.

For experimental definiteness we should start out by

imagining our listener wearing an earphone on one ear and

an earmuff on the other, so that sound signals come only to

one ear. If the electrical signal driving the earphone is made

up of sinusoidal components having equal amplitudes but

slightly different frequencies, our listener will notice a

periodic alternation of loud sound and silence. It is easy to

see how the phenomenon takes place: at those instants

when the loud tone in heard, the two signals are in step, and

they act together in driving the earphone’s diaphragm back

and forth. Under these conditions the diaphragm is

oscillating with twice the amplitude it would have if only one

signal were impressed upon it. Since one of the electrical

components is oscillating with a higher frequency than the

other, the periodic forces exerted by it on the diaphragm

come at progressively earlier and earlier instants as

compared with the forces produced by the other signal

component. Eventually, one of the components will advance

to the point where it is pushing on the diaphragm when the

other is pulling. The net result is that the diaphragm is no

longer in motion and so ceases temporarily to act as a sound

source. As time goes on, the higher frequency component

continues to gain on the other one, until they are once more

acting in unison upon the diaphragm. This alternate growing

and shrinking of the amplitude of motion of a single object

that is acted upon by a pair of sinusoidal forces having

somewhat different frequencies is generally referred to as



the phenomenon of beating. The two components are said to

“beat together,” and the rate at which the resulting

oscillatory amplitude grows and shrinks is known as the beat

frequency. It can be shown by simple mathematics that the

beat frequency is equal to the difference between the

frequencies of the two original stimuli. When I strike two

tuning forks, one giving the 440-Hz sinusoid that is our

current pitch reference for the note A4 and the other giving

the older 435-Hz reference frequency, the two sound

pressure signals act on my eardrum to provide me with a

tuning-fork sound that goes through 440 — 435 = 5 cycles

of waxing and waning in every second.

Let us return now to our loudness experiment. Whenever

the two sinusoids find themselves in step, the ear is

momentarily provided with an acoustical signal whose

pressure amplitude is double that which either component

can produce by itself—and thence arises an increase in

loudness of nearly 50 percent (see fig. 13.5). As the two

sinusoids run progressively farther out of step, the loudness

diminishes, until the sinusoids cancel enough to produce a

sound pressure that is below the threshold of hearing. The

beaded curve in figure 13.7 shows the calculated variation

in loudness for an earphone experiment done with two

beating sinusoids, each one of which by itself has a sound

pressure sufficient to give a 13-sone loudness. According to

this calculation there would be momentary periods of

silence, interspersed between swellings of sound. Note that

there are considerable intervals of time during which the

loudness is more than the 16-sone value implied by the solid

curve in figure 13.6.

When the beats take place slowly enough (once a second

or so), we do in fact hear variations of the sort predicted.

However, when the frequencies of the two components differ

by 5 to 15 Hz, the individual variations of loudness during

the beat cycle are too rapid to be heard separately, and they



average out to give a rough, rolling sound whose loudness is

somewhere between the 16-sone value predicted by narrow-

band noise experiments and the 19.7-sone loudness

predicted by the slow beats calculation.

Fig. 13.7. Variation in Loudness As Two Sinusoids Beat

The curve drawn by means of crosses in figure 13.7 shows

the variation in loudness produced at very slowly beating

frequencies when one component’s amplitude is as before

but the other’s is half as large. This of course implies an

amplitude ranging from one 1.5 times that of the original

sinusoid to one that is 0.5 times as large, varying as the two

components run in and out of step. Notice that the loudness

variation during a beat cycle is much less now that the two

components are of unequal size, since they can never

combine to produce silence.

It should be fairly clear that beats between two equal

large-amplitude signals are much more obtrusive than those

between a weaker pair of signals, simply because the range

between maximum loudness and utter silence is greater in



one case than in the other. We similarly expect beats

between unequal sinusoids to be more prominent when the

separate components are loud than when they are fairly soft

(but not much below 40 dB SPL). Near the threshold of

hearing the beating may again be more clearly heard

because of the altered way in which our ears relate loudness

to sound pressure in this region of very soft sounds.

Let us summarize the salient features of the beat

phenomenon as it takes place between two sinusoids fed

directly to our ears.

1. When two sinusoidal driving forces that have roughly

equal frequencies are brought to act upon a single object,

they alternately aid and counteract one another as the two

oscillations run in and out of step. The swelling and

shrinking of the resulting vibration amplitude is called

beating. It takes place at a frequency equal to the difference

between the two driving frequencies.

2. The beat phenomenon manifests itself most

prominently when the two driving forces have equal

amplitudes, so that they alternately produce complete

cancellation and double amplitude response.

3. To the extent that beats are prominently heard between

two sinusoidal components, their combined loudness will be

greater than that predicted on the basis of narrow-band

noise experiments.

4. The perceived sensations arising from the phenomenon

of beats are much more strongly marked when they arise

from large amplitude sinusoids than when weak signals are

used. This variation may reverse its trend, however, as we

approach the threshold of hearing.



We have now familiarized ourselves with the concept of

beats between sinusoidal components and looked briefly at

its implications in a single-earphone laboratory experiment.

Let us use our knowledge to figure out what is to be

expected when sinusoids from two different sources are

supplied to our ears in the more normal listening

environment of a room. Points in the room exist where only

one of the components is strong enough to be heard, and

nearby points where only the other one is appreciable (refer

back to fig. 11.3). At most points in the room both

components are audible, however, and the beat

phenomenon will remain perceptible as our heads and

bodies move around to explore the sound field in our

neighborhood. For many of us the beats heard by a single

ear between two sinusoids in a room tend to be slightly less

prominent than those we get in earphone experiments. We

find, however, that if both ears are available for use, our

nervous system is able to recognize the beat regularities as

an essential part of the signal of interest. As a matter of fact,

someone listening in a room is often able to hear the higher-

pitched and the lower-pitched sinusoids as distinct entities

along with the beating sound (which generally is heard to

have its own, intermediate pitch). This is in contrast to what

happens in an earphone experiment. Here, if the two

sinusoids are of equal strength, one hears only a beating,

intermediately pitched sound. If the components are not of

equal amplitudes, the beat is still audible and we generally

hear a sound whose pitch is approximately that of the

stronger original sinusoid. Overall, then, the fluctuation

phenomena in a room permit us to separate out and

perceive many things which are not otherwise

distinguishable.

We have already learned from the earphone experiment

one way in which the presence of beats can enhance the net

loudness of two sinusoidal components over that expected



on the basis of noise-partial measurements. The presence of

fluctuation phenomena in a room will further increase their

loudness, both because the sounds’ irregularities serve to

call attention to them and because various aspects of the

sounds are made manifest one after the other in some

random sequence. There is a more formal way to say all this,

by making use of the concept of masking.

The phenomenon of masking is greatly weakened by the

presence of room-caused fluctuations in the sound pressure

amplitudes of all components. At one instant a super-

strength bit of the upper component is being picked up

along wth a vanishingly small amount of the lower

component; under these conditions masking obviously

cannot take place at all. At some other instant, to be sure,

the upper component may be weakened into inaudibility, in

part because of an increased amplitude for the lower

component. Over any short period of time, the flickering

relationships between the sinusoids leave us with overall

loudness impressions which are relatively little influenced by

masking of the sort measured in earphone experiments.

Consideration of the influence of room acoustics on the

perception of beats and on the extent of masking explains

the little spike appearing on the loudness curves of figure

13.6. Two sinusoids of nearly the same frequency combine in

a room to produce a considerably louder sound than do two

noise-partials having similar center frequencies. As the two

sinusoids in a room are progressively separated in

frequency, the net loudness falls away somewhat as the

beats become too fast to hear; however, the loudness does

not revert all the way back to the smooth curve of figure

13.6 because masking is still somewhat in abeyance.

Experiments using narrow-band noise-partials do not suffer

the influence of beats for a very simple reason. Noise-

partials are constructed out of so many closely spaced

components that loudness fluctuations due to any pair of



them are drowned out by the presence of all the other pairs.

It is very rare for a set of randomly related influences to

combine with zero resultant! The whole subject of the

masking behavior of sounds in rooms is a portion of

psychoacoustics that begs for detailed study by a skilled

experimentalist, but we can at least summarize what is

known by setting down here four more items to add to our

group of assertions detailing the loudness behavior of

sinusoidal components:

5. The statistical consequences of listening to a pair of

sinusoidal excitations of nearly equal frequency in a room

are such as to permit the distinct recognition of beats even

when the averaged amplitudes of the two excitations are

quite different.

6. In a room one can often recognize the upper and lower

frequency components as sounds in their own right, along

with their beating combination, even though the beating

combination is the only signal that is heard when one listens

through an earphone.

7. The masking effects of one sinusoid on another (at any

frequency) are drastically reduced when one listens to them

in a room; however, narrow-band noise signals mask each

other in very much the same way whether we listen to them

via earphones or in a room.

8. The presence of audible beats among the components

of a sound has the effect of increasing the perceived

loudness of the sound.

Item 7 in our summarizing list suggests that we consider

the possibility of ignoring masking effects as a shortcut to a



formula for calculating the loudness of a sound made up of

sinusoidal components whose frequencies are widely

enough separated for them not to beat. That is, for listening

in a room, we are led to consider the following formula for

the total loudness Stsp in sones produced by a sound

constructed out of sinusoidal partials having loudnesses S1,

S2, S3, . . . :

Stsp = S1 + S2 + S3 + . . . sones

This differs from the formula given in section 13.5 for the

total loudness Stnp arising from a collection of noise-partials

by giving equal weight to contributions from all components

rather than a decreasing importance to the higher frequency

ones.

I have carried out a simple experiment to illustrate the

difference between the two loudness formulas, the results of

which will be described next. Two signals (call them J and K)

were alternately presented to the listener’s ears via a

loudspeaker in my laboratory room. The strength of signal K

was adjusted to make its loudness match that of signal J, to

the satisfaction of a listener who was free to move around.

Signal J consisted of three sinusoidal components each

having an SPL of 70 dB (as measured in the room), their

frequencies being in the exact harmonic relationship of 200,

400, and 600 Hz. With the help of figure 13.4 we find that

the separate loudnesses S1, S2, and S3 are about 8.5, 10,

and 8.5 sones, so that the loudness Stsp predicted for the

aggregate of these sinusoidal partials is:

Stsp = 8.5 + 10 + 8.5 = 27 sones



Signal K was constructed out of three equal-strength

noise-partials each having its sinusoidal components spread

over a 1/3-octave range. The center frequencies of these

groups were at 200, 400, and 630 Hz, so as to give a good

correspondence with the frequencies of signal J. When the

loudness of this signal was adjusted to match that of signal

J, the measured SPLs of each of the noise-partials were found

to lie close to 75 dB. From figure 13.4 we deduce the

corresponding loudnesses to be about 12, 13.5, and 13

sones. The overall loudness Stnp given by the formula of

section 13.5 then becomes:

Stnp = 12 + (0.75 × 13.5) + (0.5 × 13) = 29 sones

This calculated figure for the loudness of three noise-partials

is only about 7 percent higher than the one obtained from

the loudness of the three sinusoidal components of signal J.

Since the two sounds were adjusted to be equally loud, we

have verified the need for two separate formulas for the two

kinds of signal.

Recall that the SPL for a single sinusoid will match that of

a single noise-partial when the two are adjusted for equal

loudness. The fact that we require louder noise-partials than

sinusoids to produce the same aggregate loudness is clear

evidence of the difference in masking produced by the two

kinds of signals under room-listening conditions.

There is one more piece of information that can be wrung

from this same experiment. If the whole-number relationship

between the partials in signal J is slightly deranged, for

example by setting the frequencies at 200, 396, and 605 Hz,

we hear fairly slow (4 to 13 Hz) beats among the



components. The explanation of this somewhat unexpected

phenomenon will have to wait until chapter 14, but its

presence allows us to verify item 8 in the list of summarizing

remarks. When a loudness match is made between the set of

not-quite-harmonically related components (each having a

70 dB SPL as before) and the set of noise partials, we find

that the SPL of the latter must be raised yet another 2 dB. In

other words, the presence of beats has raised the loudness

of signal J from about 27 sones to about 31 sones! I should

remark that the overall SPL of signal J was not changed

when the frequencies were altered, which tells us that

whatever gives rise to beats is not an additional collection of

sound components that reach the measuring microphone. In

other words, the increased loudness is not a result of

additional signals which somehow have appeared in the

room air and whose loudnesses therefore need to be

included directly in the calculations.

In this section we have learned that the loudnesses of

sinusoidal components of a sound add up quite simply in the

ear of a listener when he is permitted to make use of the

sound transmission properties of a room. That is, the

masking effects that are always observed when noise-

partials are combined and (to a lesser extent) when

sinusoids are combined in earphone or anechoic chamber

experiments do not play much of a role for sounds heard in a

room. We have also learned that the presence of beats can

make considerable additions to the perceived loudness of a

sound made up of sinusoidal components. At the very end of

the section our attention was drawn to a new phenomenon:

the presence of audible slow beats between sinusoids whose

frequencies are over 100 Hz apart. As we will learn in

chapter 14, this phenomenon has several modes of

occurrence and several points of origin. We will also learn of

its central importance to the way in which we recognize

musical relationships.



13.7. A Loudness Experiment Comparing

Two Saxophone Tones

In the spring of 1971, Mark Gridley, a talented professional

jazz musician who at the time was also a graduate student

working on problems of auditory perception, asked me for

help in achieving a louder and more penetrating tone from

his tenor saxophone. The simplest of the acoustical options

that suggested themselves to me involved a tiny and easily

made change in his instrument’s mouthpiece which would

increase the strength of the second harmonic component

along with the strengths of some of the higher partials.

When the instrument was altered in this way, its sound more

successfully met Gridley’s musical requirements and he

used it in his playing engagements.

Because we shared an interest in the perceptual and

acoustical aspects of this musical problem, Gridley and I

decided to make a few measurements on his instrument

both before and after the change was made. Since the

experiments provide a small-scale but typical example of

how one deals with musical instruments in the laboratory, I

shall describe what we did and why, with emphasis for

present purposes on the loudness aspects of the study. I will

mention various details having to do with the physics of the

saxophone itself without giving an explanation for them,

since that can wait for our later, more specific discussion of

the woodwinds. For example, I will at this time merely assert

that the sound pressure recipe obtained from a woodwind by

means of a microphone placed next to the first open tone

hole gives a fair imitation of the recipe one gets from a

painstaking averaging process based on microphone

measurements in a room. In other words, a microphone

placed in this way allows us to record a sound similar to the

one our hearing mechanism puts together as we move

around in a room. The imitation works best if we listen to



this sort of recording as it is played back in room

surroundings rather than through earphones.

Using a microphone in the manner described above, we

recorded on one channel of a stereo tape recorder several

repetitions of the sound of the written note G3 (fundamental

frequency 174.6 Hz; we are dealing with a transposing

instrument) as it was played on the saxophone using the

unmodified mouthpiece (call this tone Q). The modification

was then installed and a series of tones was once again

recorded, this time on the other channel (tone R). In both

cases Gridley was instructed to play at what he called a

mezzo-forte dynamic level. I played the two channels of our

tape back through an adjustable band-pass filter (also

known as a wave analyzer) to measure the amplitudes of the

various sinusoidal partials of both the modified and the

unmodified saxophone tones, and verified that Gridley’s

playing was stable and well-defined, so that we were not in

danger of being led astray by chance variations in his

performance. Figure 13.8 summarizes the results of these

measurements.

The heavy black dots in figure 13.8 show the relative

amplitudes of the fundamental and harmonics of tone Q. In

the figure this fundamental is shown as having an amplitude

of unity. We can see that the second harmonic (partial 2) has

an amplitude that is 92 percent of partial 1, whereas partial

4 has an amplitude that is only about 7 percent as strong. To

guide your eye, these dots are connected by solid lines, so

that the “shape” of the overall recipe (or spectrum, as it is

sometimes called) can clearly be seen. As we shall see, this

shape is typical of the low-register tone of a single-reed

woodwind; three or four of the lower frequency partials are

reasonably strong, the higher ones falling away very rapidly.

(The chief error arising from the use of a microphone on the

outside of the tone hole is an underrepresentation of the

strengths of the higher partials, in this case numbers 4 and



higher. A more accurate representation can be obtained by

putting a probe microphone into the tone hole.)

Fig. 13.8. Effect of Mouthpiece Modifications on the

Measured Pressure Amplitudes of the Spectrum of the Note

G3 on a Tenor Saxophone. While the net SPLs of these

spectra are identical, tone R is noticeably louder than tone

Q.

The open circles connected by dashed lines in figure 13.8

show similarly the pressure amplitudes of the partials

making up tone R. For convenience in calculation I have

adjusted all of the amplitudes of tone R relative to those of

tone Q in such a way as to give them the same overall SPL

(calculated using the formula for the combination of several

components given in sec. 13.2). Notice that in tone R, partial

1 is quite weak, partial 2 is strong, and partials 5 and 6 have



particularly large amplitudes when compared with their

predecessors belonging to tone Q.

Let us now compare the loudnesses of these two tones, on

the assumption that component 1 of tone Q has an SPL of 80

dB (which gives a net SPL for the whole tone that is close to

86 dB in both cases). We find the loudnesses of the various

components (as calculated with the help of figs. 13.2 and

13.4) to be as follows:

The total loudnesses given at the right-hand end of the lists

are found by simple addition, in accordance with the formula

given in section 13.6 for sounds having exactly harmonic

partials listened to freely in a room. We see here that two

sounds having equal SPLs (the engineer’s measure of the

overall sound pressure) can be made to have quite different

perceived loudnesses, simply by rearranging the strengths

of the partials.

According to the calculation described above, tone R is

72/54 = 1.33 times as loud as tone Q. Figure 13.5 tells us

that a similar increase in loudness could have been achieved

by having 2.6 players sounding their mezzo-forte tones in

the same room. A piece of arithmetic based on the fact that

the loudness of a sound doubles if the SPL is raised 10 dB

allows us to predict further that playing back tone Q with an

SPL 4 dB higher than that of tone R should make them

sound equally loud. It is this prediction that Gridley and I set

out to test next.

Figure 13.9 shows the arrangement we used to play back

our tape recording of tones Q and R for a test of our



loudness predictions. These tones were fed from the two

channels of the playback machine via a pair of attenuators

to a device known as a soft switch that feeds the two tones

in alternation, for approximately one-second intervals, to an

amplifier and loudspeaker system set up in my laboratory

room. The soft switch quickly and smoothly turns down the

amplitude of one signal, waits an instant, and then turns up

the other one. Each of these amplitude changes takes place

over a period of 25 or 30 milliseconds, thus preventing

electrical clicks and room echoes from confusing the

listener’s loudness judgments. While listening to the

alternating sequence of tones Q and R, our listener could

play with the two attenuators, adjusting them until the two

signals sounded equally loud to him. People who tried our

loudness balancing experiments on the before-and-after

saxophone tape with one ear stopped up or with the head

held in a fixed position found the task quite difficult, and

many of them gave quite variable responses under these

conditions. The problem was compounded if they were

forced to use earphones. If on the other hand they could

sway or move around in the room a little, our subjects found

their task relatively easy. While there were small differences

in the settings made by different people, they all preferred

settings which gave about 4 dB difference between the SPLs

measured for the two tones at the position of the listener’s

ear, in agreement with the prediction of our calculation.



Fig. 13.9.

It is possible to squeeze a little more information from the

results of this saxophone experiment. The player was

instructed to sound his instrument at a mezzo-forte level in

making both tone Q and tone R. In other words, he was

asked, in musical terms, to make equally loud sounds. When

I went back to measure the signal levels actually recorded

on the original tape, tone Q had an SPL that was somewhat

more than 2 dB above that belonging to tone R. In other

words, the increased efficacy of tone R at the player’s ears

led him to generate it on a smaller scale of sound pressure;

the player governs the vigor of his blowing and therefore the

loudness of the sounds he generates at least in part on the

basis of direct acoustical messages arriving at his ears.

13.8. The Sound Level Meter

An increasingly familiar instrument today as we become

more concerned about the control of noise in the

environment is the sound level meter, a compact device

having an acoustical function somewhat analogous to that

of the light meter used by photographers. It is from the dial

readings of the sound level meter, expressed in decibels,

that the general public has come to consider the word

decibel to represent a measure of loudness. Let us see in fact

what the instrument is, and what its readings mean.6

In the 1930s, when the sound level meter first began its

development, it was hoped that if a microphone connected

via a special amplifier to an electrical meter were given the

same variation of sensitivity with frequency as is

characteristic of the ear, the net sound pressure readings

displayed on the meter would be a good measure of the

perceived loudness of the sound. While the original hope

was not fulfilled, instruments designed in accordance with



this plan have nevertheless proved to be very useful, and it

is worthwhile to review the thinking of its originators.

Already in the thirties it was known that, at low sound

levels, not only do our ears fail to hear very low- and very

high-frequency sound components (see fig. 13.3), but also

the loudness of the still-audible components near the limits

of hearing are reduced in comparison with those in the 500-

to-4000-Hz frequency range. On the basis of this

information, it was (very plausibly) presumed that these ill-

heard components would contribute little to the net

loudness, and should therefore be prevented from having

much influence on the electrical device’s meter reading. In

line with this thinking, the instrument had built into it an

electrical circuit having a rolloff in its low-frequency

response such as to reduce the transmission of 100-Hz

components to 10 percent of their original amplitudes (20

dB attenuation). The reduction at 200 Hz is to 28 percent of

the original amplitude. From 500 Hz to about 2000 Hz the

response is reasonably uniform; at 5000 Hz, there is a

reduction to 70 percent. This particular sort of circuit was

intended to approximate the behavior of the ear for sounds

having sound pressure levels near 40 dB. The indicating

meter itself was designed to give a measure of the net sound

pressure of all the sound components reaching it through

the response-adjustment circuit (weighting network), this

net sound pressure being electrically arranged to agree with

calculations like those described at the end of section 13.2.

For reasons chiefly connected with the electrical

engineering convenience of its designers, the meter was

calibrated to indicate in decibels the SPL of the modified net

sound pressure.

To identify the readings made with an instrument arranged

as described above, a meter reading of 47 is commonly said

to show a “sound level of 47 dB-A,” or an “A-weighted sound

level of 47 dB” (“sound level” is often abbreviated SL). In



either case the letter A identifies the transmission

characteristics of the particular network that has been

described.

Continuing our study of the design of a sound level meter,

we find that two additional weighting networks are usually

provided. The B-weighted circuit attenuates the 100-Hz

components to about 56 percent (5 dB reduction) as

compared with 1000-Hz components. The high-frequency

components are treated in almost exactly the same way as

in the A-weighting circuit. This B-weighting was intended to

approximate the hearing characteristics of our ears for

sound components having SPLs in the region of 70 dB. The

C-weighting circuit has almost uniform transmission of low-

frequency sound components (no attenuation) and provides

slightly less attenuation for high frequencies than is the

case for the other two networks. The intention here was to

represent our hearing for SPLs close to 100 dB.

From what has gone on earlier in this chapter, you may

already have realized why a sound level meter tested on a

variety of real sounds is not able to give a true measure of

loudness. For one thing, it has no way to take care of

masking, or of beats. Even if the weighting networks of a

sound level meter reading were able to take proper account

of the way in which various sound components interact to

determine the loudness of a sound, the use of a decibel

scale on the meter itself causes trouble. Equal increases in

decibel readings do not at all produce equal increases in

perceived loudness, even for single-component sounds.

Figure 13.10 illustrates this fact by presenting the actual

relation between the perceived loudnesses (expressed in

sones) and the SPLs that give rise to them, at 125 Hz and at

4000 Hz. The data for this curve are contained in figure

13.4, as you can verify by reading upward along vertical

lines at the two frequencies. In the simplest of worlds, then,

to get a numerical measure of loudness, one would take the



decibel readings of a sound level meter and then use curves

such as those in figure 13.4 to convert these numbers into

sones. This does in fact work pretty well in the case of single

sinusoids or their equivalent noise-partials.

By now you will be wondering why the sound level meter

has come into common use, despite its limitations as a

measurer of loudness. In crudest terms we recognize that

sounds having a large sound level reading on the meter will

in general also sound loud to our ears. Also, sounds having

SLs of above about 120 dB will tend to be painful.

Fig. 13.10. Relation between Sones and SPL at Two

Frequencies

At a more sophisticated level, we learn that many

industrial and other environmental sounds and also



averaged speech are made up of thousands of randomly

arranged sinusoidal partials whose measured amplitudes do

not vary abruptly as we shift our wave analyzer from one

frequency setting to a nearby one. For broad-band

continuous-spectrum sounds of this sort, a sound level

meter can be used to get reasonably sensible results as a

loudness measuring device if the differently weighted

readings are used in conjunction with curves similar to those

in figure 13.10. Furthermore, comparison of the A-, B-, and

C-weighted sound levels can tell the experienced user a

great deal about the strengths of the low-frequency (well

below 1000 Hz) components of a sound as they compare

with the amplitudes of the components lying above 1000

Hz. For example, as I read aloud and compare the different

SLs produced by my voice with the A, B, and C settings of

the meter, it turns out that the B-weighted sound level is

about 4 dB below the C-weighted level, while the A-

weighted level is nearly 8 dB lower still. This is consistent

with the fact that (when averaged over a long series of

words) my voice sounds are constructed out of harmonics of

a fundamental that is roughly 100 Hz. The first 8 of these

harmonics have about equal amplitude, and the higher

components fade away (on the average) in a smooth manner

(9 dB per octave) that gives the 16th harmonic a pressure

amplitude of about 35 percent of the low-frequency

components, while the 32nd harmonic is down to 12.6

percent in amplitude.

For many legal purposes, such as defining the tolerable

noisiness of truck engines (or a neighbor’s air conditioner),

careful studies are made by experts using both sound level

meters and the most elaborate analysis equipment that is

available. Since truck engines all make pretty much the

same kind of noise, it then becomes possible to tell the

policeman what combinations of readings from the simple

meter correspond to unacceptable levels of real noisiness.



We can learn to estimate SL readings by ear, simply by

practice with a sound level meter, in very much the way that

a carpenter learns to estimate the sizes of his boards, or a

photographer to decide on a suitable exposure setting.

Curiously enough, it is very much easier to learn SL

estimations for broad-band noise sounds than it is for sounds

made up of a few sinusoidal partials. It is also easier (at all

sound levels) to estimate A-weighted readings than the

other two types. To give you a basis for estimating, here are

a few typical readings.

(a) As I sit here at home in the suburbs with the windows

open on a summer day, the A-weighted SL is a little over 30

dB, while the B- and C-weighted levels are both about 10 dB

higher. When a not particularly quiet refrigerator starts up in

the next room, all levels go up about 10 dB.

(b) Quiet conversation at arm’s length is carried out at a

level of about 60 dB-A; the relation of the corresponding B-

weighted and C-weighted levels is similar to that described

earlier in connection with the measurements for reading

aloud.

(c) Chamber music in a small auditorium averages out to

have an A-weighted SL of 75 to 85 dB at the listener’s ears,

although the fluctuation in level during performance may be

considerable. The players themselves generally operate in a

region of much higher sound level. The violin is particularly

prone to produce large sound levels at its player’s left ear,

while the flute player’s right ear can be similarly assaulted

as it is provided with sound levels of 90 to 100 dB-A. A good

piccolo strongly played can easily exceed its player’s pain

threshold.



(d) The noise of a large truck starting up produces about

80 dB-A at curbside. A very different distribution of sound

components gives rise to a similar level next to a crowded

outdoor swimming pool, where the chief contributors to the

measured sound level turn out to be teen-age boys!

(e) A jet airplane flying low overhead can give rise to a

120-dB-A sound level on the ground.

(f) The dial tone of a telephone produces a sound level a

little above 80 dB-A when the receiver is pressed closely to

your ear.

13.9. Examples, Experiments, and

Questions

Many of the phenomena described in this chapter can be

observed today with the help of very simple equipment. For

example, oscillators can be fed in various ways to the two

channels of an ordinary stereo hi-fi system to provide sound

sources in the listening room. A thoughtfully used sound

level meter can be employed to provide sound pressure

data. The simpler “stops” of most electronic organs can also

be put to good use, since these produce sounds made up of

relatively few harmonically related partials, and these

sounds are available over a wide range of fundamental

frequencies. If you plan to experiment with more than one

organ note at the same time, however, you should restrict

your combinations to unisons, fifths, octaves, and perhaps

twelfths. The old rotating-disc type of Hammond organ is not

suitable for experiments at this stage, nor are any of the

ordinary woodwind, brass, string, or keyboard instruments.

These have various acoustical complexities that might

obscure the phenomena we are currently pursuing.

You can also use some of the following paper-and-pencil

experiments to sharpen up or test your comprehension of

the ideas sketched out in this chapter.



1. Imagine that, while you are listening in an ordinary

room, your ears are supplied with a tone whose partials have

the following harmonically related frequencies: 62.5, 125,

187.5, 250, and 312.5 Hz. Each of these partials has a

pressure amplitude corresponding to an SPL somewhat less

than 20 dB. (a) Use figure 13.3 to help you decide on the

audibility of each of these partials taken by itself. (b) Look

back to the discussion of how we assign pitch to a collection

of harmonically related sounds (see secs. 5.6 and 5.7), and

then make use of figure 2.1 to work out the note name we

would give to this very soft sound.

2. Suppose the SPLs of each of the components of the

sound described in question 1 were raised to 75 dB. Make an

estimate of the total loudness of such a sound by finding

Stsp, expressed in sones (you will need to make use of fig.

13.4).

3. Verify from the curves of figure 13.10 that while equal

increases in the decibel level do not produce equal steps of

increasing loudness, it is true that the loudness very nearly

doubles whenever the SPL is increased by 10 dB, as was

pointed out in section 13.4.

4. Assume that you are supplied with a roomful of sound

made up of two sinusoidal partials whose frequencies are

250 and 500 Hz (an octave apart). Consider two versions of

this sound: the first gives the components equal amplitudes

and SPLs of 80 dB; in the second version, the lower

component has an SPL of 82.4 dB, that of the higher one

being 74 dB. The SPL of the total signal in both versions is

the same—83 dB. You will find that the loudness of version 1

is greater than that of version 2. See if you can understand

why, on the basis of the summarizing information contained

in figure 13.10. Would it change things if the two

components had their amplitudes reversed?



5. Mathematically inclined readers may wish to know how

the loudness of a single sinusoid (or the corresponding

narrow-band noise-partial) is related to its pressure

amplitude. For a signal whose pressure amplitude p is more

than 100 times (40 dB above) the threshold value pthr for

that frequency (see fig. 13.3), the loudness S in sones is

quite accurately given by the following formula:

S = (p/100 pthr)
0.6

This relation does not however hold for fainter sounds. For

example, in the immediate neighborhood of threshold the

formula becomes:

S = (p/22 pthr)
2

As one goes up in sound pressure from threshold, the 22 in

the denominator grows smoothly toward 100, and the

exponent 2 shrinks to its eventual value of 0.6 that applies

for all sound pressures that are more than 40 dB above

threshold. The mathematical form of these relations between

a sensation and its physical stimulus is typical of many

aspects of our sensory activities.

6. In the mid-1800s Gustav Fechner followed up a proposal

by E. H. Weber in asserting that any sensation (e.g.,

loudness) evoked by a stimulus increases by a constant

amount whenever the stimulus is increased by a constant

factor. Despite the fact that the hypothesis is not supported

by experiment, it has exerted an enormous intellectual

attraction for philosophically inclined scientists, to the point

that one often hears of the “Weber-Fechner Law.” 7 You



might verify that this “law” implies that the loudness

variation obeys the formula:

S = a constant × log (p/pthr) = another constant X

(SPL-SPLthr)

This is an expression that is entirely incompatible with the

formulas given above in question 5.

7. A tone made up of 8 exactly harmonic partials has a

fundamental frequency near 250 Hz. For simplicity we will

assume that all the components are of equal strength,

having individual SPLs of 80 dB. Suppose now that this tone

is played with a vibrato, so that the frequencies of

components rise and fall together with a repetition rate of a

few times per second. (a) Verify that if the amplitude of this

fluctuation is 2 percent, the first partial is “visiting” a

frequency region that extends 5 Hz above and below 250

Hz, the fourth partial covers a range of 20 Hz on each side of

1000 Hz, and the 8th partial oscillates over a region that

extends 40 Hz on either side of 2000 Hz. (b) Figure out

informally why the loudness of this sound might well be

increased for a listener in a concert hall as a result of the

vibrato. As a help in this, look at the vibrato-caused

fluctuations in loudness of at least the 1st, 4th, and 8th

partials, as implied by the 80-dB curve in figure 13.4. Don’t

forget also to keep in mind that due to room acoustics there

are random fluctuations of signal amplitude produced at all

the component frequencies.

Notes

1

These International Standards are interesting reading. They

can be obtained from: International Organization for



Standardization, 1 Rue de Narembé, Geneva, Switzerland.

A brief but clear introduction to the subject of loudness

estimation is to be found in sections I through IV of the

Hewlett-Packard Acouftics Handbook (Palo Alto, Calif.:

Hewlett-Packard Company, 1968). See also chapter IV,

“What Do We Hear?” in the charming paperback book,

Waves and the Ear, by Willem A. van Bergeijk, John R.

Pierce, and Edward E. David, Jr. (Garden City: Doubleday

Anchor Books, 1960).

2

S. S. Stevens, Psychophysics: Introduction to Its Perceptual,

Neural, and Social Prospects, ed. Geraldine Stevens (New

York: Wiley, 1975). In Stevens’s book such experiments and

similar ones having to do with human response to many

other sensory inputs are clearly described by the man who

did the most to develop them.

3

The information consolidated in figure 13.4 is more usually

presented piecemeal. See, for example, the Hewlett-

Packard Acoustics Handbook, figures 1 and 2, plus the table

in Appendix A; or van Bergeijk, Pierce, and David, Waves

and the Ear, figures 4.2 and 4.3.

4

Jerry V. Tobias, ed., Foundations of Modern Auditory Theory,

2 vols. (New York: Academic Press, 1970); see volume 1,

chapter 3, “Masking,” by Lloyd A. Jeffress, and chapter 5,

“Critical Bands,” by Bertram Scharf. See also Arnold M.

Small, Jr., “Pure-Tone Masking,” J. Acoust. Soc. Am. 31

(1959): 1619—25.

5

While the subject has developed considerably in the past

two decades, two basic papers on the calculation of



loudness of complex sounds are still worth reading. They

are: E. Zwicker and R. Feldtkeller, “Über die Lautstärke von

gleichförmigen Geräuschen,” Acustica 5 (1955): 303—16;

and S. S. Stevens, “Calculation of the Loudness of Complex

Noise,” J. Acoust. Soc. Am. 28 (1956): 807—31.

6

Leo L. Beranek, Acoustic Measurements (New York: Wiley,

1949); see chapter 20, “The Sound Level Meter.” Section V

of the Hewlett-Packard Acoustics Handbook gives a good

description of a number of sound level meters and

discusses loudness meters as well.

7

A brief but crystal clear outline of the origin and nature of

Fechner’s ideas and of the developments which follow them

is to be found in Bertram Scharf, “Laws That Govern

Behavior” (review of Psychophysics by S. S. Stevens),

Science 188 (23 May 1975): 827—29.



14

The Acoustical Phenomena

Governing the Musical

Relationships of Pitch

In chapter 13 we met the phenomenon of beats which can

occur between two sinusoidal components. It does not take

very much imagination or experience to realize that a

musician can use the beat phenomenon as a guide in the

adjustment of the frequency of one source to that of

another. For example, an oboist who wishes to check the

accuracy of the A4 which he will give to the orchestra can

strike a tuning fork and play his tuning A with it to make

sure that the fundamental component of his tone matches

the 440-Hz sinusoid generated by the fork. If he is playing

accurately in tune, the two signals will not beat together. If

he is either a little sharp or a little flat, beats will be heard,

and he simply makes frequency adjustments to reduce the

beat frequency until it disappears. We have already learned

that our ears are particularly well-fitted to detect beats

when they are heard in a room, since in such surroundings

the amplitude fluctuations of the two sounds are bound to

make them equal for at least part of the time, thereby

producing the most prominent sort of loudness variation.

In the next-to-last paragraph of section 13.6 it was

mentioned in passing that there are certain additional

frequency relations (other than near equality between the

sinusoids) that can sometimes give rise to audible beats. We

need to provide ourselves with some knowledge of the



frequencies at which these additional, and perhaps

unexpected, beats are located, and should also learn of the

general way in which a mechanical system can give rise to

them.1 Not only will this complete the formal system of

information we need to understand the principles governing

musical pitch relationships, but it will further provide us

with an eventual entryway into an understanding of how the

wind instruments and the members of the violin family go

about producing their sustained tones.

14.1. Heterodyne

Components: Their

Detection and Frequency

Relationships

A very simple experiment will help us begin the formal

search for the extra beat frequencies touched on in section

13.6. A reasonably strong, one-component (i.e., sinusoidal)

signal at a frequency of (for example) 400 Hz is supplied to

a single, high-quality earphone mounted on a listener’s

head. The other ear is blocked off or (better) supplied with a

steady, broad-band noise signal of sufficient magnitude to

mask any stray sounds that may be leaked to it. In addition

to the strong, fixed-frequency signal that is fed to the main

earphone, we also provide it with a much weaker sinusoid

whose frequency and amplitude are both adjustable. For

reasons which will become apparent in a moment, this

weaker, adjustable sound is usually called the search tone.

A preliminary scan, carried out as the frequency of the

search tone is varied from 400 Hz on up, shows signs of the

beat phenomenon in the immediate neighborhoods of 400,



800, 1200, ... Hz. In other words, beats are found at

frequencies that are harmonics of the main excitation

frequency. We have clear evidence, then, that new,

harmonically related frequency components have somehow

been created from the original single-component excitation,

and that these new components have been called to our

attention by their beatings with the search tone.

In section 13.6 we learned that beats have maximum

prominence when the amplitudes of the two components

are equal, which permits the loudness of the combined

sound to drop all the way to zero once during each cycle of

the beat. This fact suggests that if we adjust the amplitude

of our search tone to maximize the prominence of the

beating it makes with one of the new components, then the

amplitude of the search tone will be exactly equal to the

amplitude of the unknown signal. Such adjustments prove

to be easily attained, and the resulting amplitude

measurements are reproducible and well-defined.

Digression on a Refinement of the Search-Tone Technique.

Julius Goldstein, while at M.I.T. and the Harvard

Psychoacoustics Laboratory, developed an interesting

variant of the search-tone technique for measuring

amplitude. He uses a search tone whose frequency is

exactly equal to that of the main signal, and then adjusts its

phase (slides it over in time) to where its pressure variations

act in a direction to counteract those “belonging” to the

component under study. All that remains then is to adjust

the search-tone amplitude so that continuous silence results

at the search-tone frequency.



Amplitude measurements of the extra components of the

sort we are dealing with here have been made for many

years using variants of the search-tone technique. Let us

provide ourselves with a few of the numbers Goldstein

found from his careful measurements that tell how the

amplitudes of these extra components vary.2 If the SPL

associated with the main (400-Hz) component is 95 dB

within the earphone, the 800-, 1200-, and 1600-Hz

components will have amplitudes that are approximately

equal to each other; for cancellation, the search tone

amplitude must in all three cases be at an SPL of 75 dB. In

other words the newly created sounds are cancelled by

means of a search tone whose pressure amplitude is 10

percent of the main signal. When the main tone has its

amplitude reduced to 1/2 of its original value (to 89 dB SPL),

the 800-Hz second-harmonic search tone must be reduced

fourfold (to an SPL of 63 dB) to produce cancellation, and

similar measurement reveals that the 1200-Hz and 1600-Hz

components are now down to 1/8th and 1/16th of their

original values (to SPLs of 57 and 51 dB). If our main tone is

supplied at the musically more relevant but still fairly high

SPL of 75 dB, we find that the harmonics are cancelled by

SPLs of about 55, 35, and 15 dB. For most purposes it turns

out that, at sound levels of 75 dB and lower, we can ignore

all but the second harmonic contribution, the others being

so weak (close to the threshold of hearing) as to play only

the most feeble role in what we hear musically.

By now you will be wondering where these extra

components come from. Use of a probe microphone and

wave analyzer to study the sounds actually produced by the

earphone show (if the earphone is a really good one) no sign

of the mysterious components. However, if we use surgical

techniques to probe within the fleshy parts of the middle

and inner ear, evidence of the extra vibration components is

readily found, although their amplitudes do not vary with



the strength of excitation in exactly the way implied by the

search tone measurements. Deeper probings, using

electrical instruments to detect the actual impulses sent to

the brain by the auditory nerves, confirm that the hearing

mechanism itself is creating new components. Furthermore,

we learn that both the mechanical and the neurological

parts of our ears take part in this creative process. The basic

physics that leads to these creative processes will be

outlined in section 14.2. Meanwhile we will continue with

our exploration of the phenomena they give rise to.

Suppose we supply our earphone with not one but two

strong sinusoidal components, and then repeat our search-

tone survey to discover what new components have made

their appearance. Let us use the letters P and Q to stand for

the frequencies of the two externally supplied sinusoids. If P

is applied by itself, we have already learned to expect the

presence of additional components having the harmonic

frequencies 2P, 3P, and 4P, so that the complete list of

components present in the ear is: P, (2P), (3P), (4P), ... I

have put parentheses around the new components to

distinguish them symbolically from their externally applied

ancestor P. When P and Q are sounded together, our list of

what we will call heterodyne components can be arranged

together with their ancestors in a tabular schema as follows:

Original

Components

Simplest

Heterodyne

Components

Next-Appearing

Heterodyne

Components

P (2P) (3P)

(2P + Q), (2P — Q)

(P + Q), (P — Q)

(2Q + P), (2Q — P)

Q (2Q) (3Q)



In the first column, we find the two components P and Q

which make up the original sound. In the second column we

find the expected double-frequency heterodyne

components (2P) and (2Q); in addition one can usually

discover two more heterodyne components having

frequencies that equal the sum (P + Q) and the difference (P

— Q) of the original signals. In the third column we find (3P)

and (3Q), as expected, along with a set of four heterodyne

signals that are the result of what we might facetiously call

the interbreeding of P and Q.

Notice that all the heterodyne components in the middle

column have frequencies that are constructed out of sums

and differences of any two objects (or their duplicates)

taken from column one. Similarly you will notice that the

third column is inhabited by creatures resulting from the

joining of three items (or their duplicates) from column one.

Another way to say this is to point out that the third column

can be put together arithmetically by combining a

frequency from the second column with one from the first.

We could continue these numerical games indefinitely; for

example, the objects in a fourth column would be made by

combining (by addition and subtraction) frequencies from

column one with those in column three.3 For musical

purposes involving our ears, it turns out that the second

column provides us with almost everything of interest, while

the third column makes its appearance only rarely. Beyond

this, the auditory effects are musically negligible.

Digression on Negative Frequencies.

The statement that one of the heterodyne components we

should expect has a frequency (P — Q) seems



straightforward enough if P happens to be 276 Hz and Q is

192 Hz, so that (P — Q) gives us (276 — 192) = (84) Hz.

What, on the other hand, would we get if P is 276 Hz, as

before, and Q is 320 Hz? (P — Q) then becomes (276 — 320)

= ( — 44) Hz. The fact that the difference comes out

negative is not relevant to our purposes in this book. It is

the magnitude of the frequency difference that matters to

us here, so we can drop the minus sign. This does not mean

the minus sign can always be ignored. You might wish to

consider the following brief example of negative frequencies

having distinct physical meaning. Imagine a crank-driven

pendulum of the sort that was shown in figure 10.1. As the

crank rotates, the pendulum is driven at a frequency equal

to the rotation rate. If the drive crank is made to revolve in

the opposite direction (e.g., clockwise instead of

counterclockwise) the pendulum is being driven at a

negative frequency.

What we have called heterodyne frequencies are sometimes

referred to as combination tones, summation or difference

tones, subjective tones, intermodulation components, and

occasionally even beat tones. I have avoided these names

for several reasons and adopted a rather unfamiliar (though

technically exact) engineering name. One reason for this

choice is that I wish to restrict our usage of the word tone to

sounds made up of a set of exactly harmonic partials—we

need such a term because of the way our hearing machinery

groups such partials into a single auditory whole (see secs.

5.2 and 5.6). The heterodyne phenomenon has to do with

the generation of new partials; whether these combine with

other things to produce a perceived musical tone as defined

above is a separate question. Another reason for choosing



the engineer’s word heterodyne is that we will have

occasion to meet examples of the same basic physics in

situations outside of the human ear, making it advisable to

avoid confusions that might otherwise arise between

mechanical phenomena and their perceived correlates.

A very simple example of the way in which the existence of

heterodyne components can influence the musical

responses of our ears follows. Suppose we listen to a sound

made up of two partials whose frequencies are 400 and 600

Hz. The simplest heterodyne components that have the 400-

Hz partial for one of their parents are the following: (400 +

400) = (800) Hz; also (400 ±600) =(1000) Hz and (200) Hz.

Similarly, the only heterodyne offspring of the 600-Hz

partial not already listed is (600 + 600) = (1200) Hz. Let us

now list all of the components present in the ear in order of

increasing frequency:

(200), 400, 600, (800), (1000), (1200) Hz

Out of a pair of original components, our ears have

constructed the first six members of a complete harmonic

series! It does not matter particularly how strong these

various components are, or whether all of them are

simultaneously present in the ears of a listener as he moves

about in a room. His auditory system will recognize the

frequency relationships in this sequence of components and

will perceive them in aggregate as a sound whose pitch

belongs with the 200-Hz fundamental frequency. (We have

here an example of one way in which our hearing

mechanism sets about playing pitch-assignment games to

discover the hidden tune described in experiment 2 of

section 5.9.) Before we go on to a study of the mechanical

influences that give rise to heterodyne components, we

should set down in order a group of assertions summarizing



and slightly extending the knowledge of heterodyne

components that we have acquired so far in the chapter:

1. The ear shares with various other systems the ability to

generate within itself new heterodyne components in

response to externally supplied signals.

2. Out of a very large class of possible heterodyne

frequencies within the ear, we shall (for simplicity) generally

confine our attention to those which are equal to the sums

and differences between the applied signal frequencies,

including doublings. Not all of these will be separately

audible without help from a search tone.

3. The amplitudes of the heterodyne components depend on

the amplitudes of the original input signals. As a rule, strong

original components give rise to strong heterodyne

descendants, but some heterodynes (particularly those

associated with neurological effects) do not disappear

rapidly as the stimuli are reduced.

4. Heterodyne components with frequencies below about 20

Hz are inaudible, for very much the same reasons that make

externally supplied sounds inaudible when their frequencies

are low.

There is a fifth assertion to be made which is almost self-

explanatory in the light of what we already know. I will

follow this additional assertion with a specific example to

illustrate its meaning.



5. If two heterodyne components happen to be close

together in frequency, they themselves can beat in exactly

the way that was described in section 13.6. It is also

sometimes possible for a heterodyne component to beat

with a nearby ordinary component that is supplied from

outside the ear.

Suppose we have a stimulus made up of three sinusoidal

components, P, Q, and R, which have frequencies of 200,

396, and 605 Hz. Heterodyne components (Q — P) = (196)

Hz and (R — Q) = (209) Hz are close enough together to

beat, the rate of beating being 13 Hz. Similarly (Q—P) is

able to beat with P itself at a 4-Hz rate. There are several

other possibilities for beats in this collection, which you may

wish to work out. Notice that this example is exactly the one

used to introduce the existence of the unexpected beats

that were first described near the end of section 13.6.

14.2. Mechanical Origins

of the Heterodyne

Components

Heterodyne components are often produced as part of the

response of a mechanical system driven by oscillatory

forces. The reasons for this creative process are not too

difficult to grasp if we make use of a suitably chosen

mechanical model. A long steel bar clamped at one end in a



vise and then plucked will vibrate predominantly in its

lowest-frequency mode of oscillation (discussed in chap. 6;

see also the first 3 examples in sec. 4.9). If we could

somehow attach a pen to the vibrating tip of the bar, it

would trace out a wavy, accurately sinusoidal curve on a

piece of strip chart paper pulled steadily past it.

If instead of clamping the bar in an ordinary vise, we fasten

it in the manner shown by the top part of figure 14.1, the

vibration will no longer be sinusoidal under all conditions. If

the bar is plucked very gently so that it is given only a small

amplitude of oscillation, it will move sinusoidally and act as

though the vibration length extends from the bar’s tip back

to the point marked A, where it touches the mounting.

Plucking the bar more vigorously gives rise to a different

motion : during the upward part of its swing, the bar moves

away from the point A and swings farther than otherwise

before coming to rest because the moving part is now

longer and therefore less stiff; during the downward swing,

the bar moves “normally” at first, and then begins to roll

down firmly against the curving ramp B. Because of this

ramp, the moving part of the bar is progressively shortened,

and therefore stiffened. As a result its tip fails to come down

quite as far at the limit of its motion as it would if the

clamping were of a more normal type. Overall, then, the

peculiarly clamped bar departs from sinusoidal motion by

swinging upward a little farther than normal, and by

swinging downward a little less far. The exact details of the

alteration depend of course on the proportions and shape of

the clamp. The middle part of figure 14.1 compares the

sinusoidal vibration expected from a normally clamped bar

with the motion of our modified one.

e9780486150710_i0153.jpg

Fig. 14.1. A Vibrator Whose Motion Is Not Quite Sinusoidal



The motion of our oddly clamped bar is clearly repetitive,

and we have been at some pains to notice that it is not

sinusoidal. We learned in section 5.5 that a nonsinusoidal

but repetitive motion is made up of a set of harmonically

related components whose amplitudes are such as to make

them add up to give the observed overall motion. When

taken together the lower two parts of figure 14.1 show that

a double-frequency sinusoid can combine with the

fundamental frequency sinusoid to produce a wave form

(chart recorder trace) that is peaked at the tops and

flattened at the bottoms of the up-and-down oscillations, in

general agreement with the way our bar is observed to

move. To summarize: our bar, whose clamping

arrangements make its stiffness vary from one part to

another of the oscillation, has a first mode characteristic

oscillation that is not sinusoidal. The vibration is made up of

a fundamental frequency component plus a set of

harmonics. The same remark applies to any one of the

higher modes as well, if we set that mode into motion by

itself.

Suppose we now arrange to excite the bar sinusoidally by

driving it from a rotating crank via a long spring or rubber

band (see figs. 10.1 and 10. 10 for earlier examples of such

a driving system). Let us assume that the first mode

characteristic frequency of the bar is 20 Hz; this puts mode

2 above 120 Hz, far enough away that we can ignore its

influence in what follows.

When the drive motor is running slowly so that it applies a

sinusoidal driving force to the bar at a frequency well below

the 20-Hz natural frequency, the steady-state driven motion

will be of relatively small amplitude (see sec. 10.3 and

10.6). However, if (in our machine) this amplitude happens

to be sufficient to lift the bar off of the step at A on its

upward swing, and to roll it down on the ramp at B during



the downward swing, then the driven motion will not be

sinusoidal. Harmonics of the driving frequency will be

detectable in the oscillation.

Figure 14.2 shows the resonance curve obtained by

measuring the overall amplitude of the (generally

nonsinusoidal) oscillation of our bar when it is driven at

various frequencies. The tall response peak corresponding

to an excitation frequency of 20 Hz is completely expected;

the bar is responding strongly to excitation near its natural

frequency. The little response peaks at 6.67 ( = 20/3) Hz

and at 10 ( = 20/2) Hz show something new. As the driving

frequency is slowly raised, these humps show that the bar is

able to respond fairly strongly to the third and then to the

second harmonic heterodyne components arising from the

driving frequency! If we were to watch the motion of the bar

when it is driven at frequencies somewhat above or below

6.67 Hz, the motion would be predominantly sinusoidal at

this driving frequency, with only a small admixture of higher

harmonics being manifest. At exactly 6.67 Hz, however, the

oscillation would look quite peculiar—the predominant

component in the vibration recipe would be the 20-Hz third

harmonic of the driving frequency. In other words we would

find the bar vibrating strongly at a frequency that is

different from the driving frequency! Similar behavior would

be observed for excitation in the neighborhood of 10 Hz,

where the bar is swinging predominantly in response to the

self-generated second harmonic of the driving frequency.
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Fig. 14.2. The Response Curve of the Nonsinusoidal

Oscillator Shown in Fig. 14.1

By now it will not be difficult for you to predict what will

happen to the response of the bar if it is driven



simultaneously by two springs attached to driving cranks

running at different frequencies. If we call the two driving

frequencies P and Q, then the list of excitation frequency

components acting on the bar includes (among others) the

heterodyne components listed in the schema given earlier

in this section. The bar will respond strongly and in step

with any one of the heterodyne components that happens to

be close to its own 20-Hz natural frequency. If, for example,

P has a frequency of 9 Hz and Q is about 30 Hz, the (P—Q)

heterodyne component is at 21 Hz and so will give a strong

excitation to the bar. In similar fashion, if P = 7 Hz and Q =

11 Hz, the (P + Q) heterodyne will set up a fairly large 18-Hz

steady-state vibration in the bar. We have already met the

possibility of strong response to the 2P or 2Q heterodyne

components as well.

We are now in a position to pull together and elaborate our

various mechanical and acoustical observations on the

heterodyne phenomenon. For one thing, we might notice

that heterodyne effects did not call attention to themselves

mechanically until we made some alterations to the spring

behavior of the vibrating bar. Let us look a little more closely

at this behavior, making use of an apparatus of the sort

shown in the upper part of figure 14.3. If one adds weights

in succession to the upper pan in the manner illustrated, the

bar will be deflected upwards to successive positions of

equilibrium. If the same weights are hung directly on the

bar, as shown by the dotted lines, the bar will be deflected

downward. The lower part of figure 14.3 shows how the

upward and downward deflections of the bar depend on the

number of weights applied. For a bar that is normally

clamped, the deflections are shown by the solid dots, and

for one mounted as shown in figure 14.1, by open circles.

Notice that for the normal bar, successive additions or

removals of equal weights produce equal changes in

deflection, as indicated by the double-headed arrows



marked A in the diagram. (This is just what we learned to

expect in section 6.1 for a spring capable of producing

sinusoidal motion.)

The modified bar shows a different behavior. The deflections

produced by adding a single weight on either pan are

essentially the same as for the normal bar. However, the

deflection (marked B on the diagram) produced by adding

the fifth weight on the upper pan is considerably larger than

the corresponding deflection for the normal bar (marked A).

On the other hand the modified clamping leads to a

reduction in the deflection associated with the addition of a

further weight to the lower pan. Overall we find that a

normally clamped bar shows deflections that are exactly

proportional to the applied load and that the line drawn

through the various experimental points is perfectly

straight. For the peculiarly clamped bar, the deflections

depend on the load in a more complicated way (whose

causes are obvious to us here), so that the curve of

deflection-versus-force is not a straight line. This

nonlinearity in the graphical relation between stimulus and

response is the general property we are seeking for an

explanation of the heterodyne phenomenon. Let us

summarize what we have learned in this section in a set of

numbered statements:

1. A nonlinear (nonproportional) relationship between a

stimulus and its corresponding response implies that the net

response of the system to several stimuli is not the sum of

the responses as measured separately. In a non-linear

system the whole response is not simply the sum of its

parts.



2. When a nonlinear system is subjected to sinusoidal

forces, heterodyne components are generated. (This is a

special way to say what appears in statement 1.) The

frequency relations of these heterodyne components are

always those described in the schema given earlier,

regardless of the nature of the nonlinearity (neurological or

mechanical).

3. The amplitudes of the heterodyne components generated

by a nonlinear system depend on the details of the

nonlinearity and (in general) on the amplitudes of the

excitatory forces.
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Fig. 14.3. Apparatus to Study the Nonlinear Behavior of a

Spring

Notice that everything we studied through chapter 12 was

predicated on the assumption of linearity in the relation

between the stiffness forces acting in our vibrating systems

and the deflections of their various parts. The very existence

of characteristic modes of vibration and the possibility of

superposing freely chosen amounts of them to make up a

desired vibration recipe depend on the linearity of the

system. If the various springs belonging to a vibrating

system are almost linear in their force-versus-deflection

characteristics, the system usually behaves very much like a

linear one; one does, however, meet exceptions upon

occasion. The mathematics and physics of almost-linear

systems built up of many springs and masses have

unfortunately been given very little study to date, although

they abound in curiosities and paradoxes.

As long as we confine our attention to linear (or very-nearly-

linear) systems, the fact that characteristic modes of



vibration exist and that each one of these possesses all the

oscillation properties (no more and no less) of a single

spring-mass system gives us enormously powerful tools for

understanding many kinds of acoustical systems. The

usefulness of these tools is particularly great because of our

ability to build up vibration recipes by simply adding up the

contributions of the various modes. One may at first feel

quite frustrated to learn that the existence of non-linear

effects can destroy this whole beautiful structure. It is true

that the mathematics of nonlinear systems can be

enormously complicated. There are, however, methods for

dealing simply and effectively with many nonlinear systems

of musical interest (e.g., wind instruments). Once one learns

how to do this, it proves possible to get an extremely good

general idea of what is going on, without having to use

much more than the basic principles outlined in assertions

1, 2, and 3 above. Of particular utility is assertion 2, which

tells us that the heterodyne frequencies one gets in any

given situation can always be calculated by a standard

arithmetical procedure whose only drawback is its

tediousness.4

14.3. The Musical Tone:

Special Properties of

Sounds Having Harmonic

Components

Over and over in this book we have referred to sounds

having a definite repetition rate. The fact that such sounds

have harmonically related component frequencies gives

them certain arithmetical simplicities that have attracted



the attention of thinkers since the time of the ancient

Greeks. We realize, of course, that mathematical simplicity

in itself is almost irrelevant to the study of acoustics or of

music. On the other hand, we have noticed that many

musical instruments generate such sounds, which does give

us a good reason to make a close study of their properties.

Another reason for our interest can be found in the fact that

the perceived pitch of a set of harmonically related partials

remains remarkably constant when a few of these partials

are eliminated. We learned of this durability very early in

the book, and have just learned how the existence of

heterodyne effects helps us to understand the acoustical

reasons for this durability. These heterodyne effects also

provide clues as to why the ear tends to group the

miscellaneous partials of a bell or chime sound into groups

when assigning their pitch.

In the previous section of this chapter, I made a definition:

we would henceforth reserve the word tone to refer to

sounds having harmonic partials. For emphasis, I will often

refer to such sounds as musical tones, not with the purpose

of denigrating other kinds of sound or of implying that

music cannot be made from them, but rather to underline

the fact that harmonically related complexes of partials

have a very special perceptual status that happens also to

make them useful in music. It is the purpose of this section

to make clear the nature of this special status.

In seeking to clarify such a status, let us start out by

providing a single-component sinusoidal excitation for our

ears via a loudspeaker in a room. If the sound pressure is

low, we will hear a soft, cooing sound whose loudness may

vary as we move about. When the source amplitude is

progressively raised, we perceive a louder sound, but its

nature is still clearly identifiable as being made up of a

single sinusoid. This identification persists despite the fact



that increasing amounts of second, third, and fourth

harmonics are being generated by our auditory

nonlinearities. As we move around in the room, or as

someone varies the strength of the originating sound

source, there will be (more or less random) variations in the

sound pressure signals at our ears; however, the strengths

of the various heterodyne components will grow and shrink

exactly in step with these variations in accordance with the

amplitude relationships given in Goldstein’s work, which

was mentioned in section 14.1. Because there is an exact

“tracking” of the original amplitude variations by the

heterodyne amplitudes, these harmonics are merely a part

of what we always process, and so they usually escape

conscious notice. Most of us are not aware of these

additional components until our attention is called to them

by the use of a search tone or the like.

Suppose now that our sound source is modified so that it

adds a small amount of second harmonic to the original

sinusoid, and perhaps also a lesser amount of third

harmonic. Many listeners will hardly notice the addition of

these extra components in the original signal. If they are

introduced very gradually, their presence is easy to overlook

because they seem so natural and familiar! You will

occasionally find someone with a good sense of tone color

who will tell you that the sound “appears” to be louder,

even though you may have taken pains actually to reduce

the loudness by turning down the amplifier gain in

accordance with the principles outlined in section 13.6.

Such a person is using indirect words to describe the fact

that his processor expects to receive higher harmonics when

the external sound pressure is made larger. His cautious use

of the word “appears” is a sign that all is not tidy in his

processor. When he moves around the room, the amplitudes

of the upper partials within his ear no longer exactly track

the amplitude of the fundamental. The explanation is simple



—each one of these internal components is now made up of

the superposition of the externally supplied signal plus the

heterodyne components (these do not beat, since they are

of precisely the same frequency). The ear is not forced to

recognize a drastic difference between the sound of a loudly

played sinusoid and that of a tone made up of harmonic

partials, since the list of frequency components is the same

in both cases.

Let us alter the circumstances of our experimentation now,

to the extent of supplying almost harmonic instead of

exactly harmonic components to our ears. Suppose we have

a strong lowest partial at 256 Hz accompanied by a second

partial whose frequency is 502 Hz and a third partial at 747

Hz (call these components X, Y, and Z). These three

components are located more or less where the ear

“expects” to have harmonics belonging to a 250-Hz

sinusoid. If X, Y, and Z are of sufficient amplitude, they

generate many kinds of heterodyne components. For the

simplest example, (Y — X) = (252) Hz, (Z — Y) = (245) Hz,

(Z — X) = (497) Hz, and (X + Y) = 752 Hz. Also present in

this simple version are the double frequency components

(2X), (2Y), etc. In the neighborhood of 250 Hz, then, the ear

is provided with the following group of components: (245),

250, and (252) Hz; similarly, near 500 Hz we have (497),

(500), and 502 Hz; and near 750 Hz we also find a (752)-Hz

component. The presence of a sound having almost-

harmonic components, then, provides the ear with little

clumps of components whose members may or may not beat

noticeably. In any event the clumps themselves have a

slightly more orderly harmonicity in their center frequencies

than do the original components that gave rise to them.

Sounds of this quasi-harmonic sort tend to be heard very

much like musical tones, although they may not seem quite

so “clear” (refer back to the flute-key-snapping experiment

described in sec. 5.9).



The most important conclusion to be drawn from our study

so far of tones constructed of harmonic partials is that our

auditory system tends to process the whole collection as a

unit. Sources like the tuning fork with its widely spaced,

inharmonic characteristic frequencies are on the other hand

recognized as generating two separate sounds. When a

violin is played, we simply notice a series of auditory units

(notes), each one having a “tone color” characteristic of the

instrument. The partials of each note do not normally come

to our attention as individuals. When two instruments play

different notes, we habitually and automatically group the

interwoven sets of harmonic partials into two separate

sounds, recognizing one from each instrument. Doing this

does not depend upon using our hearing to localize the two

instruments in different parts of the listening room. The

ability to group a collection of partials into harmonic subsets

is marked enough that a listener presented with inharmonic

partials from a clock chime has no trouble in collecting them

into two approximately harmonic groups, to each of which

he assigns a pitch and each of which he identifies as a

separate tone (see secs. 5.2 and 5.6).

14.4. Pitch Matching: The

Unison and Other Special

Intervals

Back in chapter 2 we chose a conventionalized set of

reference sounds having precisely specified frequencies

against which we could compare other sounds for the twin

purposes of frequency measurement and of assigning pitch

names to these sounds. Nothing was said then about the

origin of the set of reference pitches beyond the assertion

that they belong to the arrangement known to musicians as



an equally tempered chromatic scale. At that time it was

pointed out that sounds having a fast repetition rate are

perceived as having high pitch, while slow rates are

associated with low pitch. However, there was no guarantee

that the sequence of mathematically determined reference

frequencies would necessarily give our ears a uniformly

spaced set of pitch impressions. Equal changes in frequency

(a physical quantity) do not give equal changes in pitch (a

perceived attribute); this should not surprise us since we

met the same sort of thing in the relation between acoustic

pressure amplitude and loudness. Moreover, the frequency-

versus-pitch relationship of a single sinusoid can be quite

different from that belonging to sounds made up of several

partials. We have already looked into these matters in some

detail as we studied clock chimes, bells, and guitar strings

in chapter 5. Section 14.3 3 of this chapter also has a

bearing on these matters. As we explore questions of pitch

relations in more depth in this chapter, we will continue to

make a distinction between tones whose harmonically

related components are generally heard as a group and

sounds with less orderly arrangements of components which

may be heard either separately or collected into several

more or less ill-fitting subgroups.

We often need to be able to say in a well-defined manner

that the pitch of some unknown sound agrees with that of a

reference sound that lies (say) 60 percent of the way

between A4 and A4#. The same mathematics that tells us

how to divide up each octave of our reference scale into 12

semitone steps tells how each semitone step can be divided

into 100 units that are usually called cents. For example,

the pitch name G4 belongs with a conventional repetition

frequency of 392 Hz; the next step in the scale is G4# at

415.3 Hz. Clearly the round-numbered frequency of 400 Hz

is associated with a pitch intermediate between these two.



Suitable calculation shows that the pitch name for 400 Hz is

G4 + 35 cents. In similar vein 500 Hz corresponds to B4 +

21 cents, and 435 Hz corresponds to A4—20 cents.

In section 10.4 we learned what can happen when a flute

player attempts to set her playing frequency by trying to

excite a tuning fork into oscillation at its own natural

frequency. At the beginning of this chapter we noticed that

an oboist can adjust his tuning by achieving what is called

zero beat between the sound of a tuning fork and the

fundamental partial of his tone. It is important for us to

realize that, in all strictness, tuning procedures such as

these do not actually make a match of pitch, but rather they

produce a matching of frequencies. Most of the time in

musical surroundings, pitch-matching and frequency-

matching procedures lead to similar results, but not always.

For example, the pitches of chimes and bells (secs. 5.2 and

5.3) are easily matched by a listener who alternates their

sounds with sounds from a reference keyboard. There is no

reason to expect the partials making up these sounds to

match the partials of the reference sounds, however, and

there is therefore no possibility of devising a zero-beat

procedure for deducing the pitch in this case. Another

illustration of the difference between pitch matching and

frequency matching is found in subsection A below. The

subsections that follow demonstrate the special nature of

the unison, the octave, and other intervals whose musical

importance we will continue to examine from time to time

throughout the rest of this book.

A. Pitch and Freyuency Comparison of a Buzz and a

Sinusoid. Some time ago I set up and tape-recorded a little

experiment to illustrate the distinction between pitch

matching and frequency matching. The experiment

contrasted the behavior of an electrically generated buzz

made up of about 25 equally strong harmonic partials with



that of a single sinusoid of adjustable frequency, both being

presented to the ear via a loudspeaker. The buzz was

arranged to have a repetition rate of 261.6 Hz, which has a

pitch name of C4. The two signals were alternately

connected to the loudspeaker by means of the soft switch

described in section 13.7. To begin with, I slowly varied the

frequency of the sinusoid up and down in the neighborhood

of 261 Hz until its pitch was matched to my satisfaction with

that of the alternately presented buzz. When the tape of

this part of the experiment was played for a classroom full of

music students from Case Western Reserve University and

the Cleveland Institute of Music, there was general

agreement that my pitch matching had been accurate. This

agreement shows that we were all operating pretty much

alike in the way we heard the two sounds. I might add that

there was agreement even from several musicians in the

group who, because of a distrust of technology, were

sometimes disinclined to take my word for matters

concerned with musical relationships.

The next part of the experiment and of the tape was to feed

the buzz and the carefully pitch-matched sinusoid to the

loudspeaker simultaneously. The class was stunned to hear

a beat taking place at about a 3-Hz rate, with the sinusoid

now sounding sharp in pitch relative to the buzz. This

phenomenon could have been presented in another way, by

showing that when a buzz and a sinusoid having equal

261.6-Hz repetition rates are listened to alternately, they

are heard as differing in pitch by nearly 20 cents. All of us

agreed, on the other hand, that the two sounds when

presented together had acceptable pitch matching only

when they were adjusted to have identical repetition rates.

Let us distill the results of this experiment and some related

ones into the first of a set of numbered statements:



1. Pitch-matches between alternately presented sounds do

not always agree with matches made when the sounds are

presented together.

2. Pitch equality of two sounds heard simultaneously is

attained at the same time that their repetition rates are

equalized. The physicist’s zero-beat condition matches the

musician’s equal-pitch condition, provided we deal with

musical tones—i.e., sounds having harmonic partials.

3. If one uses a pair of tones in which only the first few

partials have appreciable strength, the two methods of pitch

matching (alternation, and superposition, of sounds) give

almost identical results, without much regard for the details

of vibration recipes or the sound pressure level. This is

particularly true of sounds heard in a room.

4. Most of the tones that one meets in ordinary music

behave as described in statement 3.

B. Beat Phenomena and the “Almost-Unison” between Two

Musical Tones. Suppose we supply our ears with two tones,

labeled J and K, one having its four harmonic partials (J1, J2,

J3, and J4) based on a 250-Hz fundamental frequency, the

other having its four harmonic partials (K1, etc.) based on

252 Hz. Beats can take place in the neighborhood of four

frequencies. If we set heterodyne effects aside for a

moment, the beating pairs are as follows:
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As one pulls the two tones into closer agreement, the

strongly marked beat between the fundamental components

eventually becomes so slow as not to be easily heard

(recognizing it turns into a feat of memory!). The second

and higher harmonics are still beating vigorously, however,

so that our attention is drawn to them as the next guide to

the tuning process. This successive transfer of auditory

attention to beats of the higher partials is very useful

because it provides ever finer indications as we approach an

exact match. For instance, an almost unhearable 1/4-Hz

beat (one beat every four seconds) between the

fundamental components is associated with an easily

detected rate of 1 Hz (one per second) at the fourth

harmonic.

Heterodyne components are present to a varying extent in

the sound of an almost-unison. These change what we hear

by adding more things that can beat in the neighborhood of

each component frequency. Here are a few examples:

(J2 — K1) = (248) Hz, 

(K2 — J1) = (254) Hz 

(J3 — K1) = (498) Hz, 

(K3 — J1) = (506) Hz

You have probably noticed that two of these components

beat near the fundamental and two near the second

harmonic. I have worked out the very simplest (sum-and-

difference) heterodyne frequencies that arise through the

interaction of the partials of tones J and K. In the list shown

below, numbers representing heterodyne frequencies are

enclosed in parentheses, while those belonging with the

original tones J and K are underlined. The components

clump themselves into groups, each one of which is given

on a line of its own.



1st clump:
(244), (246), (248), 250, 252, (254), (256), (258)

Hz

2nd

clump:
(496), (498), 500, (502), 504, (506), (508) Hz

3rd

clump:
(748), 750, (752), (754), 756, (758) Hz

4th

clump:
1000, (1002), (1004), (1006), 1008 Hz

etc.

We see at once that to whatever extent heterodyne

components are generated, there is a great increase in the

complexity of the beats to be heard in the neighborhood of

each harmonic of the original sounds. Instead of the original

beat frequency, we get harmonically related clumps of beats

regardless of the complexity of the way in which they are

generated. This sort of elaboration can sometimes fuzz up

the clarity with which the beats are heard.

The exact way in which we respond perceptually to the

heterodyne-induced complexity has never been properly

studied, but it is possible to make some experimentally-

based summarizing statements that can be added to the list

begun earlier in this section:

5. The presence of heterodyne components for tones having

only two or three strong partials apiece intensifies and

makes more audible the beats produced by a slight

departure from equal frequencies.

6. A pair of tones with slightly different fundamental

frequencies, each having a large number of strong



harmonics, may not be heard as giving very clear beats. The

resulting large collections of heterodyne components

grouped near each harmonic can become confusing to the

ear.

7. Because of the dependence of many heterodyne effects

on the amplitudes of the originating components, a given

pair of tones may behave either as in statement 5 or as in

statement 6, depending on the loudness with which they

are heard.

We have collected several pieces of information by now on

the way our ears perceive the composite sound of two close-

together musical tones. On the basis of this information I

would like now to show what happens when an almost-

unison draws closer and closer to its steady partner, unites

with it, and then little by little moves away. This description

will prove useful to us as we continue in our investigation of

these special relationships.

If the fundamental frequencies of two tones are separated

by more than about 30 Hz, sounding them together

generally produces an effect that may be a little rough, but

otherwise is not particularly noteworthy. As the repetition

frequencies of the two tones are brought closer together, we

begin to hear beats between members of the fundamental-

frequency clump of components. The repetition rate of these

beats within the clump is equal to the beat frequency of the

fundamental components. The clarity of these beats at first

grows as the frequency match becomes better; then they

become too slow for easy recognition, and our attention

shifts to the more easily heard second-harmonic collection

of beats. As long as the heterodyne effects are not too

strong (in the sense of statement 6 above), a musician

desiring to bring the two tones into a unison (equal-

frequency) relationship has clear messages as to what



needs doing. He simply strives to make whatever beats he

hears take place at the lowest possible frequency. If he

overshoots the zero-beat adjustment, the beats start up

again. In any case, the perfect unison is perceptually an

extremely well-defined relationship, closely hemmed in on

either side by more-or-less complicated collections of beat

phenomena. If we progressively raise the frequency of one

tone from below that of a stationary tone, passing through

equality and going on up, our sensory impressions can be

summarized as follows:

BELOW → UNISON → ABOVE nondescript beats || beats

nondescript

The unison is the first of several special relationships we will

be dealing with. In each case the relationship advertises

itself to the listener’s nervous system as giving a

particularly identifiable sound that is narrowly confined

between regions in which a collection of beats can be heard.

It does not matter whether the beats take place between the

partials of the original sounds, between their heterodyne

components, or in some crisscross fashion. When musical

tones are used (those having only harmonic partials,

according to our narrow definition) every kind of beat goes

to zero frequency as the tones approach one of these special

relationships. At the present moment I am particularly

interested in the objective existence in our perception of

certain acoustical phenomena, since these provide an

important clue to why these special relationships are

important in music.

C. The Octave Relationship. Musicians of all periods and all

places have tended to agree that when they hear a tone

having a repetition frequency double that of another one,

the two are very nearly interchangeable. This similarity of a

tone with its octave is so striking that in most languages



both tones are given the same note name. In fact, even

notes that are several octaves apart are called by the same

name, with more or less confusing adjectives being

appended to tell us which particular octave is meant. One of

the noteworthy attributes of the octave relationship is its

behavior as an example of the perceptually special

relationships that we defined above while looking at the

unisons and near-unisons of two tones.

The special relationship between tones whose repetition

frequencies differ by a factor of two is advertised to our ears

by the collections of beats that group themselves

immediately to either side of the exact interval. Let us look

at the clump-ings of components that might beat together

when a tone P made up of four harmonics of 200 Hz is

sounded along with a tone Q whose four components are

multiples of 401 Hz. First we glance at the originating

components by themselves:
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Out of the sequence belonging to P we find that only the

even-numbered (2, 4, 6, ...) harmonics have counterparts in

the harmonics of Q with which they can beat. If we ignore

heterodyne components for the moment, there are only half

as many cues to call our ears’ attention to the special

relationship of the octave as there are for a unison. The

scarcity of cues seems particularly acute if the tones are of

the musically familiar sort possessing only three or four

partials of appreciable amplitude. Let us tabulate the

clumps of components that are available for processing

when the simplest type of nonlinear (heterodyne) effect is

taken into account as well:

1st clump: (199), 200, (201), (202) Hz

2nd clump: (399), 400, 401, (402), (403) Hz



3rd clump: 600, (601), (602), (603) Hz

4th clump: 800, (801), 802, (803), (804) Hz

5th clump: (1000), (1001), (1002), (1003), (1004) Hz

6th clump: (1200), (1201), (1202), 1203, (1204) Hz

7th clump: (1402), (1403), (1404) Hz

8th clump: (1600), (1602), (1603), 1604 Hz

etc.

As before, our list has not been carried out to frequencies

higher than those present in the original sound. Heterodyne

components exist beyond this, of course, but their numbers

thin out rapidly and so give a relatively small contribution to

the audibility of a tuning error.

The first thing that strikes us in looking at the list of

components is the large number of them in each frequency

clump. We also notice that these clumps are located at

frequencies that are harmonics belonging to the tone P.

When we take heterodyne effects into account, it is clear

that (on paper at least) there are actually more kinds of

“messages” available to our ears to establish the special

relationship than there are in the case of the unison! We

also notice that when we obtain a zero-beat condition by

adjusting the fundamental frequency of Q to exactly 400

Hz, the vibration recipe, or spectrum of P and Q taken

together, is simply an extension of the harmonic series

belonging to P. This fact helps us to appreciate the close

relationship between members of an octave pair, in a way

that reminds us of the manner in which our ears recognize

the relationship between a single musical tone and the

aggregate effect produced by a single loud sinusoidal

component and its internally generated collection of

harmonics.



D. The Musical Fifth. A pair of tones separated by what

musicians call the interval of a fifth provides our next

example of a strongly marked special relationship and

introduces us to a whole hierarchy of similar though less

strongly identifiable pairings. A fifth can be defined very

simply (on paper) as two tones whose fundamental

frequencies are in the ratio of 3/2. As was the case with

unisons and octaves, when the special relationship is

approached it advertises itself by the presence of beats.

Since the places at which the beating occurs tell us a lot

about the special relationship, once again we will consider

an almost-tuned interval consisting of two tones, M and N,

each consisting of 4 harmonic partials:

e9780486150710_i0162.jpg

If the two sequences of strong harmonics were extended

past the fourth one, we would notice that every second

partial of tone N is in a position to beat with every third

partial of tone M. In our musically realistic simplification we

find only one such beating pair—the 600-Hz third partial of

M and the 602-Hz second partial of N.

When the simplest heterodyne effects are calculated as

before, it turns out that the clumps of beating components

arrange themselves as multiples of 100 Hz (in our particular

example):

1st clump: (99), (101), (103) Hz

2nd clump: (198), 200, (202) Hz

3rd clump: (299), 301, (303) Hz

4th clump: 400, (402), (404) Hz

5th clump: (499), (501), (503) Hz

6th clump: 600, 602, (604) Hz

7th clump: (701), (703) Hz



8th clump: 800, (802), (804) Hz

9th clump: (901), 903 Hz

10th clump: (1000), (1002), (1004) Hz

11th clump: (1101), (1103) Hz

12th clump: (1200), (1202), 1204 Hz

Notice that these frequency clumps are arranged in a

harmonic series based on a fundamental frequency half that

of tone M, and also that any lack of accuracy in setting an

exact 3/2 frequency ratio will be called to our attention by a

total of 12 clumps. Of these, 9 clumps contain 3

components (such as clumps 1 and 12) and 3 more clumps

are each made up of 2 components (as is clump 7). (You

may wish to verify that when the octave relationship is

described in this way, it advertises itself by 1 triple-

component clump, 3 quadruple-component clumps, and 4

clumps which are quintuple.)

Let us consider the auditory and physical meaning of the

harmonically related clumps. If the sound of M plus N is

supplied to us electrically from two perfectly steady

oscillators feeding the same loudspeaker, it is possible to

play a rather interesting game with our ears. Suppose first

that M and N are in an exact 3/2 frequency relationship, and

that we walk into the room where this composite sound is

already being generated. Our ears are presented with a set

of components having frequencies of 200, 300, 400,

————, 600,————, 800, 900, ————,————, and 1200

Hz. This collection of interlaced original components is itself

a fairly complete harmonic series. Because heterodyne

components will fill out the series (regardless of their mode

of production), the collection will almost invariably be

perceived as a single 100-Hz tone, a phenomenon we first

took note of back in chapter 5 and then explained in section

14.1 of this chapter.



Suppose now that while we are in the room, the oscillator

belonging either to tone M or to tone N is turned off and

then turned on again (preferably with the help of a soft

switch or a fader). When both tones are again in operation,

many of us would discover to our surprise that there are

“really” two tones being played in the room, even though

things are acoustically back where they started. The reason

is clear: shutting off tone N eliminates the 300-, 900-, and

1200-Hz components, and weakens the 600-Hz one, leaving

tone M clearly audible. The act of turning N on again calls

attention to the systematic relationship of the partials that

are being restored. The heterodyne components will also

rearrange themselves in a characteristic way during the

turn-on, a way which our ears have heard many times in the

course of ordinary listening.

If we go through the whole experiment again, with separate

loudspeakers being provided for the two tones, or if one of

the tones is given a slight vibrato, our ears are not so easily

fooled into hearing the combined tones as a single entity

which is pitched an octave below M. However, we can often

hear this lower tone as an additional tone having a 100-Hz

repetition rate, especially if it is called to our attention by

the momentary operation of an auxiliary tone generator

tuned to 100 Hz. We shall formally call this third sound the

implied tone, which arises in this case from the components

of tones tuned accurately in a 3/2 ratio. This particular

implied tone is in an octave relationship to the lower of the

original tones, and so “hides” behind it. You may recall some

passing remarks on this subject in connection with the

sound spectrum of the kettledrum (see sec. 9.5).

Digression on Sum and Difference Tones. We have just



learned the possibility of hearing something I have called an

implied tone that can arise when two tones having a special

(zero-beat) relationship are sounded together. Let us take a

moment to see what happens if the two original tones are

not in special relationship of this sort. For example, we take

tones V (200 Hz and three more of its harmonics) and W

(273 Hz and its harmonics). The simplified list of heterodyne

components starts out (19), (54), (73), (127), (146), ... Hz.

Out of this list, we find three components that are harmonic

multiples of the 73-Hz component. This sub-collection of

harmonics can usually be heard as a rather rough-sounding

low-pitched tone, along with the original tones V and W. Let

us give this new tone the temporary letter name T. There is

one more harmonically related collection of four

components to be found in the complete list of simplest-

type heterodynes, this one being the set of harmonics of

473 Hz (call this tone by the name S). Chiefly because of

upward masking effects caused by tones V and W and

because of distractions arising from a large number of

heterodyne components which do not organize themselves

into any sort of recognizable pattern, this collection (473 Hz

and its harmonics) is normally inaudible, although an

adjustable search tone having two or three harmonics may

smoke it out.

A little arithmetic shows that the unclear but audible new

tone T always has a fundamental frequency T1 equal to the

difference (W1 — V1) between the fundamentals of V and W.

Similarly, the collection we have just named S has a

fundamental frequency S1 equal to the sum (V1 + W1),

Musicians have been aware of what we have called tone T at

least since the baroque era (it is sometimes said that such

tones were discovered by the violιnist Tartini). Hermann

Helmholtz, whose name is as famous in acoustics as it is in

optics, electromagnetism, and thermodynamics, was the



first to give a general explanation of these tones in terms of

heterodyne components. It was he who first referred to the

lower one as the difference tone. The other tone is by

analogy called the summation tone. A great deal of

confusion exists in the literature, caused chiefly by the

almost-universal tendency of scientists and musicians to

talk interchangeably about single-component sounds and

those made up of a set of harmonics. Another cause for

misunderstanding arose from ignorance or neglect of

masking and the distractions produced by the other,

unclassifiable heterodyne components that are generally

present. Helmholtz’s essentially correct physics regarding

these new tones was challenged for many years because of

the experimental fact that the perception of summation

tones by our ears is not normally possible, even though their

components are detectable within the ear.

I should close this digression with the remark that if our

randomly tuned tones V and W are progressively moved

toward a special relationship with one another, the

difference tone, the summation tone, the unclassifiable

other components, and the partials of the original tones all

align themselves progressively into a single harmonic

relationship—the one associated with what we have named

the implied tone!

E. Other Special Relationships. The most direct way to

introduce a number of other special relationships between

musical tones is to describe a demonstration experiment

which I have carried out upon several occasions. Two

adjustable-frequency oscillators are connected to

loudspeakers. The oscillators are internally constructed in



such a way as to provide sound signals having three or four

exactly harmonic partials of appreciable strength. The

convenient way to do this is to modify an electrically

generated sinusoid by a suitably designed nonlinear device

which produces the higher components by heterodyne

action (see sec. 14.2). The only other equipment needed is a

device for frequency measurement and perhaps an auxiliary

oscillator and loudspeaker for use as a search-tone

generator. One oscillator is turned on to produce an

unvarying tone whose repetition rate is somewhere between

about 250 and 1000 Hz (or in the range C4 to C6), which

keeps all of the tone’s partials in the frequency region where

our ears work best. Let us call this the reference tone.

In the presence of a group of people (musicians or

otherwise), I set the frequency of the other oscillator to

some random value and ask one of my listeners to tune it

either upward or downward until he finds a nearby setting

that shows the distinguishing marks of a special

relationship. That is, he is asked to look for a beat-free

setting, narrowly confined between two restricted regions in

which a wide variety of beats take place. The experimenter

never has to search far to locate one of these special

settings, and everyone in the room agrees with him when

zero beat is properly achieved. The musicians in the group

will recognize and give names to most of these special

relationships, just as they call the equal-frequency special

relationship a unison, the 2/1 relationship an octave, and

the 3/2 relation a fifth.

Table 14.1 summarizes the results of experiments of this

general sort. At the top of the list is the most well-defined

relationship, the unison, followed in order of decreasing

definition by the octave, the fifth, etc. The first column in

the table gives the frequency ratio between the



fundamentals of the fixed (or reference) tone and the

adjustable tone.

Table 14.1
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The second column in table 14.1 gives the interval names

which musician-listeners will invariably give to the different

special relationships. Whenever I have had someone carry

out this experiment, everyone in the room has been

completely satisfied that the so-called special relationships

coincide exactly with the musical relationships implied by

the customary names, provided that the oscillator settings

produce beat free sounds.

The third column tells the pitch relationship of the two tones

expressed in terms of the equal-tempered comparison scale

that is illustrated in figure 2.1. You will recall from the early

part of this section that each octave is divided up into 12

chromatic steps, each one containing 100 cents. It is for this

reason that the 2/1 (octave) relationship can be said to

represent a musical interval of exactly 1200 cents. The

special relationship having a 5/4 frequency ratio calls for

the adjustable tone in our experiment to have a named

interval that is 400 — 386 = 14 cents lower than the fourth

chromatic step in the equal-tempered reference scale.

The fourth column in table 14.1 gives an indication of the

definiteness of the relationship by telling how many

components are collected into the various clumps that can

beat when things are out of tune. For example, we already

noticed in subsection D above that errors in the 3/2

relationship are heralded by beats in 9 clumps each having

3 components (a triple indicator), plus 3 clumps each

containing a pair of components (a double indicator).



Looking down this column from top to bottom will clearly

show the hierarchical order of the special relationships. Note

that the 8/5 and 7/6 relations shown at the bottom of the

table are recognizable only with difficulty when no more

than 4 harmonics are strong in the original tones.

It is an easily verifiable fact that if one sets up the two

oscillators to give a frequency ratio of 1.25992

(corresponding to an equal-temperament interval of exactly

400 cents), instead of our experimentally verified 1.25000 (

= 5/4) ratio (386 cents), everyone notices the resulting

beats, and all the musicians in the group will say that an

out-of-tune (sharp) major third is being sounded. When I tell

my musician experimenters that the 400-cent interval is the

equal-temperament version of the major third, they typically

react with skepticism or dismay. They respond in even more

intense fashion to the extremely rough-sounding

combination whose frequency ratio is 1.26563 ( = 81/64)

which spans an interval of 408 cents. This particular ratio,

which is the product of 2000-year-old arithmetical

ingenuity, is called a Pythagorean third.

When I sound the equal-temperament and Pythagorean

major thirds by means of two electronic tone generators, the

usual question is “What makes anyone think that those are

acceptable tunings?” My response at this stage is to point

out that a laboratory experiment is not quite the same thing

as a musical performance. There are many ways in which

the auditory physics of our special relationships works itself

out when we listen to the various sounds of actual musical

instruments. We will shortly learn, for example, that the

smoothly varying in harmonicity of piano and harpsichord

partials slightly changes the frequency ratios of the special

relationships, and that other randomly appearing

inharmonicities present in these instruments can cause

even further alterations in the relationships (see sec. 5.4).



Moreover, the practical acceptability of “errors” in the

setting up of special relationships differs among the various

families of instruments, for reasons which we will learn as

we continue through the book.

Laboratory instruments can easily be set up to display the

special relationships. Our success in showing these

relationships using actual musical instruments is quite

variable, ranging from fairly easy to almost impossible. The

woodwinds, played without vibrato, are closely followed by

the brasses in their ability to display the relations disclosed

by our laboratory instruments. Two vibrato-free voices trail

in the clarity with which they show them. Electronic and

pipe organs are not very suitable, chiefly because it is not

easy to retune them for experimental purposes. I have

already suggested why the piano and the harpsichord are

not useful for our experiments at this stage, and as we shall

see the bowed strings are not appropriate for such

experimenting because of the astonishing weakness of

beats they display between closely spaced components.

There are many reasons why musicians sometimes use

frequency relationships other than those implied so far in

this chapter. For one thing, in solo performance or when two

instruments are sounded alternately, the direct comparisons

we have been discussing may not exist. For another, there

are cases where special relationships exist to connect three

or more tones which do not seem closely related when they

are taken two at a time. As we shall see, the equal-tempered

tuning used for many keyboard instruments is a choice that

is obviously a compromise. As with most compromises it has

weaknesses, but it gives great flexibility particularly in

modulation, and its weaknesses can even be turned into

strengths on occasion.



Written music is a generalized set of performing directions

in the sense that much is left unspecified, which assumes

that suitable choices will be made by a musically sensitive

performer. Some of these choices are culturally conditioned,

and can easily change in the course of time. Pitch

indications and the musical relationships which they imply

are very often of a different sort, since they are influenced if

not dominated by the perceptual effects of physical

relationships between the various sets of partials. When a

violinist or wind instrument player learns to read music, he

learns very early that each note corresponds to a particular

set of finger positions, lip tensions, bow pressures, and the

like. To be sure, these maneuvers get the pitch of his tone

close to where it should be, but he is then expected to

adjust the pitch until it is exactly “right” in the context of

the sounds of his fellow players. (As we will see in chapter

15, another guide for the player is the sound left over in the

room from his immediately preceding notes.) It has been the

purpose of this chapter to indicate the nature of one of the

acoustical relationships available for the use of the player as

a guide in adjusting the pitch relationships of his musical

performance. Let me close this section with a few more

summarizing statements dealing with these matters.

8. Musical note names and the words describing pitch

relationships may have different meanings in different

contexts.

9. The performing musician uses the written notes to get

himself close to the required pitches. He then listens and

exerts whatever skill he has to set them accurately in their

own context.



10. Acoustical cues similar to those which single out the

special relationships normally provide the basis for the

correction process mentioned in statement 9.

11. Pitch relationships based on acoustic cues are the

guideposts of music since their exact or approximate

presence is generally perceived with extreme speed. They

are physical and neurological in nature, and not culturally

determined.

12. Statement 11 should not be interpreted to mean that a

composer or player is wrong if he knowingly chooses to

avoid specially related sounds. Such avoidance in itself may

gain auditory impact because it contrasts with the various

special, neurophysics-based relationships between tones

that are exploited in music.

14.5. Examples,

Experiments, and

Questions

1. We get a strong sense of pitch from a tone made up of a

set of harmonic partials, even if several of these (including

the fundamental component) are missing. The nonlinear

production of heterodyne components gives us a clue to the

way our ears can do this. To get a good idea of the

effectiveness of this process, do the arithmetic to verify that

even the simplest of the heterodyne components arising

from an original stimulus made up of 200-, 500-, and 600-Hz

partials join with these original components to give a

complete set of 100-Hz harmonics. Work them out for the

first through at least the eighth harmonics. Notice also that,

for any more or less complete musical tone, every adjacent



pair of partials produces a fundamental frequency

heterodyne component, so that all parts of the tone “point”

to the fundamental as an important frequency.

2. The low notes on a clarinet seldom sound as low in pitch

as the corresponding notes on any other instrument. The

listener tends to place the clarinet an octave too high. Even

musicians are surprised to learn that the bottom note of the

little Eb soprano clarinet is the same as the bottom note of a

violin (G3—196 Hz). The sound pressure recipe for the low

notes of a really good clarinet shows strong odd-numbered

partials and weak even-numbered ones. Let us play a game

with this fact by pretending that the even partials are

nonexistent, so that the clarinet’s note G3 is imagined to

have a recipe made up of components at 1, 3, 5, and 7 times

the 196-Hz fundamental. In simplest terms, the ear can be

imagined to act on this spectrum to generate double-

frequency as well as sum-and-difference heterodyne

components. Verify that all of these generated components

are found at even multiples of the fundamental frequency,

where the instrument itself is presumed to make no

contribution. Notice also that, contrary to the normal case,

adjacent partials in the (hypothetical) original tone all

produce heterodyne components at the frequency of the

second harmonic rather than the first. In other words, the

heterodyne components provided by our ears make up the

complete set of harmonics of a tone whose pitch is an

octave above that of the clarinet, and these even-numbered

components lack any direct contact with the original

clarinet partials. Speculate on the possible connection

between this fact and the octave error that is often made.

3. Consider the following experiment made with the

vibrating bar shown in figure 14.1. To begin with, suppose

that it is running steadily under the influence of a 40-Hz

sinusoidal force. Because it is driven so far above its 20-Hz



natural frequency, it has only a small amplitude of vibration

(as implied by fig. 14.2). Suppose now that it is abruptly

plucked and released while the 40-Hz driver continues in

operation. Figure out why the 20-Hz damped (transient)

oscillation normally expected of a plucked bar fails to die

away as usual, while the bar continues to oscillate steadily

and with an appreciable amplitude having the 20-Hz

component predominant in the vibration recipe. The bar will

continue to vibrate in this peculiar fashion as long as the

40-Hz driving force is kept in operation. Hint: what are the

simplest heterodyne frequencies that one would expect to

get between the initially plucked 20-Hz vibration and that

due to the 40-Hz sinusoidal driving force? Could a similar

oscillation be maintained if the driver were to be run at a

frequency of 60 Hz?

4. I am often asked how it is that our ears are so sensitive to

and offended by the smallest traces of nonlinear distortion

in an amplifier and loudspeaker system, when the

heterodyne components generated within our own ears by

aural nonlinearities seem to be useful rather than

destructive. Consider what happens when music is played

through an imperfect loudspeaker system: the heterodyne

components produced by the loudspeaker and sent into the

room are then acted upon by our ears, and so are reworked

and entangled among themselves and among the desired

partials of the music itself.5 This redoubled modification of

the music by two sets of nonlinearities produces an

enormous increase in the number of components that are

competing for our auditory attention. There is often very

little pattern to the signals, and whatever patterns exist

among these components are unfamiliar to us and not of the

sort normally connected with music. The unfamiliarity itself

is an additional source of confusion and distraction.



In recent years, musicians have begun to use electronic

nonlinearities deliberately to put together new sounds.

Whether these are the result of the fuzz-tone box used by

rock guitarists or of the modulators dear to more academic

musicians, their musical usefulness generally depends on

the processing of only selected parts of the total sound, or

on using very simple sounds in the first place. If this initial

simplicity is absent, our ears respond to the results as being

just one more undistinguishable jumble, instead of coping

with and enjoying some newly invented auditory

combinations.

5. A good introduction to the existence and nature of special

intervals and of difference tones can be achieved with the

help of two piccolo or soprano recorder players; flutes

(which sound an octave lower) will work but are not so well

suited for a first hearing. Once you have learned to hear

consciously what is going on in an especially simple

situation, it will not be difficult to become aware of the same

phenomena in other surroundings.

(a) Ask the players to provide you with a unison, played

fortissimo and without vibrato on the note F6. This is the

second-register F on either instrument. Until the players

settle down to match their instruments exactly, you will be

supplied with a wonderful variety of beats between the pairs

of partials having frequencies that are almost equal.

(b) Next ask the louder of your players to shift down an

octave to allow you to hear the beating results of bringing

the F5-to-F6 octave in and out of tune.

(c) Now arrange for the F6-to-C7 fifth to be played. Don’t

seek the implied tone yet—simply make yourself aware of

the collections of beats which manifest themselves when

the players are out of tune with one another.



(d) Do the same for the F6-to-B6b interval of a fourth and

also the F6-to-A6 major third.

(e) You are now ready to seek an easy difference tone (see

Digression in sec. 14.4, part D). Ask the two players to stand

with their instruments near one another. You should at first

stand so that one ear is directly exposed to the sounds of

both instruments. The F6-to-B6b fourth is to be played, with

the player of the lower note slowly varying his pitch up and

down a little. Listen for a harsh-sounding tone located about

a musical twelfth (an octave plus a fifth) below F6—that is,

in the neighborhood of C5. You may find it helpful

momentarily to sound C5 softly on a piano as a way of

telling your ears where to listen. One identifying mark of the

difference tone is that its pitch rises as the Bb player plays

flatter, and vice versa. Notice that when the F and the Bb

are in a beat-free relationship, the difference tone is exactly

at C.

(f) You are now ready to pursue the difference tones

associated with the F6-to-C 7 interval of a fifth, and the

major third that relates F6 and A6. In the first case the

difference tone wanders near F5 and in the second one you

should listen yet an octave lower, in the neighborhood of F4.

Note that when these intervals become beat free and have

everything lined up, what you are hearing is the implied

tone described in 14.4, subsection D.

(g) If you have gotten so that you can hear all of the

relationships described so far, you are ready to try the minor

third, F6 to A6b, and the 7/4 frequency ratio. This last one

can be sought by having one player sound D6 while the

other one pulls his pitch slowly down from C7 for a match



when he comes down 30 cents (about a third of the way)

toward B6.
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Successive Tones:

Reverberations, Melodic

Relationships, and Musical Scales

The perceivable physical relationships between pairs of

tones, which were the subject of our explorations in chapter

14, closely parallel the relationships that musicians and

composers find musically interesting. It is possible to extend

our study of the way sounds are transmitted from musical

instruments to our ears by studying under what conditions

these physical relationships or cues are weakened, and by

noticing what changes in the musicians’ actions result from

the reduction in the audibility of the cues.

In the present chapter we will first examine how the

reverberant properties of a room influence and extend the

usefulness of our acoustically special relationships, after

which we will look into the basic nature of musical scales.

This represents a shift of our attention from superposed

tones to a study of the way in which successive tones are

related. The rest of the chapter will be devoted to examples

that will illustrate how music is affected by some of the

simpler physical relationships between tones.

15.1. Reverberation Times and the

Audibility of Decaying Sounds in a Room

When two or more musical tones are sounded together in a

room, their special relationship is sometimes emphasized



and sometimes obscured by the fact that the beginnings

and endings of the tones come to our ears in ways that are

different from the manner in which their middle portions

arrive. The physics of these effects and some of its auditory

implications have already been outlined in chapters 11 and

12, but we should review the essential points before turning

to new things.

When a musician plays a tone, the listener first learns of it

from the directly propagated sound that comes to his ears.

Through the working of the precedence effect, this first

message is combined in our ears with the first few echoes

and perhaps some scattered sound as well, extending over a

time of about 30 to 50 milliseconds. All this can also be said

(more clumsily) in terms of the thousands of vibrational

modes of the room air which are undergoing their initial

transient oscillations excited by the instrument as it acts as

a multifrequency set of acoustic sources.

After the first few tens of milliseconds, on the other hand,

the behavior of a room is easier to describe in terms of piled-

up collections of modes than it is in terms of multiple

reflections. We learned in section 11.7 that the overall

behavior of sound in a room shows an irregular growth from

the time the source is switched on until a steady state is

reached; this is followed by a progressive decay when the

source is switched off. An assertion was made in section 11.8

that it is convenient to specify this buildup or decay in terms

of the reverberation time, defined as the time required for

the averaged sound pressure to die down to 1/1000th of its

initial value. The main reason for choosing this manner of

specifying the decay time is connected with a historical

observation of the way in which our ears respond to a

decaying sound. Let us consider a practical situation in

which we listen to this decay.



Suppose we are standing in a concert hall and are

equipped with a stopwatch and either a strong-voiced

whistle or a nearby oscillator-and-loudspeaker system. If the

sound source is turned on for 5 to 10 seconds and cut off

abruptly, we can hear the sound that fills the room decaying

progressively. Once the sound has become very gentle, it

seems to disappear quite abruptly, because the dependence

of our loudness sensation on sound pressure is different

below 40-dB SPL from what it is at higher levels. It is

possible to use the stopwatch to measure the time interval

over which the tone is audible without strain. A very useful

accident is the fact that this audibility time agrees quite well

with the reverberation time defined by physicists and

engineers. Quite aside from the numerical agreement, we

should ask how it comes about that the duration of the

audible sound after the source is shut off appears to be quite

constant for any particular hall and frequency of excitation,

even when the amplitude of the original excitation is varied

severalfold. Moreover, the period of audibility does not

change much when the background noise level in the hall is

altered by turning the ventilating system off or on.

One possible explanation for the good match between the

time of audibility and the physicist’s reverberation time is

that perhaps a reasonably high SPL at the listener’s ears

maintained for a few seconds might shift the threshold of

hearing upward from its normal pressure amplitude to a

value that is very nearly 60 dB below the SPL of the excitory

sound. According to this hypothesis, the time required for

the sound to decay from any given initial SPL at our ears to a

just-audible sound level matches the time for a decay of 60

dB down to the shifted threshold. We may recall that the

formally defined reverberation time corresponds to a 1000-

fold change in sound pressure amplitude, and this 1000-fold

change can equally well be expressed as a 60-dB change in

SPL. If this preliminary hypothesis is to work, it has one more



requirement: the initial SPL of the excitation must be more

than 60 dB above the net SPL of the room noise measured

within a critical bandwidth at the frequency of excitation. If

this requirement is not met, the time of audibility would be

expected to extend only until the sound weakens enough to

drown itself in overall noise.

Unfortunately, this beautifully simple theory collapses

when a direct experimental test is made of the underlying

assumptions (a) that there is a significant shift of threshold

and (b) that the threshold shift always rises to a value 60 dB

below the SPL of the original excitation. As a test, I arranged

to feed a 500-Hz sinusoid to a loudspeaker in my laboratory

room via a switch-controlled attenuator which permitted an

abrupt reduction in the SPL at my ears after they had been

exposed for a few seconds to a loud initial sound. When the

higher SPL in the range of 70 to 90 dB was switched

abruptly to a level 65 dB lower, my mildly deafened ears

were left briefly in silence (for about 1/10th of a second)

after which the loudness of the weaker signal quickly

restored itself to normal. A repetition of the experiment

using a 75-dB attenuator produced similar results—my ears

merely took a little longer to recover enough to hear the 3-

fold-smaller signal pressure amplitude. These experiments

show that exposure of the ears to a few seconds of loud

sounds does indeed raise their threshold. However, recovery

from a few seconds of exposure is essentially complete

within half a second, so that the phenomenon is of too brief

a duration to explain the success of source-and-stopwatch

measurements of reverberation times in the range from 1 to

10 seconds.

Audibility time measurements using the source-and-

stopwatch method may seem rather informal, but they turn

out to be a reliable way to investigate the properties of a

room. For the measurements to give stable results, one finds

that the initial SPL needs to be about 80 or 90 dB above



threshold (corresponding to a loudness of tens of sones).

After a lapse of one reverberation time, the SPL is, of course,

down to 20 or 30 dB. This puts the loudness below 1 sone, in

a region of sound pressure where the perceived loudness

falls away with particular rapidity as the signal approaches

the threshold of audibility (see the end of sec. 13.4 and also

example 5 of sec. 13.9). Perhaps our ears are responding to

this abrupt change in the rate of loudness decay, as the

signal dives below the level of ambient room noise (typically

in the range of 20 to 30-dB SPL in a critical bandwidth).1

Lest this rough-sounding guess at an explanation seem too

approximate to be plausible (particularly because of the

cavalier way in which 10-dB variations in SPL are bandied

about), I should tell you that a 10-dB change in the audible

span of SPLs (e.g., a change of span from 60 dB to 70 dB)

will result in a change of only about 16 percent in the time

during which the decay is audible.

The source-and-stopwatch method for estimating

audibility times goes back to Clement Sabine,2 who founded

the formal subject of room acoustics in the years between

1895 and 1915. The method has proved useful ever since,

despite the lack of a good psychoacoustic explanation for its

stability or for its connection with the more mechanically

defined reverberation time. One reason for its usefulness

(pointed out by Sabine himself) is that our ears are not

confused or distracted by the normal irregularities of the

decay pattern, irregularities that are very difficult to average

out when laboratory instruments are used.

My colleague Robert Shankland has made very effective

use of a set of easily portable organ pipes in his source-and-

stopwatch studies of the reverberation properties of concert

halls, auditoriums, and religious buildings in Europe as well

as in North America. He finds that with practice it is possible

to measure audibility times with a repeatability of about 10

percent. Several of his co-workers including myself have



repeatedly verified that our separate judgments in a given

room are mutually consistent, and that we can return to a

hall after a lapse of some years and obtain essentially the

same figures. During the past 20 years Shankland and I

have repeatedly compared these auditory results with

carefully carried out experiments using various electronic

sound sources, a wave analyzer, and a high-speed level

recorder. It is difficult (especially when using a tape recorder

to store the data for leisurely study in the laboratory) to

make an accurate measurement of a decay curve over the

full 60-dB range required by its definition. We have done

this complete wide-range analysis on more than one

occasion, and have verified the general agreement between

the properly measured reverberation time and the simpler

auditory result.

Electronically measured reverberation time estimates are

ordinarily made on the basis of a restricted decay range of

only 40 or 50 dB, which is likely to result in an overlong

value for the reverberation time. This is because of the way

in which a level recorder computes the net SPL of a rapidly

decaying sinusoid (or narrow-band noise signal) in the

presence of various kinds of electronic and room noise.

Certain instruments are in use today that estimate the

reverberation time on the assumption that the whole decay

takes place in a way that is exactly consistent with the initial

quarter or third of it (15- or 20-dB decay). While clever

design can provide enough averaging of the room response

in such a device to give consistent results from trial to trial,

an estimate based on the early part of a decay can seriously

misrepresent (usually by underestimating) the true

reverberation time, particularly in certain kinds of rooms.

These matters have been well-understood for forty years.

The foregoing paragraphs have shown us (among other

things) that while the idea of a reverberation time is



conceptually quite clear, it is not at all easy to get an

accurate measure of either the sound pressure or the

auditory version. However, most of the approximate

methods described manage to provide useful comparisons

of the reverberation time for a given frequency of excitation

in one room with that for another frequency, as a guide for

acoustical planning and correction. For musical purposes, of

course, the choice is clear—we usually want to know how

long a given sound persists audibly in the room, so that in

all strictness what I have referred to as the audibility time is

in fact the most relevant figure. For the sake of simplicity,

however, and to follow a traditional usage which is not

particularly misleading, we shall henceforth exploit the

rough equality of the audibility time and the reverberation

time and refer to them both as reverberation times.

15.2. The Effect of Room Reverberation

and Noise on Musical Pitch Relationships

In chapter 14 we learned of a set of perceptually definite

special relationships between pairs of musical tones. We also

learned that these relationships are recognized by musicians

as being a familiar part of their profession. It is possible to

say that in chapter 14 we studied some of the acoustical

guideposts for the construction of musical harmonies.

Having just reviewed and extended our knowledge of how

sounds tend to persist audibly in a room after their sources

are shut off, we are now in a position to investigate some of

the acoustical guideposts that are available to a musician

intent on producing melodies—the way in which successive

tones are related to one another.

To introduce and illustrate these concepts I shall follow our

usual custom of tracing out the results of a series of carefully

chosen experiments, experiments which you might want to

reproduce for yourself. We will make use once again of a pair

of electrical tone generators whose vibration recipes contain



appreciable amounts of only the first few harmonics. Figure

15.1 shows how a soft switch can alternately feed one or the

other oscillator to an amplifier-and-loudspeaker system. The

soft switch assures that the two tones can be alternated

promptly and cleanly without the harsh cracklings and pop-

pings that might otherwise accompany the electrical

changeover. Marks made with a grease pencil on the

frequency dials of the oscillators give us a convenient way to

record the settings corresponding to any interesting

frequencies that may be discovered. We will assume that the

equipment is set up in a fairly large room whose

reverberation time is at least 1/3 of a second.

Fig. 15.1.

We start our experiments by choosing a basic pitch toward

the lower end of the playing range of tone generator number

1. Let us choose this basic pitch in such a way as to make it

match one of the Cs of the reference scale of pitches; e.g., it

might have a repetition rate (fundamental frequency) of

261.6 Hz or of 523.2 Hz. The next thing we do is fool around

with the complete system, switching back and forth between

the reference tone produced by tone generator no. 1 and



various randomly set tones from tone generator no. 2. This is

a way not only to familiarize ourselves with the machinery,

but also to get our ears accustomed to hearing and

recognizing the reference tone.

If the room has a reverberation time of one or two seconds

(as is characteristic of a small concert hall), our random

experimenting will make us aware of all kinds of momentary

beats and roughnesses which make their appearance every

time one tone is exchanged for the other. The explanation of

these roughnesses is straightforward: the reverberant

sounds of the paritals belonging to the earlier tone are

beating with the newly-set-up partials of the second tone;

every decaying partial is at some instant equal in amplitude

to its growing successor, and at that time beats against it

with maximum auditory effect. A similar remark applies to

any heterodyne components that may be produced between

tones exhibiting roughness or beating.

During the changeover of room response from one tone to

the next, our ears are supplied with both tones

simultaneously. In a room having a long reverberation time,

there is a long interval during which “successive” tones are

audibly overlapping. In a room with highly absorptive walls

and therefore a short reverberation, intercomparison of the

two tones takes place only during a very brief period. Once

we have recognized that successive sounds in a room always

overlap to some extent, it is an easy matter to verify

experimentally that the special relationships discovered in

chapter 14 for pairs of superposed sounds continue to

advertise themselves to at least a limited extent between

successive sounds in a room. This observation is important

enough that we should dignify it and its direct

consequences by means of some numbered statements:



1. When one long tone quickly follows another one in a

reverberant room, the growth of one tone and the decay of

the other overlap sufficiently at our ears that it is possible

for us to recognize at least the strongly marked special pitch

relationships described for concurrent sounds in chapter 14.

2. As the room’s reverberation time is reduced, the overlap

time between successive sounds at our ears is also reduced.

This weakens the clarity and certainty with which we can

recognize any special pitch relationships. We lose

recognition of these relationships in order, beginning at the

bottom of the list given in table 14.1.

3. For any given reverberation time, there is an upper limit

to the rapidity with which tones can follow one another and

still show a relationship. This is because in rapid playing the

remnants of several earlier tones may be hearable, and so

can confuse the auditory picture.

A fair question to ask at this stage in our experimentation

is whether we are really using reverberant sound as a way to

relate one tone to the next; perhaps there is something else

going on which gives us some clues, or perhaps our

upbringing is such that the special relationships have

become drilled into us simply from our exposure to music

from the time of babyhood. Our everyday experience

immediately provides us with one clue—singers and

instrumentalists enjoy performing in a reverberant

environment, whether it is while taking a shower or playing

in a “live” concert hall. Their confidence is heightened by

such surroundings and so, as a matter of fact, is their

accuracy in achieving the desired pitch relationships,

provided the speed of the music is moderate enough that

the constraints of statement 3 do not take appreciable

effect.



Both the presence and the absence of reverberant cues

can demonstrate how we rely on them in musical situations.

Some years ago I inveigled a professional musician friend

into being a subject for several experiments in the course of

which I did not always tell him what I was actually up to.

One experiment required him to set two tone generators to

various musical intervals (chiefly 3rds, 4ths, and 5ths) that I

might specify at random. This experiment was done in my

laboratory, where the reverberation time is only about 1/3 of

a second, so that the amount of overlap between successive

tones is extremely short. As long as my friend shifted from

one tone to the other without leaving an intervening period

of silence, he had little difficulty in setting any desired

interval to his own satisfaction. He would switch back and

forth between the tones, adjusting the frequency of one

until the interval sounded “right” to him. By actual

measurement of his settings I was able to verify that he

almost always arranged the tones to agree exactly with what

we might expect from the concurrent-tone experiments of

chapter 14. My friend became a little impatient with my

delighted announcement of each of his “successes.” Did I

not take it for granted that a musician of his stature would

be able to do such easy things?

While I was attempting to explain my scientific interest in

the experiments we had just completed, I unobtrusively

connected an electrical generator of white noise to a

separate loudspeaker and gradually turned up the volume

so that the room was filled with a gentle hissing, rushing

sound of the sort one gets from an FM radio receiver that is

tuned between broadcast stations. A white-noise signal,

when analyzed, proves to be made up of thousands of

overlapping sinusoidal components having all possible

frequencies, all with equal amplitudes, each component

running randomly out of step with all the rest. My purpose

was to provide an overall masking signal of sufficient



strength that reverberant sounds would be almost

completely lost in the hissing background noise. My victim

noticed the presence of noise, which I passed off as a

temporary fault of the equipment, and then I requested that

he repeat the preceding set of experiments. The task proved

very difficult for him, and while he was often able to make

“correct” settings (his word for it), he worked slowly and his

confidence in their accuracy was greatly reduced. He then

realized that the noise was causing his trouble and

expressed interest in the fact that what he called the

“distraction” of the noise could cause such difficulty, even

when the tones themselves were clearly audible. He did

however point out that it is hard to perform in a noisy,

crowded nightclub, thereby demonstrating clearly that he

had already faced the problem of masking noises in the

course of his professional career.

We learn from experiments such as this that it is possible

to set the simpler musical intervals between successive

tones even when the reverberation is masked. We already

know, for that matter, that music can be played outdoors

where there is no chance of making direct comparisons

between the tones. Are we able to do this on the basis of

physical clues other than the ones considered so far, or is it

simply that a trained ear can memorize the intervals in the

way that a toolmaker’s eye learns to recognize the inch or

millimeter sizes of the objects he work with? Further

experimentation shows us that a little of both is going on.

Let us give our main attention here to the nature and

operation of aids to tuning (other than reverberant overlap)

which are available in the acoustics of an interval-setting

experiment. In experiments using headphones or under

other nonreverberant conditions, it is possible for most of us

to set reasonably accurate facsimiles of the special intervals

between tones. While it is possible to do this with normal,

multicomponent tones, our ability to do it is greatly



weakened when single-component tones are used. One

musician-victim of such an experiment with pure tones was

quite frightened to discover that the intervals seemed too

vague to him—he would set and reset, never feeling sure of

what he had done. Furthermore, he tended always to set the

intervals wider than those associated with his expected

simple, whole-number frequency ratios. My friend feared

that some ear disease was about to rob him of his livelihood.

The poor fellow was somewhat relieved to discover that if he

sang in unison with the first note, or an octave below, and

then tried to set the second tone, things went much better.

He was also relieved to find that when I turned up the

loudness of the sounds, much of his skill seemed to return. It

appears that temporary auditory patterns are set up in our

nervous system by the components of the first tone, and

that useful comparisons may be made between them and

corresponding patterns belonging to the second tone. For

example, while setting a musical 5th, we may be

recognizing the equality of frequency of the 3rd, 6th, etc.,

harmonic partials of the lower tone with the 2nd, 4th, etc.,

partials of the upper tone. When we are supplied with single

sinusoids, the patterns are too simple to be useful, and we

have trouble unless the sounds are loud enough to produce

harmonics within the ear by heterodyne action (which action

brings back the recognizable patterns once again). Singing

the tones provides an analogous restoration of the patterns.

We can now set down additional members of our list of

summarizing statements about the recognition of musical

intervals between successively presented tones:

4. The acoustically definite special relationships found for

superposed tones can continue to guide the intervals set

between successive tones even in nonreverberant

surroundings, as long as one tone follows the other with



reasonable promptness (i.e., with a delay of less than about

half a second).

5. When the sound pressure is kept low, interval-setting

between sinusoids presented one after the other is quite

difficult to accomplish, even for a skilled musician.

6. Single-component sounds that are loudly played (at

SPLs above about 80 dB) generate enough harmonic

components within the ear to permit interval-setting that is

almost as good as that described in statement 4 above.

7. The intervals set while listening to low-SPL sinusoids or

to normal tones presented with a large intervening period of

silence tend to be wider than those governed by the

physical relationships discussed in chapter 14. However, the

frequency ratios that any one listener sets are not very well

defined. The settings vary from trial to trial.

15.3. Introduction to Musical Scales

In most cultures, music is built around a set of sounds

having well-defined pitches. One finds that the most-used of

these pitches are connected in a manner strongly

reminiscent of what were termed special relationships in

chapter 14. From the acoustical point of view this parallelism

is not surprising, since these special relationships call

attention to themselves perceptually in many concurrent

ways—by beats among the partials and by the production of

orderly sets of heterodynes between superposed sounds, by

similar comparisons in the reverberant sounds in a room, or

by the weaker clues arising from the recognition of matches

between parts of the earlier (remembered) and presently

heard auditory patterns.

In any system of music it is customary to arrange the

chosen set of tones in order of rising (and sometimes

descending) pitch to make something called a scale. There

are many such scales known to musicians and a part of their



craft is to use the scale that suits their aesthetic purposes. I

do not wish to imply that all music must have the notes of

its scale based on our collection of acoustic cues, nor do I

wish to suggest that all of the cues present themselves in

every musical situation. On the other hand it is important to

recognize that these cues provide musical guideposts for the

performer and that these are sufficiently clear-cut that their

influence is found wherever there is music. How the

musician responds to these influences is of course strongly

affected by the culture and traditions of his environment.

There are many ways in which one can “derive” a musical

scale as an exercise on paper. There are also many ways in

which a musician might discover the tones of a scale in the

course of experiments with different sounds from his

instrument. Let us see how we might experiment in a

reverberant room to lay out the most familiar scale used in

Western music and its extension to a chromatic scale. We

will need to pick out only enough tones for our scale to span

a single octave; because of the near identity of any tone

with its octaves, each tone within the original octave implies

its brothers in all other octaves.

To lay out our musical scale we will use an apparatus like

that sketched in figure 15.1, which has its number 1 tone

generator tuned to the note C. Using this apparatus we can

make alternated-tone experiments of the sort described in

section 15.2, marking the tuning dial of generator 2 to

correspond to the easily recognized and strongly marked

intervals of a major 3rd, a 4th, a 5th, a major 6th, and an

octave, all in relation to the reference tone. When this work

is completed, we will have obtained an orderly series of

pitches that musicians will recognize as being the reference

tone C plus E, F, G, A, and the octave C, which together

make a fairly complete C-major scale. We can match up

these note names with the musically defined (beat-free)

intervals we found in chapter 14, arranging them in a row



along a line as shown in the upper part of figure 15.2. The

reason for the irregular spacing of the labeled dots along the

line will become apparent very shortly. This part of the

experiment and its tabulation completes what I shall call

Step 1 in the construction of our scale.

Fig. 15.2. Step I in the Building of a Musical Scale

Let us pause now to “play with” the tones we have

selected in Step I, to see if there are any relationships

between pairs of the newly selected tones in addition to

their basic relations with the reference tone C. The lower

part of figure 15.2 reveals that there are many such

relationships. For example, we find that the upper C of our

scale is related to F by a 3/2 frequency ratio, which

corresponds to a beat-free interval of a 5th. From E to A, and



from G to C, the intervals are exactly a 4th, while between F

and A we have a major 3rd. We also can recognize that the

much less well-advertised but still exactly beat-free interval

of a minor 3rd separates the tones E and G, and is also the

interval between A and the C above it. We have discovered

something rather significant here—not only can we make

zero-beat transitions from C to any other note in the

collection, but also transitions of this same kind are possible

between many pairs of the newly defined notes. Using a

tune that employs only this set of tones, a singer would feel

secure as he moved from one of these tones to another. All

he would need to do is to measure each new note accurately

from the last one.

Anyone knowing the musical alphabet will notice that two

tones are missing from our collection—the tones named D

and B. Step II of our scale construction involves finding the

settings for these two tones. Since C is a 4th below F, we are

led (by analogy) to try tucking in a D that is a 4th below G.

An equally plausible way to get a D would be to locate it a

perfect 5th below A. The upper part of figure 15.3 shows us

that these two Ds (indicated by open squares) are not the

same—they differ by 22 cents, corresponding to a 1.27-

percent discrepancy in frequency. If we were to sound the

lower one of these Ds against G, or the upper one against A,

strong beats would be heard. If the lower C of our scale is C4

at 261.6 Hz, the two Ds would differ in frequency by nearly 4

Hz! It turns out that the tuning discrepancy here is the same

as the one which made the Pythagorean 3rd unacceptable in

the experiments of section 14.4, subsection E.

The remaining note of the C scale gives us no particular

trouble. We find that the dial setting for an exact 5th above

E corresponds precisely with the setting required to produce

an interval of exactly a major 3rd above G. This note, which

is the sought-after B, is indicated in the figure by an open

square. The lower part of figure 15.3 shows some of the



exact relationships that connect B and the two Ds to the

other notes of the scale as developed so far. The lower of the

two Ds is in exact minor-3rd relationship with F, while the B

is exactly a major 6th above the higher-pitched D. We do not

find any other strongly marked relationships.

In performing situations in the key of C major, the

apparent difficulty with the Ds would cause little trouble to

most singers, violinists, or wind instrument players as long

as they were playing solo music. An unaccompanied player,

performing slow-to-moderate sequences of notes in a

reverberant room, tends (often unconsciously) to use the

pitch flexibility of his instrument to get D from any of its

predecessors by means of a beat-free (special) frequency

relationship, in order to satisfy himself and his listeners.

When he leaves this D, he will be led similarly to make a

special-interval jump to the next note in his music (the

interval being measured from the D). In faster music, a

skillful musician may not do quite this, partly because he

may sense that a long sequence of exact-interval jumps to

and from an ambiguously defined note like D can pull the

whole scale around, with rather confusing results for any

listeners who can remember the pitches of several of the

preceding tones!



Fig. 15.3. Step II in the Building of a Musical Scale

Step II of our construction of the notes of a C-major scale

was completed when the two missing notes of the major

scale were filled in. The basic notes discovered in Step I are

indicated in the figures by means of black dots, while the

subsidiary (shall we call them second-generation?) tones

appear as open squares. As we continue to experiment with

various relationships between the tones discovered so far, it

becomes apparent that there are some more gaps that can

be filled. In Steps III and III-A I propose to outline one way of

filling these gaps. This method in its simplest form would

prove not quite workable for playing actual music, but it will

serve to illustrate the nature of the problems which must be

dealt with. For example, our list contains no tone that lies a

beat-free 4th above F, nor one that is an exact major 3rd

below F. The open triangles appearing in the top line of

figure 15.4 show how all but one of the new tones might be

fitted into the scheme of things. Notice that once again



there is an ambiguity in defining one of the tones: what a

musician would call Ab lies an exact major third below the

upper C, whereas going up an accurately tuned major 3rd

from E brings us to a G# that is somewhat lower. The

frequency discrepancy between these two tones fitted

between G and A is 2.4 percent, somewhat larger than the

one discovered between the two versions of D. We have

already mentioned the simpler aspects of a soloist’s

problems with the paired tones, so we shift our attention to

another such ambiguous pair, which (as Step III-A of our

procedure) concludes our investigation into the construction

of a scale by filling the gap remaining between F and G. The

cardinal relationships involving this F#-Gb pair are shown in

the lower part of figure 15.4.

If we were to explore systematically all the relationships

between the notes of the scale as constructed so far, it

would turn out that the resolution of each discrepancy by

inserting yet another tuning for the notes of the scale would

lead to a never-ending proliferation of notes. For practical

music the competent soloist does what he can to reconcile

the discrepancies. His problems while doing this are not

terribly serious for a number of reasons which are well worth

discussion.

Earlier in this section we learned that a musician who is

given plenty of time to experiment and recheck in

reverberant surroundings will set very accurate intervals of

the beat-free special type. As the need for speed increases,

or as the room becomes less reverberant mis-settings of

pitch become less easily detected, and so are less of a

problem to the player. Because the sound level is always

greater at the player’s ears than at the listeners’, the player

normally has more elaborate checks on his tuning success

than does the audience. If he is reasonably competent, he

generally has the advantage of being better tuned than his

audience demands!



Fig. 15.4. Steps III and III-A in the Building of a Musical Scale

Let us close this section with the usual set of numbered

statements that summarize and emphasize the salient

points that we have studied:

1. A series of tones that all hold a strongly marked

relationship to a single reference tone (the tonic) forms a

five-note scale, each of whose members is in various special

relationships to some other members of the set.

2. The scale can be filled out by choosing additional tones

that are in special relationships to the original tones, even

though they may not have a clearly marked relation to the

tonic.

3. It is categorically impossible for exact beat-free

relationships to be maintained between all members of a



scale set up by any given succession of special intervals.

4. Because of the limited possibility of detection of tuning

discrepancies of the sort implied in statement 3, the solo

performer makes the best reconciliation he can, subject to

the musical context and the nature of his training.

5. The performer can normally detect any discrepancy in

tuning with more sensitivity than his listeners, so that he is

in an advantageous position to make corrections that will be

acceptable to them.

15.4. The Function of Equal

Temperament for Adjustable-Pitch

Instruments

In section 15.3 we became aware of the impossibility of

maintaining a consistent set of frequencies for the scale of

tones used in a solo performance. The inevitable

discrepancies that arise in the tuning of any note when it is

approached from some earlier member of a melodic

sequence display themselves most strongly when slow

music is played in reverberant surroundings. The practical

difficulties associated with these discrepancies are, however,

not particularly serious, because the acoustical conditions

which display the problem most clearly are also the most

favorable for helping the performer to detect and correct or

disguise them.

Most of the tuning cues available for guidance in tuning

successive tones in a melody are simply weakened versions

of the ones which govern the tuning of superposed tones.

Because of this, we recognize that when two or more players

attempt to maintain beat-free pitch relations between the

sounds they produce at any instant while playing successive

notes chosen from some scale, the discrepancy problems are

greatly magnified and, unless the players are skillful, chaos

can result.



Without concerning ourselves here with the historical

development of the subject,3 let us see how this problem is

dealt with today by musicians performing on adjustable-

pitch instruments such as the woodwinds and brasses and

also (to a lesser extent) on the bowed strings. Basically they

are provided with a set of tones whose frequencies make a

reasonable approximation to those needed for the notes

desired. The music is written to identify these approximate

notes, merely as a matter of convenience. It is then the duty

of the players to cooperate in making fine adjustments on

their pitches, to the extent permitted by their skills and

demanded by their listeners. The approximate fixed scale is,

in other words, used as a reference system and as a point of

departure. It is kept more or less clearly in the minds of the

players, but it may not be directly on display for the

audience.

Let us see how to lay out this fixed chromatic scale, taking

inspiration from the particular scale that we worked out in

section 15.3. By now we are familiar enough with the nature

of the beat-free musical intervals to recognize that they

relate pairs of musical tones via the ratios between their

fundamental frequencies. For example, the perfect 5th is

identified with a 3/2 = 1.5000 frequency ratio, while the

major 3rd belongs with a ratio of 5/4 = 1.2500 (see table

14.1). Following up this recognition, simple arithmetic shows

that the frequency ratios between successive named

members of our experimentally constructed scale lie

between limits of about 1.04 and 1.07. In particular, the

musical intervals between adjacent pairs E and F and

between B and C turn out to have a frequency ratio of

1.0667 ( = 16/15), whereas the ratio corresponding to the

interval from C# and the lower of our pair of Ds is 1.0417,

and the interval between F and its next upper neighbor is

1.0547. Let us take our courage in hand and inquire about

the musical consequences of constructing a scale in which



all the steps correspond to a single one of these frequency

ratios. In words more familiar to contemporary musicians, we

are asking about the consequences of constructing a scale

having equal temperament.

Going through the sequence C, C# , D, ... C involves

twelve upward steps, so we can inquire about (for example)

what happens if we multiply the C#-to-D interval 1.0417 by

itself twelve times. If the answer is exactly 2, we have found

the desired equally tempered semitone; if it is not, we shall

have to seek further. Here are the results of carrying out

these multiplications for the three semitone ratios given in

the paragraph above:

1.0417x1.0417x1.04l7x ... 

(12 times) = 1.6327 

1.0547 x 1.0547 x 1.0547 x ... 

(12 times) = 1.8947 

1.0667x 1.0667 x 1.0667x . . . 

(12 times) = 2.1702

Clearly, the first two of our candidates are unsuccessful

because they are too small. In the first case the 12-fold

multiplication leaves us about a minor 3rd short of the

desired 2-to-l octave ratio, while the second one is nearly a

semitone short. The third ratio is too big, since it leads to a

12-step sequence that is a little more than a semitone wider

than the 2-to-l ratio we seek. In this day of pocket

calculators you might wish to inch your way down by small

decrements from the overly large 1.0667 ratio to verify that

the desired ratio for equal temperament is 1.059463. That

is, if any given fundamental frequency is multiplied

successively by this number, it will give the frequencies of

the various equally tempered semitones that we have been



seeking; the number 1.059463 multiplied by itself twelve

times is equal to two. The frequencies listed for the set of

reference tones in figure 2.1 were calculated in exactly this

way, beginning with the 261.6-Hz frequency that belongs

with the note C4.

In section 14.4 it was explained that each interval of the

12-step equally tempered octave is divided up into 100 sub-

intervals called cents. The frequency ratios for 10-cent

increments within any given equally tempered semitone are

listed in table 15.1.

Table 15.1

Frequency Ratios for 10-Cent Intervals

Interval  in Cents Frequency Ratio

0 1.00000

10 1.00579

20 1.01162

30 1.01748

40 1.02337

50 1.02930

60 1.03526

70 1.04126

80 1.04729



90 1.05337

100 1.05946

We should now check up on how well the relations

between members of equally tempered scales match the

special intervals that are so important to music. We can refer

back to table 14.1 to learn about the discrepancies. The

unison and the octave were matched in setting up the

temperament, so there is no error there. The musically

definite 3/2 ratio (the perfect 5th) turns out to be an interval

of 702 cents, meaning that the equal-temperament

approximation to the 5th is 2 cents narrower than the

corresponding perfect 7-semitone interval. The 4/3 ratio of

an exact 4th corresponds to an interval of 498 cents; i.e., it

is 2 cents narrower than the 5-semitone exact interval.

These errors are very small indeed. Calculations based on

table 15.1 show that for notes near A4 (440 Hz) a 10-cent

error corresponds to a fundamental frequency change of

about 2.5 Hz. A 2-cent error in this region of the scale then

amounts to a frequency discrepancy of about (2/10) X 2.5 =

0.5 Hz. The fact that most of the special intervals fall in this

manner very close to whole-number multiples of 100 cents

shows that equal temperament is basically a good

approximation. The equal-temperament approximation to

the beat-free interval of a major 3rd (4 semitones) is the

least accurate of the ordinary intervals. Here the error is 400

—386 = 14 cents, which gives a frequency error of about 3.5

Hz near A4. Before we go on to other things we should also

notice that the unnamed 7/4 and 7/5 special frequency

ratios listed in table 14.1 are 20 or 30 cents away from any

note of the equally tempered series, and as a result lack

familiar musical names.



We come now to a very important relationship that exists

between equal temperament and the musically exact

intervals that are preferred when time and circumstances

permit. In figure 15.3 we met the fact that two Ds made their

appearance. One of these proves to be 4 cents higher, and

the other is 18 cents lower, than the D belonging to equal

temperament. A tabulation comparing similarly the location

of a given equally tempered note with the places it would

need to be to permit perfectly tuned transitions to it from

any other note in the scale shows that the most-needed

settings gather themselves roughly into three groups. One

group extends over a range of about 7 cents clustered at a

point about 12 cents below the equally tempered setting; a

similar group collects around a setting that is 12 cents

above equal temperament, and a third collection of settings

is found in the immediate neighborhood of the equal-

temperament note. We can understand from this threefold

grouping why it is that many musicians form the habit of

“thinking” a note sharp or flat relative to equal

temperament. While playing, such a musician starts with the

written note, recognizes from the context whether it should

be played in the upper, the middle, or the lower group, and

finally zeroes in to a more exact setting if there is time.4 If

there is not time or if the listening conditions are not

suitable, he nevertheless has gotten within a very few cents

of the true setting, and by very simple means. Most players

are unaware of the arithmetic of what they are doing, but

because of long habit they will almost always go up or down

in pitch by about 10 cents if asked to play a little sharper or

a little flatter—just the amount needed to shift from one to

another of the groups. Because of the need to move up or

down a little from equal temperament and because the

instruments do not “sing” well if their pitches are pulled too

far above or below their own inherent tuning, the players on

wind instruments take pains to find instruments that are



built to play most naturally in accordance with the needs of

the middle cluster of tunings. Many brass players also

exploit the added refinement permitted by lever-controlled

small motions of various value slides on their instruments.

This allows them to adjust the “singing” pitches of their

horns to the music as it progresses.

15.5. Basic Scale Relations in the Music

of India

The way musicians in India deal with their musical scales

provides us with a number of insights into how the

influences of vibration physics and of the human hearing

mechanism show themselves in the music of another

culture. The Indian musician works within a musical

structure built around a basic seven-tone (plus octave) scale

of natural notes that interestingly enough matches the

relations we met in constructing the C-major scale. In the

Western tradition, when a musician wants to speak of a scale

(a system of pitch relationships) without committing himself

to any particular one (e.g., the major scale beginning on the

note G), he uses the general note names do, re, mi, ... which

are familiar to most of us. A similar set of note names is used

in India. Both sets of names are given below, along with the

serial numbers of the notes in the ascending scale and our

letter names for the case in which the first note happens to

be C:

Indian music theory allows the 2nd, 3rd, 6th, and 7th notes

to be flattened a semitone, while the 4th can only be



sharpened. The words komal and tivra are interchangeable

with our words flat and sharp, so that if sa has a pitch that

matches C, then komal re is what we would write as Db and

tivra ma is F# . When we transcribe all of the possible note

names into the C scale, it turns out that they arrange

themselves into a complete chromatic scale, as follows:

C Db D Eb E F F# G Ab A Bb B C In our music, the

possibility of writing either Db or C# for the second step of

this scale is a musician’s way of reminding himself of the

most important pitch relationships between this note and

the other ones in the particular piece of music. In figure 15.4

this note was deduced by measuring down a major 3rd from

F; the musical contexts in which this sort of reference is

found would lead musicians to name the note Db. If, on the

other hand, I had chosen in the example to measure up a

major 3rd from A, the correct name for the note would have

been C# . The same thing goes on in Indian music; the rule

that certain notes can be flattened and only one sharpened

is simply a reflection of the way in which the music is put

together. We must always remember that note names with

sharps and flats are merely indications of what needs to be

done. The exact pitch the musician is to seek depends on

the other notes of the music, both melody and

accompaniment.

The Indian classical musician almost invariably plays to

the accompaniment of a continuous set of drone pitch

references, usually provided by the four successively

plucked strings of a tambura. Chaitanya Deva, in his

excellent book Psychophysics of Music and Speech,

describes the tonal background provided by the tambura as

follows:



According to the notes used in the raga, the tambura is

tuned in one of the following ways:

Pa1 Sa Sa Sa1; Ma1 Sa Sa Sa1; Ni1 Sa Sa Sa1 G, C C C, F, C C

C1 B1 C C C,

(The last is not very common). The last two types of tuning

are absent in the Southern system of our music.5

Here the subscript 1 on a note indicates that it belongs to

the octave below the octave that contains notes lacking the

subscript. Deva goes on to say that the first 9 string partials

are audible to the player, and points out the curious fact

that the strengths of these partials depend very little on the

point where the strings are plucked (contrary to what we

should expect from our studies in chapter 7). The grazing

contact of the strings as they touch the curved surface of

the bridge gives rise to harmonically related heterodyne

frequencies that have the overall effect of filling in any gaps

in the generated vibration recipe. This is quite analogous to

the way the internal nonlinearities of our ears reconstitute

any missing harmonics in the sounds that come to them.

Tuning clues provided by the tambura are used very

consciously by the player, especially if his own instrument

lacks drone strings. Some years ago in Delhi, I met a

professional player of the North Indian flute who in the

course of our conversation was unwilling to sound his

instrument in my presence without a reference drone of

some sort. This was despite the fact that I had just heard him

play beautifully in public, and had come round to tell him so.



He explained that since he had just heard me achieve accu-

race intervals on his flute without a drone, my acute ear was

bound to discover any errors he might make. You will notice

that in spite of the disclaimer, he was perfectly sure of his

sense of pitch in judging my own efforts on an unfamiliar

instrument. Despite the differences in the kind of music we

were accustomed to play, there was complete agreement

about the intonation of the notes we used.

Listeners brought up in the European tradition of music

often get the impression that Indian music abounds in all

sorts of microtonal intervals, although the notation system

would tend to show the lack of substantive existence of such

notes. (It is true that certain notes in certain ragas are to be

played slightly sharp or flat to increase the emotional effect

of the mood of the raga. However, in present-day musical

usage such alterations are becoming rarer.) The explanation

for the impression of microtonal intervals is to be found in

the way an Indian classical musician opens his pieces with a

slow alap, in which the notes of the ascending and

descending scale are presented in all sorts of contexts to

establish their positions and relationships. One way in which

the player establishes these guideposts is by wandering

subtly around in their neighborhood, teasing the listener for

a while before the tone is finally presented. As the music

progresses, this evasion and skirting of the special pitch

relationships becomes more and more elaborate, to the point

where it becomes almost a game between the player and his

listeners. It is considered to be in good taste for the

audience to exclaim in surprise at the player’s tricks during

the performance, or to murmur its relieved approval when he

finally “comes home” to the formal pitch. The musician

thinks of all this pitch wandering as skillful decoration which

he learns to do, in much the same way as a jazz musician

learns which notes to depress microtonally in pitch in order

to create the “blue” notes. The Indian musician has



obviously learned that the possibility of contrast between

the perceptually marked relationships and the vast array of

unmarked ones is a powerful resource in his music. I have a

tape recording made of a singing lesson broadcast over All-

India Radio in which one can hear the contrast between the

teacher’s purposeful variations about each note in a short

sequence before coming solidly onto it, and the much more

tentative and unsteady efforts of his two pupils. It is a

typical music lesson, complete with admonitions to end up

exactly on the pitch of the ma (a fourth) or the pa (a fifth),

and explanations of the proper way to approach them. It was

very easy to make measurements on this tape to verify the

accuracy with which the various pitches were finally settled.

In Western music, pitch wanderings for effect are also

present, but are usually much more limited in extent. The

vibrato, the most familiar (to us) of these wanderings, can

be somewhat confusing to an Indian musician. A brief

wavering of pitch as someone comes on or off a note is

perfectly familiar to him as a musical device, but the

steadily maintained vibrato used by singers in particular

causes him puzzlement. He thinks of it as some peculiar sort

of trill and is surprised to find the microtones it implies in a

musical culture which looks to him rather rigid, because we

almost always make abrupt transitions from one note to

another, without the slides that for him are an integral part

of music. I have been asked how the Western performer who

uses vibrato knows how much above and below the basic

pitch he is supposed to go, and how fast the variations

should be!

15.6. Other Reasons for Departures from

the Special Intervals of a Scale

As one participates in, listens to, or makes measurements on

the tuning of notes in music from all over the world, it

quickly becomes apparent that the acoustically conditioned



special intervals do not always govern performance practice.

One universal reason for this we have already met in the last

section—the player may choose to depart from formal

tunings as a technical resource that contrasts the in-

tuneness of one note (i.e., the presence of the tuning cues

which define it) with the out-of-tuneness or non-tuned-ness

of other notes which may advertise themselves either by

strong beats or by the absence of any particular tuning

indications.

Another reason for departures from the special

relationships is to be found in situations where the player is

performing in nonreverberant surroundings, or as a soloist

with a large orchestra whose complex sounds can form a

masking background in a fashion similar to that described

for white noise in section 15.2. As we noted earlier, in

passing, if we are deprived of the clear messages produced

by beats between overlapping partials, most of us will tend

to set our musical intervals a little bit wider than otherwise.

The amount of this reference-free interval stretching varies

from person to person, and also changes with a given

person’s state of health or mood. The effect is particularly

large in the case of sounds having but a single component,

which will be explained in example 4 of section 15.7.

Music played on instruments having a large number of

strong, harmonically related partials is sometimes liberated

from the constraints imposed by the special intervals, in part

because the harmonically related clumps of beating partials

which advertise them become so extensive as to confuse

their message. For the closer intervals such as the minor or

the major 3rd, the adjacent clumps may even overlap,

producing near-total obliteration of the special relationship.

An acoustically related property of violin and cello tones

makes beats between their partials almost inaudible,

permitting the player great latitude in his choice of pitch (an



explanation of the detailed nature of this will be found later

on in sec. 24.5).

In chapter 16 we will learn how the mechanical nature of

the sounds produced by the various keyboard instruments

influences the way that we hear them and therefore the

ways in which they are tuned. As we progress to a study of

other instruments (including the bowed strings) we will learn

of reasons peculiar to each type that lead their players to

use stretched or compressed intervals in their solo playing;

these departures occur to an even greater extent during

warmup and while the unaccompanied musician is

practicing his exercises for tone and technique.

Among the wind instruments in particular, the musician

quickly finds the playing pitch at which his instrument

“sings” best. The pitches that are associated with best tone,

promptest response, steadiest frequency, and widest

dynamic range do not always exactly coincide with equal

temperament or with its special-interval relatives. The

musician playing in musically unconstrained circumstances

will tend to let the instrument take its own way, playing

each note at the pitch where the instrument sings best,

provided of course that these pitches are not too irregular in

their departures above and below the formally desired

tunings. While I will leave a detailed discussion of these

matters to later chapters, one example would be appropriate

at this point. There are several cases (e.g., clarinets of the

German Oehler system and the French-type Boehm system)

in which two common forms of an instrument show opposite

tendencies in the trend of the scale, one normally giving

narrowed intervals when allowed to find its own pitches, the

other giving wide intervals. Players who switch back and

forth from one to the other have little more difficulty in

adjusting their tuning than do those who specialize in only

one variety. We shall see that the good-response cues

available to the player are generally so strong (on a



reasonably good instrument) that he can repeat his pitches

far more accurately (even from day to day) when asked to

get the best tone, than when he is asked to concentrate his

attention on pitch alone. This fact has proved to be of

enormous utility in guiding our researches into the ways in

which wind instruments actually work, and of even greater

significance in controlling the adjustments which improve

their overall behavior. It gives us a stable and well-defined

basis for measurement, which turns out to transcend

historical, cultural, and stylistic boundaries.6

15.7. Examples, Experiments, and

Questions

1. The simplest musical implications of room reverberation

and background noise were well-illustrated at a concert

given in Cleveland by the Netherland Chamber Choir a few

years ago. During the first half of the concert, those of us

who had already heard this expert and musically sensitive

group in person or on records were a little disappointed with

the performance. The voices did not blend well and chords

seemed vague. The singers themselves were visibly ill at

ease and the entrances of various solo voices were slightly

hesitant and sometimes a little off-key. Because the group is

highly professional, the performance continued in an

acceptable if not excellent style until intermission. After

intermission, everything was changed, and we were

presented with a striking series of difficult compositions,

perfectly sung.

A noisy air conditioner left on during the first half of the

concert was the cause of the trouble. Its noise masked the

reverberant cues normally available to the musicians. Let us

examine the situation a little more closely. The A-weighted

sound level in this particular empty hall is about 45 dB when

the air conditioner is running. The presence of an

attenuating audience makes almost no change in the



measured sound level. The noise level from the machinery

itself is reduced somewhat by the sound absorption that an

audience provides, but the inevitable sounds of people

moving, shuffling their programs, etc., bring the level back

very nearly to the original empty-hall value. If we assume

that the SPLs achieved by the choir range from 65 to 90 dB,

we might expect that the musicians would have very nearly

their accustomed amount of reverberation overlap in which

to match their successive tones. Therefore, if one examines

only the A-weighted sound level in the hall, one wouldn’t

expect the air conditioner to have much adverse effect on

successive tones as heard by the choir. Similarly, the

possibility of matching the superposed tones of each chord

would also seem to be unaffected by the presence of a little

room noise.

However, when we learn that the C-weighted noise level

due to the air conditioner is 75 dB, our view of the concert

changes drastically. The 30-dB excess of the C-weighted

level over the A-weighted reading shows the presence of

enormous amounts of low-frequency noise (see sec. 13.8),

which is placed where it can mask the reverberations of the

bass and tenor voices directly and also cover up the implied

tones produced by practically any combination of musical

parts. With the air conditioner turned on, the musicians were

deprived of a large share of the subtle messages that

normally tell each part of the choir what the other parts are

doing. Several members of the choir told me later of their

feelings of dismay and insecurity during the first half of the

concert. They also expressed their enjoyment of the

acoustics of the hall itself when the mechanical noise was

reduced. This satisfaction with the hall was reiterated during

a second visit by the group some years later (though they

recalled their earlier encounter with the air conditioner as

one of their more traumatic experiences).



2. In music theory the relationship between two (or more)

tones is said to have been inverted when the lower tone is

exchanged for its own higher octave. Thus the interval of a

5th between C4 and G4 inverts to give a 4th when we

compare G4 with the C5 above it. Refer back to table 14.1

and verify that despite the fact that octaves are almost

completely interchangeable when we are dealing with a

single tone, the clarity with which a given interval is

advertised need not be at all the same as that associated

with its inversion. Look first at the following practical

example: someone desiring to play a well-tuned A4b as a

minor sixth above C4 would find the placing of the note

quite indefinite as compared with the same A4b when it is

measured down a major 3rd from C5.

3. I recently wasted some time trying to work out the

tuning relationships of the Indian jal tarang. This is a tuned

bell instrument made up of a set of chinaware bowls which

are carefully adjusted for pitch by pouring water into them.

Frustration arose because I naively forgot that the perceived

pitches of bells are not related in any simple way to the

frequencies of their partials (see chap. 5), and my

measurements of the first-mode frequencies of the bells

gave little interpretable information. Perhaps you can devise

a simple and workable technique whereby the pitch relations

of these bells could be measured, or those of the Javanese

gamelan, which is made up of a set of irregularly cast brass

bars reminiscent of a glockenspiel. What special property of

the sound spectrum of our Western glockenspiel allows it to

be tuned by simply adjusting the lowest frequency modes of

its bars?

4. You will recall from chapter 13 that equal increments of

acoustic pressure amplitude (or of SPL) failed to give equal

increases in loudness. We face the same sort of problem

once again in connection with the relation between pitch



perception and vibratory frequency. From the point of view

of psychoacoustics the two problems are quite analogous. In

the case of sinusoids, it is possible to arrange a sequence of

equally spaced increments of perceived pitch (expressed in

mels).7 This mel scale is not at all in agreement with the

musician’s sequence of equally tempered (equal-frequency

ratio) pitches. Suppose for example that we were to build a

sine-wave electric organ, with each note being tuned in

unison with the corresponding equally tempered note of an

ordinary organ (so that successive keys produce sounds

whose frequencies are raised by successive increments of

almost exactly 6 percent). The perceived pitch change

associated with playing C# after C near the middle of the

keyboard would be heard as a rise of about 2 mels. At the

bottom end of the keyboard the pitch change from one note

to the next (again a 6-percent change in frequency) would

be perceived as a rise of only about 1 mel. At the top end of

the sine-wave organ keyboard, however, the equal-tempered

semitone step corresponds to a pitch rise of about 12 mels.

To reiterate: when one is dealing with sinusoids, the equally

tempered frequency scale is not an equal-step pitch scale. To

get an equal-tempered sinusoid pitch scale, it would be

necessary to stretch the traditional 2-to-1 frequency ratio for

a perceived octave somewhat in going down from the

middle toward the lower part of the keyboard, and to shrink

it drastically on the way to the upper part. Such an equal-

pitch-increment scale would be torn apart by fights between

heterodyne components if we were to try to play music with

it at any reasonable sound pressure level.

The situation with tones having harmonic partials is much

more straightforward. We have already learned that pitch-

matchings between successive and superposed tones are in

agreement when the tones consist of a few strong partials.

We have also given great attention to the way in which such

sounds display their interrelationships, and have learned



that an equally tempered scale (constructed using equal

frequency ratios) is at the very least a good working

approximation to what is needed. Notice that all this did not

require us to produce a sequence of equally spaced pitches!

You may find it interesting and worthwhile to play around

on a piano or, better, an electric organ, comparing the pitch

changes you perceive for any given small musical interval

(e.g., one to three semitones) at various points of the

complete scale. You will find that over most of the keyboard,

the pitch changes corresponding (say) to a semitone sound

pretty much the same. Among the lowest notes a keyboard

semitone begins to sound a little narrow in pitch, though by

no means to the extent found with sinusoids. At the top end

of the keyboard once again the semitone ratio gives a

slightly narrow-sounding pitch change compared with what

you get over the middle two-thirds of the instrument’s

range. In other words, you can verify that, over the range in

which music is played, each musical interval corresponds

fairly well to a particular perceived pitch change, regardless

of the absolute frequencies of the notes being compared. All

this seems so obvious that many people take it for granted,

and they miss the point that music based on special

intervals could exist whether or not each of these intervals

always implied the same change in perceived pitch.

5. I have sometimes been asked for a simple piece of

evidence that music of all sorts depends on the ratios

between frequencies rather than on the frequencies

themselves. You might wish to work out a good answer to

this question, built around the fact that a piece of music

sounds perfectly well in tune (with itself) when it is played

on an out-of-adjustment record player so that everything is

run through too fast or too slow. A more historical answer

can be built around the fact that in Bach’s day much music

was played using scales based on a 420-Hz frequency for A4,

whereas in late nineteenth-century Britain the reference



frequency was 453 Hz, and in this country it rose as high as

461 Hz before dipping to 435 Hz, being at present a shade

above the nominal 440-Hz value. All the music works

perfectly well in all these tunings (provided the sopranos

don’t break on the high notes or the pianos lose their tone

on the low ones, etc.). Can you go on to prove that these

conclusions apply equally well to music which is not based

on any system of specially marked relationships? Hint: make

use of the fact that for ordinary musical tones having only a

few strong partials the perceived pitch will change for all the

notes by roughly the same amount when their frequencies

are altered by a given ratio (see the latter half of example 4

above).
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translator (reprint ed., New York: Dover, 1954). See part III,
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components.

4
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influenced by these data, although I do not completely
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S. S. Stevens and J. Volkman, “The relation of pitch to
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16

Keyboard Temperaments and Tuning:

Organ, Harpsichord, Piano

In chapter 15 we investigated the general way in which a musician

guides his tuning while playing on adjustable-pitch instruments. We

learned-in particular that there is no poisibility of devising a fixed set

of musical tones all of whose members will fit together neatly in

accordance with the special relationships discussed in chapter 14. We

found that woodwind and brass players prefer for practical purposes

to use instruments tuned in equal temperament (with equal

frequency ratios between adjacent semitones) whose notes can then

be pushed up or down a little in pitch to meet the exigencies of the

music.

We must now turn our attention to the problems of musicians who

perform on keyboard instruments, where pressing on each key gives

rise to a sound of fixed pitch, with no possibility during performance

of sliding the pitch up or down according to musical need. After all

that has been said so far about the care with which good musicians

adjust their playing pitches when such adjustments are possible, you

are bound to be curious about the manner in which acceptable music

can be extracted from nonadjustable instruments such as the pipe

organ, the piano, the harpsichord, or the clavichord. We will find that

there are slight differences in the ways in which the various kinds of

keyboard instruments are tuned in order best to satisfy essentially

identical musical requirements. Satisfying these requirements proves

to be more difficult on the pipe organ than it is on instruments that

work by plucking or striking strings.

Let us look ahead briefly into the manner in which the present

chapter is put together. First we will look at a number of ways of

dealing with the pipe organ tuning problem. This investigation is

relatively straightforward, because we are dealing with the relations

between sustained musical tones whose partials are in exact

harmonic relationship. On the other hand, in sounds made by plucked



and struck strings, the impulsively excited partials die away in time,

and they are not quite harmonic in their frequency relationships, thus

altering the way in which musical relationships arrange themselves.

We will need therefore to extend our knowledge of the vibration

physics of such strings before continuing with an account of the ways

in which tuning procedures laid down for pipe organs adapt

themselves for use with the stringed keyboard instruments. The

chapter closes with a discussion of some of the musical implications of

these adaptations.

16.1. “Just” Scales: The Conventional Basis for

Keyboard Tunings

By the end of the seventeenth century, the pipe organ and various

other keyboard instruments had become well-established in European

music. In order for this to occur, musicians had been forced to devise

tuning procedures for these instruments that would minimize the

musical drawbacks arising from the nonadjustability of their pitches.

Musicians guided their tuning efforts by keeping in mind an idealized

pair of so-called just scales that are very closely related to the

chromatic scale we devised in chapter 15 on the basis of our special

frequency relationships. Frequency relationships between a reference

note (the tonic) and the various members of the major scale in just

tuning are written out as follows (note names are given for a scale

beginning at C):

The major second (9/8 frequency ratio) that is chosen for the just

major scale corresponds exactly to the upper one of the pair of Ds we

discovered earlier. The reason for this conventional choice is partly

historical and partly a result of the greater frequency of occurrence (in

the key of C) of intervals relating D with G than of intervals

connecting D with A. We are already aware of reasons why both Ds are

important in even the simplest of music. You will recognize that aside

from the major 2nd and the major 7th, all of the just intervals

measured from the tonic C correspond exactly with the well-marked

beat-free relationships that we met first in chapter 14 (see table



14.1). We have, on the other hand, considerable freedom in placing

the D and the B (relative to C) since the zero-beat relationship

between C and either of these two notes is very weak—traces of the

direct relationship can only be demonstrated under loud playing

conditions using specially chosen vibration recipes for the tones.

Let us now look at the analogous just tunings for the minor scale:

Referring again to table 14.1, we find here the lower of our two

tunings for D, the upper one of our Ab/G# pair, and a new sort of Bb

that is exactly a minor 3rd above G. There are of course many ways in

which a given note may be defined via its relations with other notes.

For example, music theorists recognize two varieties of minor 7th

besides the 9/5 ratio listed above; one of these, the grave minor 7th

(having a frequency ratio of 16/9), is what we had settled on for a Bb

in chapter 15, while the harmonic minor 7th (7/4 frequency ratio) is

one of the special intervals listed in chapter 14.

It is possible to work with our rather good compromise tunings as

long as one is willing to restrict his composing and playing to the

major keys of C (no sharps or flats), G (one sharp), F (one flat), D (two

sharps), and Bb (two flats). These compromise tunings will also be

successful for use in the corresponding minor keys whose key

signatures also contain no more than two sharps or flats. That is, the

compromise fixed tunings give a close approximation to the desired

just intervals in certain scales. Some of these tunings also serve well

for music written in three sharps or three flats, but beyond this the

approximations become progressively less acceptable to the listener.

The other major compromise tuning, equal temperament, has no

perfectly tuned intervals except the octave. Some of its scale errors

are quite large, and they are irregularly arranged relative to just

tuning. In marked contrast to other systems, equal temperament uses

an individual compromise mistuning for each particular type of

interval, and these interval mistunings remain exactly the same in all

playing keys. One thing that makes the equally tempered system

practical is the fact that the important and strongly marked interval of



the fifth closely approximates the special relationship that is the fifth

of just tuning.

16.2. A Tuning Procedure for Setting Equal

Temperament

Discussions of keyboard instrument tunings quickly become sterile

exercises in arithmetic if they do not include workable methods for

“setting” the desired temperament and for testing whether it has

actually been obtained. In this section I shall describe a simplified

tuning and checking procedure for setting equal temperament on an

electric or pipe organ whose sustained tones are made up of exactly

harmonic partials. Later on in this chapter we will learn how such

procedures may be adapted to the tuning of the harpsichord and

other instruments where the effects of string inharmonicity must be

taken into account.

The equally tempered scale is a good place to begin learning how to

tune—first, because of its predominance in today’s music, and

second, because one can carry out its tuning by means of an entirely

repetitious procedure. In “setting” this temperament we make use of

the fact that its approximate fifths are all alike, and are very close to

but not exactly equal to their beat-free counterparts; i.e., the equally

tempered frequency ratio between the two tones is 1.4983 instead of

the exactly beat-free ratio of 3/2 = 1.5000. In other words, we set a

series of intervals each of which is smaller than a perfect fifth by 2

cents (see sec. 15.4). Since we will be using only fifths to do our

tuning (along with beat-free octaves), we should verify that if we write

down the note names for a series of fifths beginning with C, all the

notes of the chromatic scale will appear, in the sequence C, G, D, A, E,

B, F#, C#, G♯, D#, A#, F, C.

Suppose that the repetition rate for C4 is set to 261.63 Hz by means

of a tuning fork. The equal-temperament G4 above it is then supposed

to have a fundamental frequency of 261.6 X 1.4983 = 392.00 Hz.

Let us refer back to part D of section 14.4 to see what is to

be expected from a noc.quite-perfect 5th in the way of

beats. We noticed there that for exact beat-free tuning of a

musical 5th, the third harmonic partial of the lower note

should coincide with the second partial of the note a 5th



higher. In the example demonstrating the effect of a slight

mistuning, we found that the 600-Hz third harmonic of tone

M (whose fundamental is 200 Hz) and the 602-Hz second

harmonic of tone N (301 Hz) differed by 2 Hz. Notice now

that in every clump of beating components (heterodyne

and original) the intercomponent beats take place at 2 Hz

or at one of its whole-number multiples. That is, in the first

clump (near 100 Hz) there are 2-Hz beats between the 99-

and the 101-Hz components, and also between the 103-

and the 101-Hz components; the remaining possibility for

beating here is the 4-Hz (twice 2 Hz) rate associated with

the 99- and 103-Hz pairing. In a more general way, we can

say that for a mistuned 5th, whether we focus our attention

on beats among members of a low-frequency clump or on

those among members of a high-frequency clump, the

repetition rate of the beats in the clump will equal the

frequency difference between the third partial of the lower

tone and the second partial of the upper one.

In tuning G4 to C4, then, we wish to listen for a beat repetition rate

running a trifle slower than one per second:

(3 X 261.63)-(2 X 392.00)=0.89 Hz

We must of course make sure that G is tuned on the low side of the

zero-beat interval. (By the way, it is advisable to use the diapason

stop or another of similar tone color when setting the scale, in order to

make sure that there are sufficient harmonic partials in the tones to

establish the musical relationships, but not so many as to obscure

them. (The trompette stop, e.g., is built of tones containing far too

many strong partials for easy tuning.)

The next step is similarly to tune D5 relative to the newly set G4. In

equal temperament, the fundamental frequency of D5 is 392.00 X

1.4983 = 587.33 Hz, so that the desired beat repetition rate between

G4 and D5 is:



(3 X 392.00) — (2 X 587.33) = 1.34 Hz

It is a good idea to keep all one’s tuning in the same general pitch

region; therefore, our next step is to tune a beat-free (2-to-1) octave

down from D5 to D4 before we continue by setting the A4 on the basis

of the lower D. Figure 16.1 sets forth the first few members of the

tuning sequence written out on the musical staff. The numbers in

parentheses give the beat repetition rates telling how much below

zero beat the upper member of each note pair is to be tuned. You may

find it interesting to work out why there are two alternating

sequences of slow and fast beats, each sequence rising in rate by

about 12 percent as we go through the tuning series.

Digression on the Use of a Metronome to Define Beating

Rates.

Relatively slow beating rates of the sort used to adjust tempered

intervals are somewhat bard to determine with the unaided ear. If,

however, you set the ticking rate of a metronome to correspond to

the desired beat frequency, a few seconds of listening to its rhythm

will educate your ear for the job it is supposed to do. It is not difficult

to work out the metronome setting corresponding to the desired beat

frequency, since the device is calibrated in ticks per minute, which is

60 times the desired number of beats per second. For example, the

metronome setting for the 0.89-Hz beating rate for the C4-to-G4

interval is 0.89 × 60 =53.4 ticks/minute, while the 1.34-Hz beat

relating D5 to G4 corresponds to 80.4 tickslminute. Few metronomes

are accurate within 10 percent, so there is no sense in carrying out

such detailed calculations. The first setting should be thought of as

being close to 55/min and the second close to 80/min. Metronome

inaccuracies of the sort referred to here cause little trouble, because

one should use the metronome only to start the tuning procedure. As

we shall see, the procedure itself always contains its own provisions

for checking and correcting errors as they arise.



Fig. 16.1. A Tuning Sequence for Equal Temperament

You are likely to discover, soon after starting a tuning series of the

sort described above, that your ears are able to guide you quite well

in setting intervals that sound “equally out-of-tune” without any need

for you to count beats. For this reason I do not need to set down

beating rates beyond the first few notes. As you proceed, however, it

is a good idea to keep checking back over the intervals set earlier to

remind your ears of the correct (consistent) out-of-tuneness. Also, as

soon as you pass E in the sequence, it is possible to listen for the very

rapidly pulsating sound associated with the fast beating of the

widened major thirds that are typical of equal temperament. Each

newly tuned 5th can be checked against the note a major 3rd below

it, providing a means of watching the consistency of the tuning while

it is in progress. If you wish to count beats for these 3rds (they tend to

be too fast for easy counting), you can listen for a (5 X 261.63) — (4 X

329.63) = 10.37-Hz beat repetition rate for the beats arising between

the components belonging to C4 and E4, corresponding to the

frequency difference between the 5th partial of C4 and the 4th partial

of E4. Similarly, you will find an 11.64-Hz beat repetition rate when D4

is compared with F4#. Once you have learned what to listen for, your

attention should be focused on the nature of this sound rather than

on its beat repetition rate.

If you have carried out a consistent tuning along the lines sketched

above, its ultimate correctness will be proven by testing the final F-to-

C interval in the complete sequence. Since you started with C and

worked around to F by a long series of tunings, one more tuning of the

sort you have been doing should bring you back once again to the

original C (or its exact octave). If the tested F-to-C interval comes out

narrow, your fifths have not been sufficiently shrunken, and it will be

necessary to start over again with a slightly faster beating rate than

what you assumed at the start (your metronome may have been

inaccurate, or mis-set). Once the “circle of approximate fifths” is made

to close at the octave by a properly uniform set of shrunken intervals,

you will have achieved equal temperament. Any given interval



between pairs of tones should then sound pretty much the same, no

matter where you test it in the span of a little more than an octave

that you have freshly tuned. That is, all the semitone intervals are

supposed to sound “like” each other, as do the whole-tone intervals,

minor thirds, major thirds, fourths, etc. It is worthwhile to make

comparisons by alternating the notes of a pair as well as by sounding

them together. Once you have checked over the various intervals, it is

time to tune all the rest of the keyboard by means of beat-free octave

settings based on the tempered scale that we have set up starting

from C4. This completes the tuning.

I hope most of my readers can experiment with actual tuning, and

will trust their ears as they try to set a temperament. But you are

presumably also curious about just how much each equal-tempered

interval departs from the corresponding justly tuned interval, and in

which direction. Table 16.1 shows in the right-hand column the

discrepancies (expressed in cents) between equal temperament and

just tuning. A positive number indicates that equal temperament is

sharp; a negative one indicates a flat tuning. You can see here why

certain intervals sound smoother or rougher than other intervals of

the equal-tempered scale.

Many musically inclined people will feel quite unhappy with the

results of tuning an organ for the first time by the procedure outlined

above, and will find it hard to believe that they have done it correctly.

Most of us are not used to paying such close attention to intervals

sounded on keyboard instruments; moreover, the systematically

arranged beats that arise on an instrument producing sustained tones

with harmonic partials make the discrepancies particularly obvious.

The tuning situation, furthermore, is far removed from music-making,

in which so many tones are present and so much is constantly

changing that our attention seldom dwells long enough on a

particular two-note interval to question whether it is precisely in tune.

Interestingly enough, a clever combination of three or more equally

tempered tones often produces a much more “in-tune” overall effect

than one would expect from an examination of these tones played two

at a time. The proliferation of sevenths, ninths, and more and more

complex chords from the time of Beethoven through the Romantic

and Impressionistic eras and into the present can be attributed at

least in part to the ubiquitous use of the equally tempered modern

piano. Composers for present-day keyboard instructions exploit the

possibilities of equal-tempered tuning, just as earlier composers



exploited the differing inequalities of the tunings of the their time. We

will take a step in the direction of explaining these remarks in the

next section as we look at one of the keyboard tunings whose utility is

restricted to only a few tonalities.

Table 16.1 Tuning Errors for Two Different Temperaments

(Expressed in Cents)

Werckmeister I I I
Equal

Temperament

Interval Tonic Note: Error for Any

Particular

Interval Is

Identical in All

Keys

C G F D Bb A Eb

Major

2nd

—

10

—

10

+7 —

5

zero zero zero —12

Major

3rd

+6 +11 +6 +9 +11 +14 +17 +14

Major

4th

zero +5 zero +5 zero +5 zero +2

Major

5th

—5 —6 zero —

5

zero zero zero —2

Major

6th

+6 +10 +11 +7 +7 +14 +22 +16

Major

7th

+6 +3 +6 +9 +6 +14 +11 +12

Tonic Note:

A E D B G F# C



Minor

3rd

—6 —

11

—9 —

17

—7 —

14

—

22

—16

Minor

6th

—6 —6 —

11

—

11

—

17

—9 —

22

—14

16.3. A Useful Unequal Temperament: Andreas

Werckmeister III

We have seen that tuning a keyboard instrument in equal

temperament gives one the ability to play equally well in all scales.

This versatility is paid for by the presence of tuning errors that are

relatively large (compared to beat-free tuning), although the

important interval of the fifth is quite well approximated, so that one

of the acoustical underpinnings of the scale is solidly present. A

different approach to the “engineering design” of a keyboard

temperament is to work for the best approximation possible over a

restricted set of scales, with a group of several somewhat more out-of-

tune fifths buying more accuracy in the overall tuning in these keys.

In this section we will look at a temperament devised by Andreas

Werckmeister in 1691. This particular temperament (known as

Werckmeister III) is sometimes used today for tuning pipe organs of

the baroque type, and is also often applied to harpsichords and other

old instruments. The actual tuning procedure outlined here was

described to me by Herman Greunke, an associate of the tracker-

organ builder John Brombaugh.

One begins the Werckmeister III tuning by setting the C4 reference

note (for example at 261.63 Hz) and tuning E4 a perfect (zero-beat)

major third above it. This E will serve as a temporary checkpoint in

setting the next part of the scale. Following this a series of four

contracted 5ths are tuned (C to G, G to D, D to A, A to E), very much

as in setting up an equally tempered scale, except that here one must

shrink the tuning of each of the four intervals enough for the resulting

E to be identical with the checkpoint E we have already set. Each

member of this set of carefully mistuned 5ths has a frequency ratio of

1.4952 (5.5 cents short), so that the G4 needs to have a fundamental

frequency of 1.4952 X 261.63 = 391. 20 Hz, and the first beating

repetition rate to listen for will be at (3 X 261.63) - (2 X 391.20) =



2.49 Hz. This is considerably faster than the 0.89-Hz beat we met first

in setting up an equally tempered scale. In the Werckmeister III

tuning procedure, the second beating rate, between G and D, turns

out to be 3.72 Hz.

Now that the initial set of tempered (modified) 5ths has been tuned

and checked against the initial setting for E4, we must retune E by

raising it enough to make it a perfect, beat-free 5th above the A that

has already been determined. We can then use this newly set E as the

reference point for tuning B a beat-free 5th above it.

The basic scale is completed by tuning a downward sequence of

perfect 5ths, beginning from C thus: C, F, Bb, Eb, Ab, Db, Gb (making

the usual octave skips to stay in the middle of the keyboard). It is not

useful to try checking up on this scale by continuing on down a 5th

from Gb to Cb, because this last note on the instrument has already

been tuned as a B by another route. The Cb obtained by going down

from C by perfect 5ths is not supposed to agree with the B lying a

perfect 5th above our modified E!

The main part of table 16.1 shows the discrepancies in cents

between the Werckmeister III temperament and just tuning for the

keys in which it is intended to be useful. In the key of C major we find

that the major 2nd is 10 cents flat (as compared with 12 cents in

equal temperament). That is, both tunings split approximately in half

the 22-cent difference between the 10/9 and 9/8 ratios that we found

for our second note in the major and minor just scales (see sec. 15.3),

making a more useful overall approximation than would result from

either “exact” tuning used by itself. In C major we notice that the

Werckmeister major 3rd is only 6 cents sharp, rather than 14 cents

sharp as it is in equal-temperament 3rds in all keys. The 4th turns out

to be exact (beat-free) in the key of C, while the crucial 5th is 5 cents

flat. Looking over the rest of the table, we notice that the various

other keys display errors of a very similar nature: the notes are

typically a half dozen cents sharp or flat, the errors being differently

distributed in the different keys. We can use the Werckmeister III

temperament as a typical representative of the tribe of workable

unequal temperaments, and any conclusions we draw about its

musical implications will apply with only minor modifications to many

other temperaments. In section 16.8 you will find directions for

setting up two more temperaments with which to experiment.



16.4. Some Musical Implications: Key Mood and

Modulation

In the baroque era musicians were vividly conscious of the changes of

flavor or mood produced when a piece of music is transposed from

one key to another. There are many ways in which the acoustics of our

ears and of our musical instruments can give rise to these changes. At

the present moment, however, we will confine our attention to the

changes of key color or flavor produced on the organ family of

instruments where (to first approximation at least) the tone colors and

loudnesses of the individual notes of a scale are essentially identical.

These mood changes are also important for the stringed keyboard

instruments.

Table 16.1 has shown us that for an unequal temperament the

errors of tuning relative to the just scale differ from one key to

another. Whether or not we take the just scale literally as the model of

perfection, the table shows clearly that the beats (and other

evidences of musical relationship) that are heard when any set of

intervals is sounded will change from key to key. This fact is sufficient

to establish that music played in different keys will give different

overall impressions.

Beyond the changes in the musical relationships between tones in

the music caused by these differing frequency relationships, we

discover a different kind of change that can occur in organs of the

older sort, known as tracker organs, in which the flow of air to the

various pipes is controlled by slide valves operated directly by

mechanical linkages to the keyboard. On such organs, the valves may

be opened more or less promptly depending on whether they are

worked by stronger or weaker fingers as the player presses the long

white keys or the short black ones of the keyboard. The patterns of

finger motion and of long and short levers on the keyboard are altered

when one plays in different keys, so that there are fairly well

established changes in the patterns governing the way the individual

pipes break into song. That is, small but characteristic irregularities in

the starting-up and shutting-off times of the notes join the small and

characteristic pitch irregularities resulting from the tuning procedures

in defining the musical personality of a given key signature. When

one plays upon an organ tuned in equal temperament that is provided

with electrical or pneumatic air valves, there is essentially no

characteristic musical flavor associated with the various key



signatures, at least as they arise from simple pitch and timing

changes.

When in the course of a piece of music the composer shifts

(modulates) into another key, the listener is subjected to an auditory

process that so to speak releases him from the musical expectations

associated with the original key, while a new set of expectations is

sketched out belonging to the new key. The process of modulation

itself (however it is carried out) has a musical interest in its own right,

and for a time the listener retains his memory of what went before,

even as he becomes accustomed to what is new. Just as a pan of

lukewarm water may feel hot to a hand that has earlier been dipped

in ice water, or cold to a hand that has been immersed in hot water,

so also the musical flavor of a given new key signature will depend to

some extent on the key which the music has just left.

When one is using equal temperament, the aesthetic impact

resulting from modulation from one key to another is not nearly as

strong as it can be in the unequal temperaments, and the effect is

temporary, lasting only as long as the listener can retain some kind of

aural recollection of what came before. Music played on an unequally

tempered organ shows in addition the longer-term change of flavor

arising from the acoustical relationships between notes that are

systematically altered by the key change. It is ironic that in equal

temperament the increased freedom to modulate from one key to

another one far distant from it is purchased at the expense of a lost

distinction between these keys.

It should be clearly understood that the problems of producing good

music on sustained-tone instruments having notes of fixed pitch are

by no means insuperable, although they do pose a challenge to the

skill and imagination of the composer. The following anecdote will

perhaps help you to understand the situation. I recently had occasion

to hear a concert which I tape recorded for acoustical reasons with the

permission of the performer. The program included the following three

compositions for pipe organ: Toccata per l’Elevatione from the Messa

delli Apostoli (1635) by Girolamo Frescobaldi; Prelude and Fugue in A

major (BWV 536) by J. S. Bach; and Etude 1 (1967) by Gyorgy Ligeti.

The first of these pieces contained a number of sustained major

thirds, which work perfectly well on an organ tuned to one of the

unequal temperaments common in the seventeenth century, but

which fight unmercifully on today’s equally tempered instruments.

During the playing of it the audience stirred uneasily, and, when I



have played the tape, numerous musicians (including pianists and

harpsichordists) have asked me what terrible thing went wrong with

the organ. Most are incredulous when the explanation is given, even

when they listen to the piece by Bach played the same evening on

the identical organ, sounding in the Bach like the admirable

instrument it is. Bach arranged for his thirds to come and go, well

disguised by their musical context. Even close listening does not

bring out the roughnesses that we know are present in the bare

interval. The third composition, a modern one, directly exploits the

roughness of equally tempered thirds. One long-held chord follows

another without let-up in a slow and hypnotic progression of changing

registrations, pitches, and beating intervals.

16.5. Vibration Physics of Real Strings

So far in this chapter we have been dealing with the organ, which

produces sustained tones made up of partials having a whole-number

relationship. It is time to turn to keyboard instruments that make their

sounds by plucking and striking stretched strings, so we can look into

the way the complexities introduced by such things as string stiffness

and the decay of the tone affect music. Back in chapter 7 we learned

that a vibrating guitar or piano string has characteristic vibration

frequencies that are almost in a whole-number relationship. Studying

the causes of this inharmonicity can lead us to a better understanding

of the musical properties of such strings.

Consider a perfectly flexible round string of length L and radius r,

which is stretched between rigid supports under a tension T. The

density of the string material is d. The formula for the nth natural

frequency fn of such a string is:

For such a string we see that fn = nf1; i.e., the natural frequencies

form an exact harmonic series. We also notice that the frequencies are

all inversely proportional to the vibrating length L, so that a 5-percent

increase in length gives rise to a 5-percent decrease in each natural

frequency, and a doubling of the length lowers the resulting tone by

an octave—provided we keep the tension unchanged. An exactly

similar set of remarks applies to the result of changing the radius r of



the string. We notice, on the other hand, that the frequencies are

proportional to the square root of the tension; as a consequence of

this it would be necessary to quadruple T in order to raise the pitch of

the plucked string by one octave, and to produce a 5-percent change

in frequency one would have to alter the tension by very nearly 10

percent.

Any real string used in a musical instrument has some stiffness, so

that if it were not under tension it would act like a very long, thin bar

hinged at its two ends (see chap. 9, sec. 3 and fig. 9.6). Once we know

the behavior produced by the elastic forces arising from the tension

and from the barlike stiffness of the string, it is not difficult to work

out the behavior of a real string where the vibration is governed by

the joint action of these elastic forces. Consider a bar of length L and

radius r, fastened by hinges at its two ends to a solid anchorage; the

stiffness properties of the material of this bar are expressed in terms

of its “modulus of elasticity” Y, and d once more stands for the bar’s

density. The nth characteristic frequency of the bar is given by the

following formula:

Here we notice that fn = n2f1, so that a bar whose first mode

frequency f1 is 100 Hz will produce components at 22 X 100 = 400 Hz,

32 X 100 = 900 Hz, etc., instead of the 100-, 200-, 300-, ... Hz

sequence of the flexible string. That is, the natural frequencies for a

bar are much more widely spaced than they are for a string. We also

notice that the frequency varies inversely as the square of the bar’s

length, so that doubling the length moves the sound down two

octaves in pitch (a relationship we have already noted in connection

with glockenspiel bars; see sec. 9.2). Observe that the bar’s radius

appears upstairs in the formula here, instead of in the denominator,

so that an increase in the thickness of the bar raises its frequency

instead of lowering it as is the case for a flexible string under tension.

It happens that the characteristic vibrational shapes for string and

hinged bar are exactly alike (sinusoidal), even though the frequency

relationships are wildly different. In the nineteenth century, the

French physicist Felix Savart pointed out that because of the identity



of vibrational shape there is a very simple way to find the frequency

of vibration of a rod moving under the influence of both kinds of

elastic forces. The nth mode of vibration (having n sinusoidal humps

in its characteristic shape) has a frequency which is equal to the

square root of the sum of the squares of the frequencies belonging to

the two simpler cases. That is:

We met a very similar mathematical relationship in section 9.2 in the

Digression on Rectangular Plate Frequency.

For musical strings where the stiffness contribution to the frequency

is very small compared with that produced by the tension, we can

make use of a simplified version of the formula given above:

Here we recognize that f1 X (1 + J) is the first mode frequency, where J

is a numerically small coefficient that contains the influence of the

stiffness. Notice that the term (Jn2) gradually raises the successive

frequencies above the nf1 harmonic series values expected for a

musically simple sound source. The value of J turns out to be:

which shows that (for a given playing frequency) the inharmonicity is

reduced if one uses the longest, tautest, and slenderest string that

meets all the other requirements which may be laid down upon a

musical string. For a typical grand piano, such as the one described

under “Piano Manufacturing” in the Encyclopedia Britannica, the

tension is roughly constant for all the strings across the main span of

the keyboard (about the weight of a man), and the strings used for



playing C4 are proportioned to make J close to 0.00016. On such a

piano, as one goes along the scale from note to note, the value of J

grows quite smoothly, increasing by a factor of about 2.76 for every

octave one goes up and decreasing by the same factor for every

octave down (until one reaches the copper-wound bass strings that

are designed by a different set of rules).

It is worthwhile here to compare the harmonically related frequency

components produced by a pipe organ tuned to C4 with the nearly

harmonic frequency components produced by a piano string whose

first mode has the same frequency:

This list of frequencies should make us suspect that many of the

musical relationships heretofore signaled to our ears by beats

between sets of harmonically related components will take on quite a

different aspect when we listen to piano strings. Before we look into

these musical consequences, we should collect a little more

information about the nature of real strings in a musical instrument.

So far we have looked at what physics has to tell us about strings

attached under tension to immovable mountings by means of hinged

joints. On a piano, a harpsichord, or a guitar, we notice that the ends

of the string act more like clamped bars than they do hinged ones, so

that the vibrational shapes include an almost undeflected section at

the string ends. Figure 16.2 contrasts the mode-4 vibrational shapes

for a wire having hinged ends with those for a wire having clamped

ends. The figure also suggests to us that in a fairly correct

metaphorical sense we can think of the clamped-end bar as acting

like a hinged-end bar having a somewhat reduced length Lc.

Mathematical enquiry into the nature of the vibrations of a taut

musical string with clamped ends shows that we do in fact come back

to exactly the formula given above, with the L replaced by the

shortened length Lc = L X (1 —  ). Because of this similarity

between the frequency ratios associated with the two kinds of string

anchorage, we can safely make use of the results obtained earlier



without worrying too much about the degree of clamping produced at

the string ends of a real instrument.1

The fact that strings are coupled to a soundboard at one end means

that the anchorage at that end is not absolutely rigid. We know

enough about the vibrations of plates and membranes (see sec. 10.7)

to realize that if some particular natural frequency of the string

happens to coincide with one of the characteristic vibration

frequencies of the soundboard, the bridge is likely to be driven into an

oscillation having appreciable amplitude. This resulting motion of the

soundboard and bridge (at the driving point) will of course be quite

small if the string’s excitation is applied near a node, and quite large

if it acts near an antinode for the board’s vibration. It is very easy for

us to work out the influence of soundboard motion on the natural

vibration frequencies of the string itself if we remember that any

given vibrational mode of the soundboard can be represented at the

driving point in terms of a simple string-and-mass system chosen to

have the proper natural frequency, damping, and “wave

impedance”—a concept whose meaning we will explore in chapter 17.

For the present it will suffice for us to imagine that the string is

anchored at one end to a massive block that is free to slide vertically

on a smooth rod under the influence of a pair of springs and the

oscillatory up-and-down forces exerted on it by the vibrating string.

The upper part of figure 16.3 shows such a system provided with a

string of length L vibrating in its second mode. This diagram shows

the relation between the position of the sliding mass M and the

string’s own displacement for the case where the driving frequency FS

of the string mode is less than the natural frequency FM of the block

when it is allowed to oscillate under the influence of the springs

alone. Under these conditions, the mass moves upward in response to

an upward pull from the string, and downward a half cycle later in the

oscillation when the string force on the block has a downward

component (see statement 4 in chap. 10, sec. 1). A glance at the

right-hand end of our diagram shows us that the string takes on a

shape that is similar to that of a simple string anchored rigidly at

points separated by a distance (L + C). That is, we can say

metaphorically that if FS < FM, a spring-mass anchorage makes the

string act as though it is elongated by an amount C, so that this

particular natural frequency of the string is lowered relative to what it

would be if the anchorage were immovable.



Fig. 16.2. Shortened Vibrating Length Produced by Clamping a Wire at

Both Ends



Fig. 16.3. Effect of a Resonant Anchorage on the Vibration Shape of a

String

If by chance the string vibrates with a frequency FS that is larger

than FM, the block will oscillate in the direction opposite to the driving

forces acting on it (see statement 7 in chap. 10, sec. 1). That is, the

block finds itself below its mid-position when the string is pulling

upward, as is shown in the lower part of figure 16.3. We recognize

from this diagram that if FS > FM, the string acts as though it were

shortened to a length (L — C), so that this string mode has its natural

frequency raised.2

We are now in a position to understand the peculiar and changing

relationships between the characteristic frequencies of the guitar

strings described in section 5.4. The guitar string frequencies were

very nearly in a harmonic series, and we see now that the ratios are

widened progressively because of the effects of string stiffness. The

irregularities in the observed frequency sequence can similarly be



understood to arise from the influence of guitar body resonances that

happen to be near one or another of the string mode frequencies.

Retuning the string to a new pitch produces little change in the

stiffness effects but does rearrange the interaction of the body

resonances with those of the string. The characteristic frequencies of

piano and harpsichord strings exhibit similar irregularities that arise

from the effects of soundboard resonances. The larger the

soundboard, however, the more its resonances tend to overlap, and

this overlapping smoothes out and dilutes the irregularities to such an

extent that only traces of them are detectable in grand pianos (see

the first digression in sec. 9.4, and the closely related digression in

sec. 11.4).

16.6. Temperaments for Stringed Keyboard

Instruments

The fact that piano and harpsichord strings have inharmonic partials

means that we should not directly transfer to these instruments the

tuning procedures described for pipe organs. Let us, by means of

labeled subsections, make a quick survey of what kinds of things

must be dealt with.

A. Pitch of a Single String Sound. Since the partials making up the

sound of a plucked or struck string are inharmonic, we should not

expect the pitch of the sound to correspond very well to that

belonging to a harmonically related set of components having the

same fundamental frequency. I have made a simplified calculation of

the pitch relation between the harmonically related components of a

normal musical tone and a sound whose first six partials have the

slightly inharmonic component frequencies listed in section 16.5 for a

C4 piano string (f1 =261.63 Hz). Assuming all six partials to be

equally important in determining the pitch, one finds that the normal

tone must have its pitch raised about 4 cents (so that its f1 is raised to

262.24 Hz) if the two are to agree when presented alternately. In the

next paragraph and in section 16.7 I will present some little

experiments to illustrate the qualitative correctness of this

calculation.

Jont Allen of the Bell Telephone Laboratories was kind enough to

make for me some computer-generated tape recordings of certain

“guitar twangs”; one of these has a typical inharmonicity pattern of

the sort we have been discussing, and a second tape carries a pattern



in which the sign of J is reversed so that the upper components run

flat relative to the harmonic series, rather than sharp. In both cases,

the upper partials are arranged to die away more quickly in time than

the lower ones, so that the initial parts of the impulsive sounds

contain many inharmonic partials, while later on in the decay our ears

are audibly supplied with only the first one or two components (which

are very nearly harmonic in their relationship). Listening to the tape

of the decay of the “normal” (stretched inharmonicity) twang, one

hears a distinct and rather quick falling-off of pitch (equivalent to

several cents), while there is an equally distinct and rapid rise in pitch

as the sound with compressed inharmonicity dies away. Furthermore,

the initial pitch impression for the stretched-inharmonicity string is

distinctly higher than that of the other version. Sounding the two tape

segments together gives a very peculiar impression: there is a sort of

out-of-tuneness apparent at first which is a little ambiguous because

the lowest components of the two sounds are identical in frequency,

while the second and higher partials diverge symmetrically from one

another, above and below their harmonically expected positions. As

the sounds decay, however, the pitches appear to merge in the

normal fashion.

Piano and harpsichord strings normally do not display to our ears

the peculiar time variation behavior described in the preceding

paragraph. As a matter of fact, most people would say that the tones

of plucked or struck strings, if they change at all, seem to rise slowly

in pitch as the tone dies away (see sec. 17.2 in the next chapter). The

listening conditions for a real tone, however, are quite different from

those for the computed twang as it exists on tape. After a musical

string is excited in a complicated way, it sets up what we might call a

two-dimensional, reverberant sound field in the soundboard. The

soundboard in its turn communicates via the elaborate motion of

dozens of its vibrational modes with thousands of room modes. As a

result of all this complexity, the strengths of the various partials

fluctuate wildly as they arrive at our ears during the earlier as well as

the later parts of the sound, giving quite a different sort of signal to

our neurological processors from that produced by the laboratory

tape. For our initial investigations we will set aside these

complications and proceed as though the pitch of a piano or

harpsichord string remained fairly independent of time as the tone

decays. However, we are not always justified in assuming that the

musically relevant pitch is to be associated with the fundamental

component of the sound in the simple way that holds for harmonically



related musical sounds. That is, an oboist playing exactly at A-440

with his set of precisely harmonic partials should not expect to feel

that he is perfectly in tune with a piano string tuned to give a 440-Hz

first-mode frequency component (more on this in sec. 16.7).

B. The Piano Tuner’s Octave. Up until now we have defined the

octave experimentally in terms of a beat-free condition between all

the partials of the upper musical tone and the even-numbered

partials of the lower tone. We were also secure in the knowledge that

any heterodyne components that might come into existence would

fall into the same beat-free relationship with everything else. It is

manifestly impossible to get similarly thoroughgoing beat-free

relationships between the components of two piano or harpsichord

tones that are to be an octave apart. On the other hand we know from

practical experience that pianos and harpsichords are eminently

useful as musical instruments, and that in tuning them it has always

been possible to achieve string settings that serve perfectly well as

octaves in a musical context. Let us see what actually happens when

one tunes a single string belonging to C5 so that it matches a single

string belonging to C4 on a grand piano of good quality. If a

competent tuner sounds the two notes alternately or together and

tunes the upper one until it “sounds right,” we find that while the

beats are not all removed, there is a distinct and well-defined

reduction in the aggregate amount of“tonal garbage” to be perceived

when the fundamental component of C5 on a good piano is set about

3 cents higher than twice the fundamental component of C4. Such a

tuning leads to the following frequencies and beating repetition rates

for the lower few partials:

This is the “piano tuner’s octave” for the piano under discussion. If

the careful tuner is dealing with a piano having a different

inharmonicity factor J, or if a soundboard resonance moves one of the

string partials a little, he will choose a different setting in his efforts to

clean up the interval. It is to be emphasized that the tuner always

seeks the same goal—that of the least obtrusive beating and

roughness in his octave—whether he is working on a pipe organ, on a



concert grand, or on some ratty little miniature piano whose strings

are stiff and short and whose soundboard is too small. In the first case

he can achieve perfection, in the second he can work toward the best,

but in the last one all he can hope to attain is a condition of least

badness. It is important for us to keep in mind everywhere in this

section and in those that follow that we are considering the relations

between single strings without taking account of the effects arising

from double and triple stringings used for most of the individual notes

of a normal instrument. The effects of multiple stringing will be dealt

with in chapter 17.

The piano tuner’s octave is a true musical interval in the sense that

it is properly defined by a well-marked perceptual relationship

between two tones, a relationship whose existence is advertised by

sharply increased roughness of sound when small errors are made in

the setting. In the middle ranges of a good instrument the cues are

almost as clear-cut as those associated with musical tones

constructed of harmonic partials. They are less clear-cut at the ends of

the keyboard scale where the string inharmonicity is considerably

larger. I should remark that octave settings between two “negative-J”

tones adapted by re-recording from those provided by Jont Allen are

as well-defined as those based on the more normal inharmonicity. In

this case, however, the ratio between the two first components f1 is

less than 2.

1049.23 1313.23 1578.68 Hz

1048. 81 ----- 1571.11 Hz

—0.42 —7.57 Hz

C. “Perfect” Fifths and Thirds on the Piano. In the earlier parts of this

chapter we saw that the design of a practical keyboard temperament

revolves around modifications of the fifths and the thirds. We need to

understand how these modifications are adjusted for use on stringed

keyboard instruments. In the middle part of a grand piano scale, the

condition of least roughness is obtained for a musical fifth when mode

1 of the upper note of the pair is tuned about 1 cent higher than 3/2

times the mode-1 frequency of the lower note. A typical setting of this

sort gives a beat frequency of only 0.2 Hz (high) between mode 3 of



the C4 string and mode 2 of the G4 string, while mode 6 of the C4 is

lower than G4’s mode 4 by 0.9 Hz; we see from this that, in the mid-

range of the piano, a “perfect” fifth (i.e., one having least roughness)

often turns out to be a slightly smoother interval than the piano

tuner’s octave! We should not forget, however, that the perturbing

effect of a soundboard resonance on one of the string modes could

destroy the possibility of a good fifth.

For the particular instrument we are considering, the “perfect” third

is found (in the middle of the keyboard) to produce its minimum

beating condition when mode 1 of the upper note is set about 3.5

cents higher than the 5/4 ratio that relates this mode to mode 1 of the

lower member of the pair. Once again the structure of the instrument

and the position in its scale will lead to individual variations in the

frequency ratios that make for the best tuning of various thirds.

D. Setting Temperaments on a Piano or a Harpsichord. It is

necessary in setting any of the temperaments used for keyboard

music to work around a series of tempered fifths whose intervals are

shrunken more or less to meet the requirements of the chosen tuning

system (Werckmeister, equal temperament, etc.). For example, in

section 16.2 we learned that to obtain equal temperament on a pipe

organ one starts by setting the C4-to-G4 interval narrow enough to

produce beats having a repetition rate of 0.89 Hz, followed by a G4-to-

D5 interval that beats at 1.34 Hz, etc. On a piano or harpsichord, use

of these same beating repetition rates gives a circle of fifths that

closes reasonably well in going from the final F back to C, although

the actual frequency ratios are distributed through the scale a trifle

differently. The particular distribution comes about from the

inharmonicities of the octaves and the fifths, which influence the

tuning in ways that differ for the two kinds of intervals. We see here

why it is essential that every tuning procedure have its own built-in

checks for consistency. Every respectable piano and harpsichord has

its own smooth trend of inharmonicities produced by string stiffness

and its own set of larger or smaller irregularities of mode frequency

arising from soundboard resonances. As a result, every note must be

tuned to its own predecessor and reconciled with the requirements

laid on it for agreement with other notes in the scale.3

Every piano tuner meets instruments which he cannot tune

satisfactorily. Errors in the design, or the effects of rust on a string, for

instance, might throw things off in such a way that the tuner would



find that a satisfactory C4-to-G4 tuning tuning followed by satisfactory

octave tunings C4-to-C5 and G4-to-G5 would lead to a totally

unacceptable relationship between the resulting C5 and G5- Problems

of this kind are particularly likely to occur in the smallest pianos,

where the strings are short (and stiff) and the small soundboard has

distinct and well-separated resonances with which the string can

interact without benefit of statistical averages. On better instruments,

the tuner can usually work out (not always consciously) an acceptable

compromise, and on a really fine instrument the tuning goes quickly

and easily to a successful conclusion.

If one listens closely to a good piano or harpsichord after it has been

carefully tuned, its scale sounds quite even. Careful measurements of

the mode-1 frequencies of its strings (the rest of the sound being

filtered out to prevent errors in the electronic measurement) show,

however, a small but significant irregularity in the frequency ratios.

We find that, over a period of years, the irregularities tend to recur as

the instrument is tuned and retuned, showing that they are in fact the

result of dealing with the quirks of the individual notes.

16.7. Further Musical Implications and

Summary

The presence of a slight inharmonicity in the frequency relationships

between components of harpsichord or piano tones has, as we have

seen, two major consequences for music. First, the sharply marked,

beat-free indications of the special musical relationships become more

diffuse, turning into minimum-roughness relationships instead.

Secondly, these special relationships no longer correspond to simple

numerical values between the frequencies of the fundamental (first

mode) components of the two tones. We find however that the same

basic procedures that work for setting temperaments on a pipe organ

adapt themselves perfectly well to the tuning of other keyboard

instruments. The tuner himself does not have to change his mental

processes when he shifts from instruments whose tones contain

harmonically related components to those having slightly inharmonic

partials, as long as the inharmonicity is predominantly of a smoothly

progressive type.

The modified form of equal temperament that is used on pianos and

harpsichords generally proves more successful in practical music than

does the strict version found on the pipe organ. One realizes



immediately that the decay of sounds from struck or plucked strings

will in itself reduce the audibility of whatever roughness and beats are

present as compared with what one hears coming from a sustained-

tone instrument. At a subtler level, we recognize that the less well-

marked nature of musical relationships between inharmonic tones will

also reduce the noticeability of any discrepancy. The way in which this

works and also the way in which the general nature of the

inharmonicity can influence the success of a temperament will be

illustrated in the next paragraph.

A piano tuned to equal temperament by properly shrunken “tuners’

fifths” displays major thirds that have a shimmering brightness rather

than the almost pounding sound arising from the orderly and

harmonically related beats which exist between components in a pipe

organ sound. There is no corresponding pattern to the intercomponent

beats between the piano tones, so that our attention has relatively

little to focus upon. Furthermore, we find that the main reference cue

for the musical interval—the beat between the fifth partial of the

lower note and the fourth partial of the upper one—is distinctly slower

on the piano than on the organ. For example, sounding C4 with E4

usually shows a discrepancy of about 8.2 Hz on a piano, instead of the

10.4 Hz value we found in section 16.2 for the beat repetition rate for

an equally tempered third using tones with strictly harmonic partials.

As a general principle, then, we realize that built-in temperament

errors designed to be on the wide side of “perfection” will have their

out-of tuneness mitigated by the presence of string inharmonicity,

while the narrow intervals will be made slightly worse. It is instructive

to look over the Werckmeister III tunings of table 16.1 in the light of

this remark.

Let us close this section with brief glances at some of the things

that happen when a stringed keyboard instrument plays next to a

woodwind whose sound spectrum is made up of precisely harmonic

components. Suppose for example that a flutist plays a mezzo-forte

G4, maintaining it accurately in tune with the G4 produced by a single

harpsichord string (whose inharmonicity is very similar to that of the

strings we have been discussing all along). The flute is sounded

steadily, and the corresponding harpsichord key is struck repetitively

at the rate of about 2 per second, so that the tone is restored quickly

after each dying away. Repeated trials show that players and listeners

are only satisfied with the tuning when component 1 of the

harpsichord is closely matched (well within 1/2 Hz) to component 1



from the flute. Our ears do not seem to give much importance to the

various other beats between the partials; even the 1-Hz beat that is

verified to exist between the two second components seems not to

bother our ears! I should remark further that if the unison here is

mistuned, we become aware of distinctly audible beats whose rate

correlates with the error between the bottom components of the two

tones. If, however, the harpsichordist sounds one more note after the

flutist has shut off his well-tuned tone, this last note sounds a trifle

sharp to our ears (a few cents) compared with the flute, which tells us

that the unaccompanied plucked sound has its pitch assigned

differently via the pattern of harmonic components it most closely

matches (see sec. 14.4, part A, and 16.6, part A), rather than on the

basis of only its lowest component.

The next experiment we are led to consider is a measurement of the

G4 which a flute player produces when he is asked to play a perfect

5th above C4 on the harpsichord. Following a procedure exactly like

the one described earlier, we find to our surprise that a well-defined

auditory zero-beat condition is obtained when the flute’s first partial

has a frequency exactly 3/2 that of the harpsichord’s first partial! This

is despite the fact that our measuring equipment clearly displays a

discrepancy close to 1 Hz between partial 2 of the flute tone and

partial 3 of the harpsichord sound. It is not easy to understand the

origin of the perceived beats that serve as our guide in tuning a

perfect 5th between a flute and harpsichord. No doubt it has to do

with our neurological recognition of quasi patterns among the

physiological and neurological heterodyne components, patterns that

become more orderly as one approaches the zero-beat condition.

Notice that our observations of the flute-harpsichord unison can also

be looked at from the same point of view. Presumably we are faced

with the creation of some version of the “implied tones” discussed in

part D of section 14.4 and in the Digression on Sum and Difference

Tones that appears there. We are left, however, with the unanswered

question why and how the ear manages not to construct equally

convincing regularities and patterns out of the relationship of string

mode 2 (etc.) to the various harmonic components of the flute tone.

Let us close this section by summarizing in more explicitly musical

terms our observations about the relation of harpsichord or piano

tones to each other and to tones having harmonic partials, setting the

observations out in numbered sequence for easy reference:



1. The presence of string stiffness causes the tones from piano or

harpsichord strings to be made up of slightly inharmonic partials. The

predominant effect is a gradual raising of the upper component

frequencies relative to the harmonic series. There is also a small but

sometimes significant effect due to the possible interaction of some

resonance of the soundboard with one or another vibration mode of

the string.

2. Special musical relationships such as the octave or the fifth are

found between sounds from pairs of impulsively excited strings. These

relationships are (as usual) signalized by the presence of beats when

there is a tuning error. The beats do not however disappear

completely when the “exact” relationship is attained, as they do in

the case of sounds made up of harmonic partials.

3. Pianos, harpsichords, and the like are tuned in any desired

temperament upon the basis of the minimum beating relationships

described in statement 2 above. However, the actual frequencies of

the sound components for the notes of a given instrument will not

necessarily coincide with those that are correct for an instrument of

different basic design. In particular, the tuning will be quite different

from that (determined by the same criteria) of an organ, whose tones

are made up of harmonic components.

4. The overall scale (in any temperament) is stretched on the

stringed keyboard instruments as a result of tuning notes whose

partials are progressively sharper than a harmonic series. One finds

similarly that an instrument giving sounds whose partials run closer

together than the harmonic series can also be tuned in various

temperaments. These are found to be compressed relative to the

tunings of harmonically related tones. The overall stretching or

compressing of a scale is the direct result of inharmonicity. There is no

fixed preference for one or the other on the part of the listener; he will

always prefer to hear tunings based ultimately on minimum-

roughness relationships between two tones at hand.4

5. Partly because of the rapid decay of impulsive string sounds and

partly because of the “stretching” nature of the inharmonicity, equal

temperament gives somewhat less discordant results in pianos and

harpsichords than it does in pipe organs, where one is dealing with

sustained tones having harmonic components.



6. When the tones of an impulsively excited string are presented

alternately with tones containing harmonic partials, the string sound

is perceived to be a few cents sharper in pitch if the lowest partial of

one tone has the same frequency as the lowest partial of the other.

7. When the sound of a repeatedly excited string is superposed on

the sound of an instrument having harmonic partials, experiment

shows that our ears apply the minimum-beat criterion in a way that

requires the fundamental components of the two tones to have

simple, whole-number frequency ratios exactly like those that are

found between pairs of ordinary (harmonic) musical tones. This is

despite the fact that a great many “disorderly” components are

present in the ear.

8. Exact frequency relationships for special intervals may vary from

special case to special case in a musical context when impulsive and

mildly inharmonic string sounds are combined with one another or

with more ordinary musical sounds. However, errors in setting these

special relationships always advertise themselves in the same manner

—by the presence of beats and roughness. In other words, the

musician always recognizes the problem in the same way and solves

it in the same way, but his answers understandably come out different

in different circumstances.

16.8. Examples, Experiments, and Questions

1. Here is a procedure for setting up a keyboard to give just

intonation. Set A4 to the desired reference, e.g., 440 Hz, and tune F4 a

minimum-beat major third below and C5♯ a minimum-beat major third

above the reference A4. After doing this, tune the following sequences

of perfect fifths: F, C, G, D; A, E, B, F#; C#, G# , D# , A# . See if you

can decide which key signature is the one in which the just tuning is

exact. You will find that a keyboard set up in this way also works quite

well in a number of other keys.

2. Mean-tone tuning is the usual name for temperaments that

produce perfect major 3rds, along with pretty good 5ths and 4ths

(review table 16.1, and note that the Werckmeister tuning given in

sec. 16.3 is not a strict mean-tone tuning). The following procedure

will give a strict mean-tone temperament. Set C4 as the tuning

reference at about 263 Hz, so that the whole scale will lie at a pitch

that is comfortable for musicians using today’s woodwinds tuned

around A-440. Set E4 a minimum-beat major 3rd above C4, and



continue to follow the Werckmeister procedure through the

generation of the tempered-5ths sequence: C, G, D, A, E. Check that

the E is essentially beat free next to the C. Tune the upper one of the

following pairs to give minimum-beat major 3rds: D-F# , G-B, A-C# ;

tune the lower one of the following pairs to give minimum-beat major

3rds: D-Bb, A-F. For your final 3rds, you have a choice of setting Eb by

measuring down from G or tuning D# up from B, which will give you

one of the remaining notes, and a choice between taking Ab from C or

setting G# from E to supply the other one. The choice made here is

obviously governed by the keys you intend to use for your music-

making.

3. In the descriptions of all of the non-equal-temperament tuning

procedures given in this chapter, it was necessary to specify the note

name for the tuning fork reference pitch. This was done so that the

properties of the various key signatures would have the desired

musical relationships with one .another. One would need both an A

and a C tuning fork to be able to set up all the temperaments

discussed in this chapter. Why would it be possible, on the other

hand, to tune in equal temperament using as a reference a tuning

fork having any note name whatever? Can you devise a Werckmeister

tuning procedure in which the key of E major displays all the

properties normally associated with C major? What would D minor

sound like in such a tuning?

4. The frequency ratios between successive components in a tone

having harmonic partials are closely related to the special intervals

that we have found to exist between musical tones. For example, the

perfect fifth is implied by the 3/2 frequency ratio between partial 3

and partial 2, and the major third is implied by the relation between

partials 4 and 5. Setting aside the fact that musical relationships hold

between tones and have little relevance between sinusoidal single

components, verify that the note names that can be associated with

the harmonic components of C4 are as follows:

What names are similarly associated with partials 7, 8, 9, and 10?

5. Until fairly recently the Hammond electric organ produced the

tones of its scale in the following ingenious way. Associated with each



note named on the keyboard is a rotating wheel that

electromagnetically generates a sinusoid whose frequency is the

conventional frequency in the equally tempered scale. If there were

nothing more to the instrument than a loudspeaker connected to play

these various sinusoids as the keys are pressed, very little of musical

interest could be achieved (see however item 4 in sec. 15.7). To get

musically useful tones, this type of Hammond organ is arranged to

borrow “harmonically” related sinusoids from the upper parts of the

keyboard when any note is played. Thus, pressing the C4 key feeds

the loudspeaker with sinusoids belonging to the notes named G4, C5,

etc., as given in the list at the end of item 4 above. Verify that

because of the nature of equal temperament, partials 2, 4, 8, 16, ...

are exactly harmonic, partials 3, 6, 12 are slightly flat (2 cents)

relative to strict harmonicity, while partials 5 and 10 are inharmonic

by being 14 cents sharp. What is the inharmonicity of the 9th partial?

The tone color of such a collection of partials is somewhat peculiar,

but you can verify that this organ has one remarkable musical feature

—the major thirds are considerably smoother than on any other kind

of organ, and the fifths are very good also. What happens to some of

the other important musical intervals? You might find it worthwhile to

construct a table of clumps of beating components for this instrument

analogous to those set forth in section 14.4, part D, and in table 14.1.

6. A skilled oboist performs with a keyboard instrument tuned to the

accurate version of the equal temperament that is appropriate to its

nature (pipe or Hammond organ, small or large piano, etc.). Why is it

very unlikely that the oboist will himself be playing in equal

temperament?

7. Consider a piano tuner who shows up for work with some sort of

electronic frequency-measuring device as one of his tools. Why might

this be an acceptable aid in setting the basic temperament for a

medium-sized piano or harpsichord but probably inappropriate for a

concert grand instrument? Could he use unstretched equal

temperament for setting the center octave? What about setting the

temperament of a small, cheap piano? Can the tuning of the rest of

the keyboard above and below the temperament octave be safely

carried out with electronic help on any instrument?

8. In part 2 of section 15.7 we noticed that the musical relationships

are not the same in an interval such as the fifth (e.g., C4 to G4) and in

its inversion (G4 to C5). At that time we were concerned only with



sounds with harmonic partials. Follow up on these observations to

figure out the qualitative effect of string inharmonicity when

keyboard temperaments are set by mixtures of upward and downward

intervals (of the sort described in parts 1 and 2 of this section). Some

modern tuners set piano temperaments by the alternate use of fifths

and fourths. They will obtain a tuning that is slightly different from

that produced by those of their colleagues who employ upward fifths

alone, along the lines suggested in section 16.2.

9. Repeat experiments 3 and 4 in section 10.9, and extend them to

the case where the B6 key is held down while the G4 key is struck and

released. Why does one expect very little response in this case?

10. The question often arises as to the proper way to lay out the

frets for a guitar whose “open” string length is L0. You will not find it

hard to verify that the frequency formula in section 16.5 for a flexible

string implies that the frets will give an equally tempered chromatic

scale if each successive string length is shorter than its predecessor

by the factor (1/1.059463). The presence of inharmonicity can be

thought of as effectively altering the string lengths. Try to figure out

then why the frets on a real guitar should always be farther from the

bridge than those calculated by the simple formula, with the

alteration becoming increasingly large for the higher notes on the

string. How would you tilt the bridge to minimize the errors on a

guitar caused by its use of strings of various thicknesses?

Notes

1

A paper giving the most complete account of the basic physics of

stiff strings in theory and in experiment is that of R. S. Shankland

and J. W. Coltman, “The Departure of the Overtones of a Vibrating

Wire from a True Harmonic Series,” J. Acoust. Soc. Am. 10 (1939):

161—66. See also Robert W. Young, “Inharmonicity of Plain Wire

Piano Strings,” J. Acoust. Soc. Am. 24 (1952): 267—73, and Harvey

Fletcher, “Normal Vibration Frequencies of a Stiff Piano String,” J.

Acoust. Soc. Am. 36 (1964): 203—9.

2

Detailed calculations of the effects described above have been made

by many people during the past century. One of the earliest to carry

them out was Lord Rayleigh [John William Strutt], as reported in his



book The Theory of Sound, 2 vols. bound as one, 2d ed. rev. and

enlarged (1894; reprint ed., New York: Dover, 1945), 1:200—204.

3

A basic paper on the systematic effect of string stiffness on the

trends of tuning in pianos of different sizes is that of O. H. Schuck

and R. W. Young, “Observations on the Vibrations of Piano Strings,” J.

Acoust. Soc. Am. 15 (1943): 1—11. It is interesting to contrast the

tuning trends observed by Schuck and Young with those of H. Meinel,

“Musikinstrumentenstimmungen und Tonsys-teme,” Acustica 7

(1957): 185—90, and with those in the paper by Young and by

Fletcher mentioned in note 1 of this chapter. The data presented in

all of these papers also contain clear (though unrecognized)

evidence of the random shifts caused by soundboard resonances,

along with the smooth trends associated with string stiffness.

4

There are many ways in which this remark can be verified. An

experiment that bears on these matters can be found in the paper by

Frank H. Slaymaker, “Chords from Tones Having Stretched Partials,” J.

Acoust. Sot. Am. 47 (1970): 1569—71.



17

Sound Production in

Pianos

In the second half of chapter 16 we examined the interplay

between the physics of vibrating strings and the tuning

behavior of various kinds of keyboard musical intruments. In

the present chapter we will turn our attention to the way in

which the strings of a piano, harpsichord, or clavichord

communicate their carefully tuned vibrations to the

soundboard and thence to our ears. Thus we will be focusing

our attention on the nature of the sounds produced by these

intruments. In broad outline, the chapter will begin by

examining the requirements that must be met by a string

belonging to a note in the middle of the piano keyboard.

This is followed by an account of what is accomplished by

the use of more than one string per note and a description

of the changes and compromises necessary for satisfactory

production of lower and higher tones. Having dealt with

sounds produced on the piano, we will be ready in chapter

18 to adapt our understanding of these basic principles to

the clavichord and the harpsichord.

17.1. The Soundboard As

Seen by the Strings; The

Concept of Wave

Impedance



Anyone looking into a grand piano will notice that each note

in its scale has one or more strings stretched across a

soundboard in the manner shown in figure 17.1. The so-

called vibrating length of the string extends from a rigid

capo d’astro bar (or from a fixed agraffe) which is found at

the keyboard end, to the bridge, which is elastically

supported by a broad, thin soundboard. A hammer is

arranged to excite this length of string by striking it at a

suitably chosen point near the fixed end. Not shown in the

figure is a felt damper that normally rests on the string near

the hammer to keep it from vibrating when it is not in use.
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Fig. 17.1.

In chapters 7 and 8 we learned some of the basic principles

guiding the excitation of string modes by hammers of

various sorts acting at various distances from the fixed end.

Now it is time to look at the way in which these

characteristic vibrations of the string are communicated to

the soundboard and thence to the concert hall. The string

and the soundboard meet by way of the bridge, so we need

to know what sort of a termination the string “sees” as it

looks at the place where it runs over the bridge. The bridge

actually functions acoustically as a part of the soundboard,

which is attached to its lower side. The soundboard is a two-

dimensional wave-carrying medium of the sort we first met

in chapter 9. Carefully profiled ribs run across the grain on

the underside of the soundboard to make its stiffness

approximately the same across the grain as it is lengthwise.

We have already acquired at least a general idea of the way

in which such a uniform two-dimensional object will respond

to an excitation applied at some point on its surface (see

figs. 10.13 and 10.14). In section 16.5 we also learned a



little about how the driven motion of the soundboard can

react back on the string to alter its natural frequencies.

There is more to what the string sees at the bridge end than

just bridge and soundboard. There are some 240 other

strings running over the top surface of the bridge, and these

also form a kind of two-dimensional wave-carrying medium

that is “visible” to our vibrating strings, albeit in a more

limited way because waves are not able to run easily in a

crosswise direction from string to string. (There is only the

bridge to connect them to each other, with no ribs to

equalize what we might in this case call the cross-grain and

along-the-grain properties of the system.) The fact that most

of the strings are damped by pieces of felt need not concern

us at present, any more than does the question whether the

edges of the soundboard function as hinged or as clamped

boundaries.

The playing string, the bridge-plus-soundboard, and the

sheet of silent but downbearing strings can each be thought

of as a wave-carrying medium. Acoustical theory tells us

that any wave-carrying medium can be characterized fully

by two specifications: the velocity with which waves are

propagated along the medium, and the wave impedance.

We will briefly review the first and more familiar of these

before considering the idea of wave impedance.

When any sort of acoustic disturbance is made at one point

in a wave-carrying medium, it takes a little while for the

disturbance to make its appearance at another point a little

distance away. The rate at which the disturbance travels

from its source to the point of observation is what is known

as the speed of sound or wave velocity (for example, we

learned in sec. 11.8 that the speed of sound in air is about

345 meters/sec). The wave velocity always depends on the

springiness or elasticity with which one small part of the



medium acts on its neighbors during a disturbance; the

wave velocity depends also on the inertia of the material

(i.e., the amount of mass belonging to each of these small

parts). These are related to each other by the following

formula:
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Question 2 in the final section of this chapter will help you

understand why this formula for the wave velocity (the

speed of sound) looks so remarkably like the formula found

in section 6.1 for the natural frequency of oscillation of a

spring-and-mass system.

The second concept we need for an understanding of how a

struck string communicates with the soundboard is the idea

of wave impedance. When a disturbance is set up in some

medium and travels to the boundary between it and some

other medium (as when disturbances travel along a slender

wire to a thicker wire or a soundboard), a certain fraction of

the disturbance is transmitted into the new medium and the

remainder is reflected back into the original medium. The

amplitudes of the reflected and the transmitted waves, and

also the amounts of energy carried by them, all depend on

the ratio of the wave impedances of the two media.1 If these

impedances are very different, there is almost complete

reflection, with only a small share of the total energy being

sent on. On the other hand, if the two media have wave

impedances that are approximately equal, then there is very

little reflection and the disturbance is almost completely

transmitted across the junction. It turns out that wave

impedance depends on the same two properties of the

medium as does wave velocity, although they are arranged

differently, thus:

wave impedance
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Digression on Terminology: Wave Impedance vs.

Characteristic Impedance.

In order to keep things clear for the less technically oriented

readers of this book, I have chosen to use the slightly old-

fashioned name wave impedance rather than the more

current term characteristic impedance. Everywhere else in

this book, the perfectly customary adjective characteristic

has been reserved for use as a way to advertise certain

attributes of some mode of vibration belonging to a

particular finite system of springs and masses. Thus, for a

given system, its entire behavior can be understood in

terms of its modes of vibration, each of these having its own

characteristic frequency of vibration, its own characteristic

vibrational shape, and its own characteristic (internally

caused) damping. These characteristic properties are

determined jointly by the nature of the vibrating medium

and by the way in which its boundaries are constrained. It is

only under very special circumstances that one finds a

characteristic vibration taking place in an infinitely

extended system, and then it exists only in a restricted

region of it. The wave impedance, on the other hand, is a

way of specifying (along with the wave velocity) one of the

attributes of the wave-carrying medium itself, without

reference to its boundaries. As a matter of fact, one of the

easy ways to measure a wave impedance is to experiment

on a very extended piece of material and to conclude the

measurements before any echoes can be returned by its

boundaries (see sec. 17.4 below for an example of this). I

might remark that those of us who use today’s more

conventional terminology in our daily work are in the habit

of identifying the special attributes of bounded systems by

use of the German prefix eigenin place of the English word

characteristic that we employ in this book.



Let us illustrate the ideas of wave velocity and of wave

impedance by considering the case of waves on a flexible

string made of some material whose density is d and whose

radius is r (i.e., cross-sectional area = πr2). The string is

long, and it is kept under a tension T.
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Here the tension T serves to supply the springiness, and the

product πr2d will be recognized as the mass per unit length,

which is a measure of the relevant inertia property of the

string. Notice that we can trade tension for density or radius

while keeping the impedance the same, but it is not

possible at the same time to preserve the speed unchanged.

An analogous but somewhat simplified formula for the wave

impedance of a soundboard at its driving point is:
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Here t is the thickness of the board, dw is the density, and

Yw is the modulus of elasticity for the wood.2 We will assume

that the ribs and bridge have been so designed that they

properly take care of the difference in stiffness in the two

directions relative to the grain, and that the thickness t is

also properly averaged to take these extra pieces into

account. I should remark that the wave impedance of the

board taken by itself is very considerably larger than that of

a string.

We must also consider, besides the playing string and the

soundboard, the aggregate influence of the damped and

inactive strings. Their influence is best thought of in two



parts. The simplest but least important part is the wave

impedance of the collection considered as a peculiar two-

dimensional sheet; this turns out to depend on the strings’

spacing along the bridge, and it has a magnitude only three

or four times the impedance of a single string. The second

and rather larger influence comes from the way the

downward pull of the slanting strings between bridge and

hitch pins alters the elasticity of the otherwise slightly

arched soundboard, subtly modifying the soundboard wave

impedance formula given above.

The string layout between the bridge and the hitch pin is

illustrated in the top part of figure 17.2. This silent portion

of the string (which is provided with a damping strip of felt)

has a length Q and a “downbearing” P that is carefully

proportioned to vary along the scale of any properly made

instrument. Makers of the finest instruments find that the

downbearing must be meticulously adjusted string by string

on each individual piano, as a part of its final regulation.

Errors in the trend of relationship among P, Q, and the string

tension can cause as much trouble to the overall sound of

the piano as can errors in the stiffness and curve of the

bridge, or in the thickness of the soundboard. If the ratio P/Q

is locally too small, the instrument acts somewhat the way it

would with a thin spot in the soundboard. Notice that the

downbearing is not simply a matter of getting adequate

contact between the bridge and the strings; the string

tension acting together with the offset on the bridge where

the string runs zigzag past two steel pins is already quite

sufficient for this contact, as is suggested by the lower part

of figure 17.2.

The wave impedance ratio between the struck string and

the soundboard must be chosen to meet two conflicting

requirements. First of all, there must be sufficient

transmission of vibratory energy from the string to the



soundboard that our ears are ultimately provided with a

sound of satisfactory loudness. If the soundboard were a

plate of steel 4 cm thick instead of a wooden board about 1

cm thick, its wave impedance would be increased several

hundredfold and we would hear almost nothing from the

soundboard, nor would the string produce much sound

directly in the air. If on the other hand the disturbance

excited on the string by the hammer were communicated to

the soundboard at too rapid a rate, these vibrations would

die down so quickly that we would hear little more than a

tuned thud, a louder version of what is produced by hitting

a note while a wadded handkerchief is firmly pressed

against the vibrating part of the string next to the bridge.

We also want the soundboard impedance to be high enough

that its resonances will not play an unacceptably large role

in the tuning of individual string modes, a phenomenon that

we met in section 16.5.
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Fig. 17.2. Piano String Layout between Bridge and Hitch Pin

Digression on the Vibrational Modes of Segments of a Larger

System.

In chapter 6 and in the latter half of chapter 10 the idea was

developed that any finite-sized system of springs and

masses would have its own particular set of characteristic

vibrational modes, these modes being attributes of the

system as a whole. This implies that it makes no sense to

consider apart from the whole a particular mass or even a

subset of masses as a separate vibrational system. In this

chapter I have apparently violated this principle of the

unified behavior of a complete system by discussing the

string modes and the soundboard modes as though these

were in fact separable. Let us see why this very convenient



separation of ideas proves to be acceptably accurate as a

piece of physics. If a certain complete system (e.g., string

and soundboard) consists of two parts or regions with

drastically different wave impedances, the communication

of vibrations from one of these parts to the other is small

enough that the two behave very much as though they were

fully isolated. When this condition is met, then, it is possible

to pick out of the complete set of characteristic modes a

subset in which the overall vibrational shapes ordain that

the predominant share of the vibration takes place in the

high-impedance region, while the remaining modes involve

chiefly the rest of the system, which is constructed of low-

impedance material. Once the approximate vibrational

shapes associated with each region alone are well

understood, it is then easy enough to correct for the mutual

influence of the two regions. It is in precisely this spirit that

we corrected the string mode frequencies for the effect of

soundboard resonances in section 16.5; the soundboard has

a wave impedance so much higher than that of the strings

that we are justified in thinking of them as quasi-separate

entities. Notice, however, that the wave impedances of the

bridge and the soundboard are similar enough that we

would not be justified in dealing with them separately—the

two act together with the ribs as a single wooden vibrating

system (see sec. 9.5 for another example of a two-part

system that cannot be dealt with piecemeal).

17.2. The Proportions of a

Mid-Scale Piano String

and the Necessity for

Multiple Stringing



In section 16.5 we learned that the stiffness of real strings

gives rise to a slight inharmonicity in the ratios between

their characteristic frequencies and that this inharmonicity

was less in long, taut, thin strings than in short, slack, thick

ones. We have seen how a small amount of string-type

inharmonicity serves a useful purpose—it can help disguise

the necessary errors of keyboard temperament or can even

convert some of these errors into musical virtues. Moreover,

numerous experiments have shown that a certain amount of

inharmonicity is necessary if the listener is to be satisfied

that what he hears is an impulsively excited string sound.

Nevertheless the history of keyboard instrument

development from the earliest times reveals an intense

though not always conscious interest in reducing the

inharmonicity. Because of this, we will begin our discussion

of the proportioning of mid-scale strings by postulating that

their tension is to be made as large as is reasonably

possible, short of breaking the string. On the basis of this

choice, the vibrating length L of the string turns out to be a

fixed length that is independent of the string’s thickness.

This is the reason that the length of the C4 string is close to

62.5 cm for all steel-strung pianos. The minimum

inharmonicity associated with a string tightened nearly to

breaking tension depends in a simplified way on its radius r

and length L as follows (compare with the formula for J given

in sec. 16.5):
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This suggests that we should use the thinnest possible

string, since L has already been fixed by the frequency

requirements laid down for the string. However, if we make

the string too thin we are speared on the other horn of our

dilemma. The transmission of vibration from our string to

the soundboard is proportional to the wave impedance ratio,

and so depends on the wire radius and soundboard



thickness (as influenced by the ribs) in accordance with the

expression :
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This relationship holds only if the string tension is always

maintained fairly close to breaking. The equation indicates

that making the wire thin will mean that it will be able to

drive the soundboard to only a small fraction of its own

amplitude, so that only very weak sounds will be radiated

into the room.

Some numerical values for the soundboard and strings of a

real piano should be of interest at this point. A good piano

has a soundboard made of beautifully finished spruce that

has a density dw close to 0.4 grams/cm3. The soundboard is

often tapered and is generally thinner at the bass side, but

in the main its thickness is a little less than 10 mm. The

radius of the C4 string is close to 0.5 mm, and its density d

is close to 7.8 grams/cm’. A single such string on a piano

having a soundboard of this description sustains its tones

very acceptably and shows tuning behavior almost identical

with that described in chapter 16. However, the loudness of

the sound of the single string is inadequate and the tone

lacks a certain liveliness that we have become used to in

pianos having three strings instead of one for most of the

keyboard notes. An obvious way of simultaneously meeting

the least-inharmonicity requirements (which call for thin

strings) and the loudness requirements is to use several

strings, each of which will have acceptable inharmonicity

and each of which can join with the others in driving the

soundboard to a greater vibrational amplitude. The physics

of the multistring piano note turns out to have surprising

aspects that lead to two important features of the tone of a

piano; a description of these matters is the subject of the

next section.



17.3. The Effect of

Multiple Stringing on the

Sound of the Piano

We will introduce ourselves to some of the consequences of

multiple stringing on a piano with the help of experiments

you can easily try. Repeatedly strike the C4 key of a piano

while alternately pressing and releasing a finger (or pencil

eraser) against two of the three strings, so that part of the

time only one string is free to vibrate and the rest of the

time all three strings are sounding. With any reasonably

well-tuned piano, the perceived loudness at your ears

(expressed in sones) should be roughly 40 percent higher

when three strings are active than when only one is

producing a sound (see curve B of fig. 13.5), which is a quite

significant change. The next experiment consists in

verifying in a crude and informal way that the total

audibility time of the decaying tone is roughly the same

whether three strings are active or only one. So far

everything appears to be in accordance with our

expectations. We also notice that the tone is a little thinner

and perhaps less interesting when only one string is allowed

to sound than it is when all three are set into vibration. To be

sure, if the piano is badly out of tune the three strings will

beat against one another to give the jangling sound

conventionally associated with a barroom piano, while on a

freshly tuned instrument there is only a hint of beats among

the lower partials and a pleasantly shimmering suggestion

of beating among the higher ones.

In 1959 Roger Kirk of the Baldwin Piano Company reported

the preferences of a large group of people for the tuning



relationship among the three strings of each so-called

unison of a piano.3 He found that

the most preferred tuning conditions ... are I and 2 cents

maximum deviation among the strings of each note in the

scale. Musically trained subjects prefer less deviation . . .

than do untrained subjects. Close agreement was found

between the subjects’ tuning preferences and the way artist

tuners actually tune piano strings.

He also found that a piano tuned so that the group of strings

for each note of the scale covered a spread of 8 cents was

acceptable to many listeners, and that the overall spread

between the lowest and highest frequency strings was of

more importance than the tuning of the intermediate string.

The beat frequencies between the first five components

(partials) of two C4 strings tuned 2 cents and 8 cents apart

are:
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Notice first of all that with the 2-cent detuning the beating

rate for the first pair of partials is quite slow, as are those for

the second and third pair of partials. As a result the tone

sounds reasonably smooth when played by itself. The 8-cent

spread gives a rather brighter sound, but it is not yet the

sort of jangle one gets with a spread of 15 to 20 cents.

When we use a 2-cent detuning between strings, the 0.91-

Hz beat frequency belonging to its set of 3rd components is

just able to cover up the 0.89-Hz beat that one uses in

setting the equal-temperament fifth to G4 (see sec. 16.6,

part D). Note that partial 2 of the G4 strings will have a

similar beating rate to obscure further the departure from

just tuning. With the 8-cent inter-string spread, on the other

hand, the fifths become pretty diffuse.



Let us turn now to the interval of a major third in equal

temperament. Using a 2-cent detuning, the fifth component

group of C4 has within it a 1.5-Hz maximum beating

frequency, as does the fourth component group of the note

E4 if its strings similarly have a 2-cent detuning spread.

Taking these together we see the possibility of beat

frequencies as high as 1.5 + 1.5 = 3 Hz among the

components upon which the interval is chiefly based. In

section 16.7, we learned that the beating rate for a piano

tuner’s third in equal temperament is about 8 Hz, a little

more than twice the smearing produced by the detuned

unison. If the spread among members of a three-string

“unison” were increased to 8 cents, the beating would

become rapid enough to drown the temperament error

completely. Clearly there is a trade-off of musical virtues

between the two kinds of unison spread as one compares

various musical intervals. In any event we have provided

ourselves with another reason stringed keyboard

instruments are so well-adapted to musical performance,

despite the problems with fixed pitch that at first seemed

insurmountable.

As a practical matter it proves to be exceedingly difficult to

tune a set of unison strings to a true zero-beat condition

(one even meets cases where it is literally impossible to do

so). The question arises then whether or not people’s

preference for a slight detuning of the unisons is simply a

favorable response to the most familiar type of sound, or

whether something more fundamental is involved. Kirk finds

that piano tuners and musicians are unanimous in their

verdict that too-close tuning gives a tone that not only

sounds dead but dies away too rapidly. Laboratory

measurement confirms the auditory impression we gained in

our initial experiments that slightly detuned (normal)

strings die away in about the same total length of time as a



single one of these strings when the other ones are

prevented from vibrating. However, when three strings are

tuned exactly together they will actually die away much

more rapidly. The presence of other precisely in-tune strings

encourages each string to transfer its vibration more rapidly

to the soundboard and thence to the room! Let us first make

use of our knowledge of wave impedance to verify its

consistency with these observations and then go on to an

example of the same kind of physics displayed in an

everyday experience far removed from acoustics.

In section 17. 1 we learned that the wave impedance of a

string is equal to the square root of the product of tension T

and mass per unit length (πr2d). How do we find the

corresponding impedance for a triplet of identical strings

acting together? The top part of figure 17.3 indicates the

appearance of our three strings as they are normally seen in

a piano. The middle part of the diagram shows them moved

so close together that they are on the verge of touching. If

they were identically tuned strings, they would stay

precisely in step with one another, and there would be no

frictional or other force acting between them to change

things in case they did touch. In other words, the three

closely spaced strings will behave exactly like their more

separate cousins. In particular, the aggregate impedances

are the same in both cases. The bottom part of figure 17.3

shows the last step in our imaginary set of transformations:

here the strings are fused together into a ribbonlike whole,

with no change of total mass or tension. An extension of our

former reasoning shows that this new sort of string also

retains the acoustical properties of its ancestor at the top—

as long as we confine ourselves to vibrations of the normal

type (up and down, as shown in the diagram).

Having done a little thinking about three strings acting

precisely together, we are now ready to calculate. Clearly,



the total tension acting on our composite string is three

times the tension acting on each of the original strings, so

we must write 3T under the square root sign where formerly

there was a T. Similarly, any short length of the composite

has precisely three times the mass of a corresponding

length of ordinary wire, so we must also write 3(πr2d) in

place of πr2d in the formula. Putting all this together, we

get:
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This shows us that three strings acting precisely together

produce a threefold increase in the wave impedance, and

thus a threefold increase in the amplitude of the bridge

motion, which ultimately leads to a threefold reduction in

the decay time of the vibration. You might find it worthwhile

to deduce this last assertion on the basis of the principles

outlined in section 6.1.
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Fig. 17.3.

The expected difference in sound between a struck single

string and a perfectly tuned triplet of strings is not hard to

figure out on the basis of what we have just learned. First of

all, the tone of the precisely tuned triple strings will die

away much more quickly, which matches actual experience.

Second, we would expect on the basis of curve A in figure

13.5 that the perceived loudness of the tone (as expressed

in sones) would be very nearly doubled because of the

threefold increase in source (soundboard) amplitude. The

tone would not actually appear this much louder, however,

because a short or decaying sound always sounds less loud

that a steady one. In the three-string case the increased



rapidity of the decay partially offsets the perceived effect of

the larger amplitude.

We seem by now to have left the slightly detuned strings of

a real piano in a sort of unexplained limbo between the

single string and a perfectly tuned triplet. The true behavior

of detuned triplets will be easy to understand once we have

looked at the everyday example I promised a few

paragraphs ago. Suppose you have undertaken to push your

friend’s small car along a fairly level road. If the rolling

friction of the car is large, you may find it barely possible to

keep the vehicle rolling, and yet you will be able to move

the car quite a distance under these conditions without

much strain and without becoming winded. Suppose on the

other hand that you have acquired a helper in the pushing,

so that the two of you together can get the speed up to a

fast walk. Pushing at this faster pace will soon leave you

winded and panting for breath, even if you are not pushing

any harder as an individual than you were during the solo

performance. The point is this: the energy you expend in

pushing with a certain force over a given distance will be

spent in a much shorter time if your friend helps you make

the trip more quickly. The rate at which you work is

increased because of the cooperative presence of your

friend.

The translation of this example to the case of vibrating

strings is easy: one string pulling up and down on the

soundboard and moving it corresponds to you pushing on

the car alone. If two strings are less than precisely in tune

with one another, the situation is like the case where your

car-pushing friend sometimes pushes with you and

sometimes pushes in opposition to you. In a semi-

disorganized situation like this there is no absolute

coherence to the undertaking and the aggregate



accomplishment is simply equal to the sum of the separate

contributions.

Daniel Martin and his research group at Baldwin Piano

Company have shown that a very characteristic feature of

the sound from a piano is a dual decay pattern. 4 This is the

second musically important result of the use of multiple

strings. A blow from the hammer starts all three strings off

exactly in step with one another, so that they radiate

strongly to the outside world. Initially, then, each partial

dies away quickly at about the rate expected for strings that

are in precise unison. However, because of their slight

detuning from one another, they soon get out of step, so

that we might say that there are eventually three solo

performances. The vibration of each string then decays on

its own in isolation at the single-string rate, and close

cousins to ordinary beats are produced for us to hear.

When the strings of the C4 note on a good piano are tuned

to a total spread of about 2 cents, the net sound pressure

due to all the partials (see sec. 13.2) shows the presence of

fast decay for about 1 second out of the total time of 20

seconds (crudely speaking) that is required for the net

pressure amplitude to be reduced to 1/1000th of its initial

value.

I will close this section with a brief explanation of the pitch

rise that is often perceived in a piano tone as it dies away. To

begin with there is a clearly audible change in tone quality,

explainable in part by the fact that the lower-frequency

partials become unimportant and then inaudible more

quickly than do the higher partials, simply because of the

greater sensitivity of the ear at high frequencies (see fig.

13.3). Furthermore, the amplitude of the lowest partial

generally falls away more quickly than the higher partials,

chiefly because the slow beating rate between the strings



for this component keeps their vibrations in step for a longer

time, during which they suffer the accelerated decay

characteristic of the cooperative effect. This gives us an

additional, mechanical reason to expect a listener’s

attention to transfer itself to the higher partials of a

decaying tone. Because of string inharmonicity, these

higher partials heard by themselves imply a higher pitch

than that which our ears assign when they base their

“calculation” on the lower partials (see also sec. 16.7).

However, the decay patterns of individual notes of a

keyboard scale differ enough from note to note, even on a

very fine instrument, that we should not expect the

invariable presence of a pitch rise during the decay of every

tone.

17.4. The Action of Piano

Hammers

General principles were developed in chapter 8 to guide our

understanding of vibration recipes produced when strings

are struck at various places by various kinds of hammers. In

particular we found that the duration of contact in a

hammer blow exerts a considerable influence on the

number of characteristic modes that are excited. Modes

having frequencies high enough that one or more of their

oscillations could take place during the contact time are, as

a result, only weakly excited. On a piano the time of contact

is only partly influenced by the softness of the hammer felt;

the predominant influence arises from the way the string

itself pushes back against the hammer. Our thinking about

this influence can conveniently be divided into what we

might call an elastic version and a wavelike version, the



second version being used to refine our conclusions from

the first.

If someone were to force a piano hammer slowly and

progressively into the exaggerated position shown in the

upper part of figure 17.4, the tension of the deflected string

would act on the hammer, exerting a downward restoring

force whose magnitude would grow as the hammer is

displaced farther and farther upward. It should be apparent

from the diagram that the greater slant of the shorter, left-

hand segment of the string means that this segment exerts

the major portion of the restoring force. For example, on a

piano string whose hammer strikes at a distance H equal to

1/9th of the string length L, the two forces are in the ratio (L

— H)/H = 8/1, meaning that in this particular case the

restoring force of the short segment acting on the hammer

will be eight times as great as that of the long segment.

If one strikes a piano key, the system of levers called the

action accelerates the hammer to some final speed and then

releases it, allowing it to continue freely upward until it

strikes the string. When contact is made with the string, the

hammer’s upward motion persists, but the string exerts an

increasingly large downward force on it as already

described. If we temporarily set aside the force exerted by

the longer portion of the string, it is apparent that the

hammer and the shorter segment H of the string together

constitute an elementary spring-and-mass system. The

natural frequency fH of this system is determined by the

string tension T, the length H, and the mass M of the

hammer, as follows (see sec. 6. 1):
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Fig. 17.4. The Behavior of the Piano String at the Striking

Point
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The lower part of figure 17.4 shows the motion of the

hammer head (a) as it leaves its original rest position when

the key is first pressed, and then as it continues to

accelerate under the influence of the player’s finger until

the instant (b) when the action releases it. Following its

release by the action, the hammer swings freely upward

toward the string and meets it at (c), after which the string

forces convert the motion into an up-and-down movement

of oscillatory type (c), (d), (e). If the hammer were somehow

to glue itself now to the string, the oscillation would

continue in the manner indicated by the dotted curve and

the letters (f), (g), (h), and (i). In fact, the hammer comes

loose from the string after about half a cycle of oscillation,

at the instant marked (e), and then falls back down until (j)

when it is caught and arrested by what is known as the

check.

Clearly, if our calculation is correct, the all-important time of

contact Tc between hammer and string is about equal to

one-half the time required for one oscillation of the hammer

bouncing on its “spring,” which is the string length H. When

we modify the formula for fH to take into account the three

strings which act together on any given hammer, we get:
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Notice that, according to this formula, increasing either the

hammer mass M or the striking distance H will lengthen the

time of contact Tc and thus reduce the number of higher

partials excited in the tone, as explained in chapter 8. The

“elastic” version of the hammer recoil’ analysis is now

complete, and we must consider next how the wave

behavior of disturbances on the long segment of the string

alters the conclusions we have drawn thus far.



A hammer interacts with the longer segment (L — H) of a

piano string in a way that can easily be understood if we

begin by imagining the string to be extremely long, so that

the hammer rebounds from it before an echo returns from

the far end. For instance, it would take six seconds for an

echo to return from the far end of a set of C4 piano strings

one kilometer long (about 0.6 mile). During the time the

hammer is touching the strings we have already noticed

that it feels a springlike force exerted by the short string

segment H. Wave physics tells us that as the hammer

launches waves down the long segment of the strings,

another force (in addition to the springlike force) acts to

make the hammer feel exactly as though it were immersed

in and plowing through an extremely viscous fluid. As a

result, the half-oscillation discussed earlier is damped (in

the manner described in sec. 6.1). In this case the lost

oscillatory energy is transmitted out along the strings (for

eventual return) instead of being frictionally dissipated. The

viscous dissipation coefficient D defined for a spring-mass

system in section 6.1 proves to be exactly the aggregate

wave impedance of the long segments of the strings (see

sec. 17.2)!

You may find it helpful to know that the combined wave

impedance of three C4 strings is roughly equal to the

viscous coefficient D associated with two of your fingers

moving broadside through a bowl of molasses left outdoors

in January. Despite the numerically large size of the viscous

damping coefficient just described, calculation shows that

the wave-type damping on a piano hammer produces only a

few percent diminution in the amplitude of any one of its

oscillations, so that the formula of our original, simple

estimate of the hammer contact time Tc does not yet need

changing.



Having considered how the long string segment feels to the

hammer before an echo has time to return, we are now

ready to follow the progress of the half-sinusoidal pulse

impressed by the hammer blow on the long side of the

strings as it travels to the far end and back. Figure 17.5

indicates that a completed upward blow from the piano

hammer produces an upward pulse that travels to the

bridge end and is then reflected back toward the hammer.

Because the bridge has a very large wave impedance

compared with that of the strings, this reflected pulse has

very nearly the same amplitude as the original, but it is

inverted. As long as the hammer is thrown clear in advance

of the reflected wave (as is the case for notes below about

C5 on a piano), the pulse runs back and forth over the whole

length of the strings, being reflected and re-reflected at the

two ends. This particular motion is exactly the one we

described in chapter 8, using language that details the

motion in terms of the vibration recipe belonging to a given

hammer blow at a particular point on the three strings (see

secs. 8.2 and 8.3 and also statement 6, sec. 11.9).
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Fig. 17.5. Reflection of the Hammer Impulse

For the upper two octaves of the piano scale, the inverted

pulse returns before the hammer has left the strings, and so

adds its forces to those exerted by the short string segments

H. As a result, the hammer is thrown off the strings earlier

than otherwise, thus shortening the time of contact.

It is time now to go back and refine our view of what is

happening on the short length H of the strings during the

hammer blow. These do not really act exactly like the simple

spring we assumed originally. The disturbance on this is

actually a peculiar train of impulses rapidly echoing



between the capo d’astro bar and the hammer itself (at C4

these impulses make about four complete round trips during

the time we calculated earlier for Tc). When the net effect of

these rapid echoes is properly worked out, we find we must

change the half-sinusoidal hammer motion assumed earlier,

which takes place between (c) and (e) in figure 17.4. The

hammer motion is now seen to have a new but similar shape

that looks as though it were made of roughly straight line

segments, each lasting the time it takes the impulses to

make one round trip between the fixed end and the

hammer. The time of contact Tc estimated earlier remains

fairly accurate, however, as do our earlier conclusions about

the effect on it produced by echoes coming back from the

bridge.

The not-quite-sinusoidal (segmented) hammer motion can

be thought of as a combination of the original sinusoid and

an additional bouncing motion. This bouncing motion is of

course caused by string vibrations set up in the short string

length H during the time of hammer contact. These

vibrations form a harmonic series whose frequencies are L/H

times as high as the corresponding modes of the complete,

full-length strings. During the course of the blow, then, the

new high-frequency oscillations of the hammer and of the

short part of the string are given to the complete strings in

addition to the more familiar components of the vibration

recipe. It is somewhat shocking to realize that these extra

components fill in the otherwise expected gaps in the recipe

produced when the hammer strikes at nodal points at

various modes. For example, in chapter 8 we learned that a

simple, nonsegmented blow from a mathematically

idealized hammer 1/4th of the way from one end of a string

would eliminate modes 4, 8, 12, etc., from the recipe. A real

hammer blow restores these missing components. We have

here the explanation of the century-old observation that a



piano-type hammer strikes in such a manner that no modes

are ever missing from the recipe of a piano tone.5

17.5. Scaling the Strings

of a Piano

The piano that has been studied so painstakingly thus far in

the chapter would be of rather limited musical usefulness,

for the simple reason that it can do little more than play the

note C4! The extension of the basic design to the high and

low limits of the scale is influenced by constraints of a

mechanical sort and also by the fact that our hearing

changes drastically as we go to these extremes. For

example, the fundamental components belonging to the top

octave (from 2100 to 4200 Hz) span the most sensitive

range of our hearing, while the fundamentals of the lower

notes (from 27.5 Hz) are only weakly heard under ordinary

playing conditions.

The formula given at the beginning of section 16.5 for the

vibration frequency of a flexible string suggests that for

every octave one goes up in pitch, the string length might

be halved (if the tension and string size are kept fixed). We

will see in a moment why it proves better on a piano to

reduce the lengths by a factor close to 1/1.88 per octave, so

that if we start with our 62.5-cm C4 string, the C8 string

(four octaves higher) has a length close to 62.5/(1.88)4 =

5.00 cm, instead of the 3.91-cm string length calculated on

the basis of four successive halvings. In a similar vein,

experience has shown the advisability of reducing the string

diameter by a factor of about 0.946 per octave from the 1-

mm diameter at C4, making the top string a little under 0.79



mm in diameter. Strings proportioned thus have to be pulled

to slightly lower tension at the top of the scale than at C4.

As we have already learned in chapter 16, the inharmonicity

of constant-tension strings proportioned in this way rises

2.76-fold for every octave we go up. For example, at the top

note (C8), mode 2 is more than 50 cents sharp compared

with mode 1, instead of the 0.83-cent widening associated

with C4. If many string partials for C8 were excited, the tone

would be quite harsh (“metallic,” i.e., reminiscent of the

vibrations of steel bars), so the softness of the hammer felt

must be carefully adjusted to give a suitable contact time

during the blow in order to produce a tone of acceptable

quality.

I will say little about the trend relating the upper strings’

wave impedance to that of the soundboard beyond

remarking that at C8 the string impedance is only about 75

percent of the value at C4, which reduces the transfer of

vibration from string to soundboard by the same factor.

Perhaps the increasing sensitivity of our ears for higher-

frequency sounds calls for a reduction in the actual amount

of vibration transmitted to them by the topmost strings.

Another reason for reducing the string-to-soundboard

coupling is that it leads, as we have already seen, to longer

ringing of these strings. Recall that even so, the sound from

these strings decays so rapidly that dampers are not

normally provided for them.

The true challenge to the piano maker’s skill lies in the

notes below C3. Even on a full concert grand with an overall

measure of nine feet, the bottommost strings must be made

less than half the lengths implied by the scaling rules used

above C4 if the instrument is to have dimensions less than

those of a battleship. For example, the bottom note (A0) on



a Baldwin concert grand I have examined has a string

length close to 203 cm, instead of 486 cm. The same note

on the six-foot-long model L Steinway grand in my living

room has a somewhat shorter length—a little over 137 cm.

On some small spinet pianos, the bottom string is a

troublemaking 95 cm, only 20 percent of the “ideal” length.

How does one strive to meet the requirements for

acceptable (if not good) tone, sufficient power, and

adequate duration of sound in the lower strings? The need

for acceptable tone implies not only a tolerably low value for

the string inharmonicity factor J, but also a properly

proportioned relationship among the hammer’s mass,

breadth, and softness, the string tension, and the point at

which the hammer strikes the strings. To get sufficient power

with an adequately long decay time one must in addition

arrange to get a correct ratio between the wave impedances

of the string and the bridge.

The formula given in section 16.5 for the natural

frequencies of a flexible string suggests immediately that a

proportional increase in string thickness will automatically

offset a reduction in its length. For example, if we were to

preserve our usual constant tension, the bottom string of

our concert grand would have a diameter that is 486/203 =

2.39 times the 1.22-mm diameter of the full-length string

called for by our basic mid-scale design. Such a 3-mm

“string” would in fact be an impractically thick rod having

nearly half the diameter of the tuning pins! The

inharmonicity of this rod would be so large that it would

emit a clanging sound when struck. The piano maker in

practice avoids a great deal of the inharmonicity problem by

using a slender steel string (to support the tension) which is

wound with one or more layers of copper wire, so as to raise

the mass per unit length without adding much stiffness. On

a concert grand, carefully designed bass strings of this sort



are held under a tension that is about 50 percent larger

than the mid-scale value. We find then (on the Baldwin

concert grand, for example) that J calculated 6 for the

bottom string has a surprisingly low value, about equal to

the inharmonicity coefficient belonging to C3 in the main

part of the scale. On the smaller pianos, however, the

problem remains serious, and what passes for good tone

cannot be obtained from a bottom string shorter than about

130 cm. On the smallest spinets, J for the bottom string can

be as much as ten times the concert grand’s value.

Of particular concern to the piano maker is the problem of

making a smooth transition from the full-length plain wire

strings to the sequence of shortened wound strings that

function for the lowest notes of the scale. Let us see how the

problem is dealt with in the Steinway mentioned earlier. On

this instrument the lowest triple set of plain wires is found at

B2. The next note down the scale, B2b, is provided with a

pair of copper-wound wires having a length of about 91 cm.

I have used the wire sizes and playing frequencies of these

two sets of strings to calculate that the tension in the wound

strings is 60 percent higher than in the plain ones, the latter

being about 10 percent slacker than normal because they

are already 10 cm shorter than the basic scaling rules would

call for. The calculated string tension shows a rather large

jump, so I checked the correctness of this calculated change

in tension by comparing the pitches of sounds produced by

plucking the nonplaying lengths of these strings between

bridge and hitch pin. The copper windings of the B2b string

do not extend into this region, and the core wire diameter is

equal to the wire size for B2.

As one slowly plays down the chromatic scale in the vicinity

of the break between nonwound and wound strings, one

notices a slight but progressive deterioration of the tone



below F3, where the strings first begin to fall short relative

to properly scaled lengths of the sort used in the upper half

of the instrument. The main alteration in tone is due to a

growing inharmonicity associated with both a shortening of

the string and the concomitant reduction of tension. The

change of tone one hears in going between wound and

nonwound strings is relatively small, the inharmonicity

increase due to the greater stiffness of wound strings being

offset by the increase in their tension. The calculated

inharmonicity factors match within 5 percent across the

break, which is less than the 9 percent change from note to

note of the normal scaling!

The question of suitable gradation of string and soundboard

wave impedance across the break is our next concern.

Because the wave impedance depends on 
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from the “properly scaled” F3 down to the slightly slack

strings at B2, we have a reduction of about 5 percent in the

string impedance. Across the break, from the three slack

wires at B2 to the two wound and very tight strings at B2b,

there is a 40 percent upward jump in wave impedance. Let

us resort once again to observation in order to find out how

the maker has dealt with these nonuniformities.

On the Steinway in my home there is a trend of progressive

increase in the decay times measured for sounds from single

strings belonging to the notes running from F3 down to B2.

The falling sequence of wave impedances for these strings,

all mounted in a row on the same bridge, leads us to expect

a 5 percent increase in decay time, roughly the observed

amount. We must now compare the decay time for a single

wound string belonging to B2b with a plain string belonging

to B2; these two strings are found to vibrate for roughly the

same lengths of time. On the other hand, the fact that the



B2b strings have a 40-percent higher impedance might lead

us to expect them to spill their excitation into the

soundboard at a fast enough rate that they would become

effectively silent in only about 70 percent of the time

required for the B2 strings. The initial appearance of conflict

between observation and acoustical theory is easily

resolved, however, if we look into the piano. The wound

strings are mounted on their own separate bridge. This

bridge is designed to be stiffer and more massive, which

makes the wave impedance of the soundboard to which it is

glued look considerably larger to its strings than that of the

lighter and more flexible structure seen by the plain wire

strings. We have here a good example of the way in which

painstaking traditional craftsmanship has learned over

many years of experience to meet musico-acoustic design

requirements, some details of which we have come to

recognize scientifically only in recent years.

17.6. The Sound of a Piano

In the preceding sections of this chapter we have looked at

many of the ways that changes in the mechanical structure

of a piano can give rise to changes in the vibration recipes

of its strings. We have also considered the changes in the

rates at which the various components of these recipes

decay after a key is struck. We will now look briefly at what

happens in the soundboard when a string is put into

vibration, and we will also consider the way the soundboard

communicates with our ears via the room air.

When the soundboard is excited by the string where it runs

over the bridge, each frequency component excites several

characteristic vibrations of the soundboard in a manner

exactly similar to how a small loudspeaker excites the



characteristic modes of a room. We have a similar

spreading-out of the initial signals throughout the region,

similar scattering caused by discontinuities, similar

reflection from boundaries, and the sort of irregular growth

and decay behavior that is similar to what we studied in

chapter 11. However, the manner in which sounds are

communicated from a soundboard to a room depends

significantly on a pair of differences between the overall

behaviors of vibrations excited on a two-dimensional

soundboard and in a three-dimensional room.

We learned from section 11.4 and figure 11.2 that, in a

given room, if a particular sinusoidal excitation runs at a

high frequency it finds a great many room modes to “talk”

to and to excite strongly, but it will find only a few if the

excitation frequency is low. In other words, the average

spacing between adjacent characteristic frequencies of the

room becomes progressively less as we turn our attention to

the higher modes. On the other hand, in section 9.4 a

digression on the average spacing of natural frequencies

told us that the mean spacing between adjacent

characteristic frequencies of a given soundboard is

essentially constant at all frequencies. Thus the statistical

smoothing effect of many simultaneously excited modes

acts differently on the steady-state responses of the two

systems as we consider low and high frequencies. Another

important difference between soundboards and rooms is

associated with their transient behavior. The speed of sound

in air is a constant (345 meters/sec), regardless of the

excitation frequency. As a result all sinusoidal components

of an impulsive signal travel at the same speed from source

to reflector, or from scatterer to scatterer (see sec. 12.4, part

A, for an example). However, on a soundboard (or along a

bar), the speed of sound is not constant (as pointed out in

sec. 17.1), but rather rises as the square root of the

frequency. Because of this, the different partials of a string



tone run out across the soundboard at different rates (e.g.,

the second partial takes only 70 percent as long to traverse

a given distance as does the fundamental, while the fourth

partial takes only half as long).

If the speed of sound on a soundboard were a constant

nearly equal to its speed through the air in the room, the

transfer of excitation would still differ from the transfer from

a small loudspeaker in the room to its listener. The sound

pressure amplitude produced at any point in the room has

an extremely complicated relationship to the amplitude of

the string vibration that caused it. We have only to think of

each tiny moving patch of the soundboard as a small pump

to realize that the complete board acts as a vast multitude

of simple sources (see sec. 11.2) that run not necessarily in

step and have many different amplitudes. We have already

read in part C of section 12.4 of the complications arising

when a mere two sources, the woofer and tweeter of a

loudspeaker system, are given the same signal to radiate, so

it is easy to understand why the ordinary sound pressure

recipes even for adjacent piano notes look unrecognizably

different from one another when measured, though they

may sound very well-matched to our ears. Whether one

makes his observations with the piano in an anechoic

chamber or in a reverberant room, using one microphone or

the combined results of many, the “overall” measurement

usually drowns itself in a collection of overlapping signals.

Our nervous system, on the other hand, processes sound in

several ways simultaneously and also keeps track of many

things as they develop in time. Those parts of the welter of

signals that we can process and “make something of’ are

the ones that usually end up being of musical importance.

They are important precisely because they are recognizable

perceptual elements and as such are available for artistic

manipulation. Because the laboratory apparatus functions

differently, keeping excellent track of things our ears lose



entirely and yet obliterating things that we hear very well,

an experimenter in musical acoustics must often do a great

deal of careful listening before he decides on what to

measure, and then he must arrange things in such a way as

to focus the “attention” of his apparatus sharply on a

particular musical aspect of what is going on.

Despite the almost frightening complexity of the detailed

behavior of a soundboard in its role as mediator between

piano string and room air, it is possible to set down some

numbered statements that describe the common elements

of those piano sounds to which our ears predominantly

respond in a musical context.7 These statements are

restricted to matters other than the roles of inharmonicity

and of multiple string detuning. Unless otherwise stated, the

assertions apply to tones that are played mezzo forte, with

the tones being measured in ways that tend to give

particular importance to the earliest few seconds of the

sound.

1. The joint effects of hammer breadth, softness, striking

point, and return echoes on the string lead to piano tones

that, for notes from the bottom of the scale up to about C2,

are made up of many (20 or 30) partials having significant

strength in the room. That is, these partials average out to

have pressure amplitudes that are more than 3 to 5 percent

of the average amplitude of the three or four lowest-

frequency partials.

2. Between G2 and C5 the sound pressure recipe typically

contains partials of appreciable amplitude only up to about

3000 Hz. This means that at G2, 25 or 30 partials are tonally



significant; at G3 the number is about halved; at C5 only 5

or 6 partials play much of a role in the sound.

3. For notes above C5 (fundamental frequency near 523 Hz)

the number of significant partials decreases progressively,

until at C8 (near 4200 Hz) the fundamental is accompanied

by very little more than the second partial.

4. For notes below C2, the first few partials of a tone may

have roughly equal amplitudes; however, because of the

insensitivity of the ear below 60 Hz, the lowest-frequency

partials of these tones contribute very little to the perceived

loudness.

5. Along with the components having sharply defined

frequencies (associated with the string vibrations), the

piano produces a very considerable amount of fairly diffuse

sound made up of closely spaced, even overlapping

frequency components arising from (a) the thumping blow

of the hammer as transmitted to the frame by the short part

of the string and to the soundboard by the initial impulse

carried to it by the longer string segment, (b) the short-lived

oscillations of all the damped strings that are impulsively

excited via the bridge motion at the beginning of the tone,

(c) the analogous, higher-frequency sounds associated with

the “inactive” string lengths between bridge and

soundboard, and (d) the excitation of fairly long-lived

oscillations in the topmost strings of the scale, which are not

provided with dampers. Predominant among the sounds

described in (c) is the contribution from the strings whose

long part has been struck by the hammer. In many pianos

the frequency of this contribution is harmonically related to

that of the played note.

6. Due in part to the momentary compression and hardening

of hammer felt in the course of a vigorous hammer blow, the



vibration recipes associated with fortissimo playing show an

augmentation of the strengths of the higher partials relative

to the lower ones. This means that the number of significant

partials in a given tone is increased when it is loudly played.

The converse behavior is observed at the limits of

pianissimo playing.

7. After a key is struck, the reverberative sound builds up in

the soundboard, whence it radiates into the room. Each

component of the sound comes out in its own way, but when

our ears consider the sound in the aggregate, they are

chiefly sensitive to the fact that there is an initial burst of

sound associated with the combined effects of the struck

strings and the various short-lived components listed in

statement 5. At C4 this burst builds up in roughly 0.03

seconds. During the next few tenths of a second the short-

lived components disappear, leaving the string sounds to

decay in the manner described below. The time scale of

these developments is longer when low notes are sounded

and shorter for high notes. This is in part because as we go

from one part of the scale to another, the predominantly

excited components have different frequencies and

therefore different “spreading times” across the soundboard.

8. The decay of any given partial in a piano tone has a

complicated nature (see secs. 17.2 and 17.3). Taking the

sound as heard overall, we find that 20 seconds is a good

round number for the time required for the aggregate sound

pressure of C4 to fall to 1/1000th of the original sound

pressure. As we go up to about G7, the corresponding decay

times become progressively shorter, decreasing by a factor

of about 0.66 for each octave. Above G7 the decay times

become very much shorter, falling to a value of less than 0.

5 seconds at C8. Going down the scale below C4, we find



that the decay times become gradually longer, growing by a

factor of about 1.2 for each octave.

9. When a key is released, the damper falls into place, but it

is unable to kill off the string oscillations immediately. Each

partial decays at its own rate, because of the varying

efficacy of damper action on each string mode. A

characteristic part of the piano sound is the quickly damped

tail at the end of each tone. The fundamental component

disappears in a few tenths of a second, usually leaving the

higher partials softly audible for several seconds.

10. Both top and bottom surfaces are active in coupling the

soundboard vibrations to the air. When the cover is lowered,

there is a distinct change in piano tone, because the top

surface of the soundboard now communicates with the

broad but not very high channel of air between it and the

lid. Signals produced by parts of the soundboard far back in

this channel take longer to come out into the room than do

those which arise in regions near the open edge of the lid.

The impulsive parts of the piano tone are influenced by the

fact that in a narrow (almost two-dimensional) channel of

air, a given frequency component is transmitted in several

“propagation modes” each having its own (frequency-

dependent) velocity. As a result of the altered coupling to

the room, the build-up processes described in statement 7

are rearranged and spread over a longer period of time.

Piano makers recognize the existence of a lid angle giving

“best” tone in a concert hall. Curiously enough, the props

installed on the piano to adjust the lid angle do not always

provide this “best” angle.

17.7. Examples,

Experiments, and



Questions

1. Find a freshly tuned piano and play the bottom note A0

along with its octave, A1. Get a fairly clear impression in

your ears of the joint sound of these two carefully adjusted

notes. Next listen to sounds produced by the two strings

when you lightly touch the exact center of the A0 string with

a finger tip so that its odd-numbered modes are quickly

damped out. You will be surprised at how many hitherto

inaudible beats become easily apparent, producing a very

rough sound. When the string is damped in its exact center,

only those partials of A0 remain which directly compare

themselves with the partials of A1 (see the digression on

sounds with only even harmonics in sec. 5.5, and also

experiment 2, sec. 8.6). If a piano tuner were present, he

could retune A0 so as to make the beats less noticeable in

the altered circumstances, but then the normal A0-to-A1

octave tuning would become unacceptable. See if you can

find some acoustical reasons why the presence of the odd-

numbered partials in the normal tone of A0 leads the tuner

to provide a setting different from the elementary minimum-

beat conditions which we might naively expect. At the

bottom of the keyboard, tuners generally check not only the

octave, but also double octaves, as they proceed. They

usually play their pairs of notes alternately as well as

together. Why is this an admirable practice?

2. The number of round trips per second (shall we call it the

echoing rate?) which a disturbance can make on a string of

length L is v/2L, where v is the wave velocity for

disturbances on this string. Replace the v in this echoing

rate formula v/2L with the formula for the wave velocity of a

flexible string given in section 17.1. Verify that the resulting



formula for the echoing rate is exactly the same as the

formula set forth at the beginning of section 16.5 for the

mode-1 vibration frequency of a flexible string. To say there

is a pulse echoing back and forth on a string is simply

another way of saying that a repetitive process is going on,

one which therefore can be described in terms of a set of

harmonically related sinusoidal components. These

components are the ones we have studied so much already

from quite a different viewpoint. They are of course

associated with the various vibrational modes of the string.

In the real world of piano strings, the wire has stiffness,

which means we cannot (strictly speaking) calculate a

simple echoing rate. This is because a given impulse does

not preserve its shape as it travels along the string, so that

the disturbance on the string is not of a strictly repeating

nature. As a result its recipe cannot be based on

harmonically related frequencies. The reason for the

changing form of the traveling impulse is that the various

sinusoidal components making it up do not all travel at the

same speed on a stiff string (see the remark about wave

speed on a soundboard in sec. 17.1). It is the stiff string

characteristic frequencies, therefore, which are the proper

basis for constructing a vibration recipe.

3. A number of practical advantages are obtained from the

practice of multiple stringing on pianos. Some very fine

pianos are built using four instead of three strings on each

note in the main part of the scale. You may find it interesting

and worthwhile to speculate about the acoustical

consequences of adding strings in this way. Assume first

that no other changes are made in the instrument, and

consider such matters as hammer rebound time, string

impedances, tuning spread, etc., as they influence the

overall tone. Why would it be very difficult to arrange for the

use of multiple strings at the extreme bass?



4. Flat steel ribbons used instead of sets of round wires

would appear to allow the piano maker convenience in

adjusting the relations between inharmonicity, wave

impedance, and the effect of string tension on hammer

rebound. He would have ribbon thickness, width, and length

at his disposal. The simple string frequency formula in this

case becomes fn = e9780486150710_i0203.jpg , where t

is the ribbon thickness and w is its width. See if you can

verify that the wave impedance becomes 

e9780486150710_i0204.jpg . The inharmonicity

coefficient J uses the thickness t instead of wire radius r (the

width w being irrelevant), and the numerical factor takes on

a slightly larger magnitude. See if you can come up with a

list of arguments for and against the use of tapelike strings

in a piano.

5. Many people find it possible to pick out fleeting parts of a

musical sound if their ears have once been told what to

listen for. The various impulsive sounds coming at the

beginning of a piano tone may be separated one from

another by your ears if you will produce each one by itself

before listening for it in a normally produced sound. For

example, knock repeatedly at some point on the bridge by

tapping with the eraser end of a vertically held pencil, and

become familiar with the woody thump that results. Listen

for this same thump when you play a vigorous note on some

key whose strings pass over the bridge at your thumping

point. Play only very short notes so that the sustained part

of the tone does not distract you. Notice that the pitch of

the thump varies with the position of the striking point

along the keyboard. Now run your fingers lightly and quickly

across a range of playing strings. Do this near the bridge

and listen for the brief, harplike glissando that results. If you

run upward in pitch along the top octave of damped strings

it may be possible to imagine that the sound is reminiscent

of someone whispering the word “whee!” After running your



fingers back and forth across these strings and sounding

them at random, you will probably be able to pick out their

collective sounds when one of these triplets of strings is

struck a short, sharp blow with its hammer in the normal

way. The ringing of the damped strings is easily audible, and

will be quite recognizable. Now see if you can hear these

same sounds when the piano key is held down after each

blow. Other aspects of the piano’s initial tone can be tracked

down with the help of similar ear-training experiments. You

will also find it worthwhile to listen to a number of notes,

each one being played by itself and allowed to die away.

Damping one or two of the strings belonging to the

individual note will produce tonal changes which will repay

your close attention.

6. In 1949, Franklin Miller, Jr., of Kenyon College proposed

that adding one or more lumps of material to a piano string

might usefully reduce its inharmonicity and so improve the

tone (see sec. 9.6, part 1).8 The reduction of frequency

produced by loading a wire is one-half the shift associated

with a similar loading on a plate (see sec. 9.4, assertion 3).

You may wish to experiment by wrapping a few centimeters

of wire solder tightly around a piano bass string near one

end or the other. Why will wrapping it at a point 1/10th of

the way along produce the desired result, a progressively

greater alteration (lowering) of the first five modes? From

your knowledge of hammer dynamics you may be able to

decide whether it is better to add the load at the bridge end

of the string or at the hammer end. Even though the steady-

state motion (made up of the modified string vibrations) can

be made more nearly repetitive (i.e., more harmonic) by the

use of an added mass, the initial echoing after the hammer

blow will include among other things an early echo due to

partial reflection from the added mass plus a later, modified

pulse returning from the string termination. How will this

affect the early impulsive part of the piano tone? Do you



think that a normal bass string has its inharmonicity raised

or lowered by the fact that the copper windings do not

extend all the way to the two ends?
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18

The Clavichord and the

Harpsichord

The clavichord and the harpsichord developed earlier than

the piano. We will devote only limited attention to the first of

these, chiefly as a way to help us use our knowledge of

piano-hammer dynamics to understand some of the tonal

attributes of the harpsichord.

18.1. The Clavichord

On a clavichord each key forms a simple rocking lever whose

far end carries a wedge-shaped metal tangent that rises up

against the string. We might think of the tangent as being a

narrow and hard piano hammer, but unlike a piano hammer,

the tangent is not released by the action to fall away from

the string. The sounding length of a clavichord string is the

part between tangent and bridge, while the short portion of

the string (marked H in the top of fig. 17.4) is provided with

a strip of damping felt to keep it more or less silent. We can

use the lower part of figure 17.4 to help ourselves visualize

what happens when a clavichord key is pressed. The tangent

(carrying its own mass plus those of the key and the player’s

finger) rises toward the string along the curve (a) (b) (c),

exactly as does the hammer on a piano. Once contact is

made, the string and tangent remain together and move up

and down in an oscillatory manner very similar to what is

indicated by the letters (d), (e), ... (i). The chief difference

between what is sketched in the figure and the motion of a



tangent is that the steady pressure of the player’s finger

causes the whole bouncing oscillation to take place above

and below an average position somewhat above the original

string position (c). Also, this oscillation is fairly heavily

damped (chiefly by the player’s finger). The formula in

section 17.4 for the oscillating frequency fH of a hammer

bouncing on its string applies to the present situation as

well, and we can understand from it why the large mass M of

tangent-plus-key-plus-finger joins with the clavichord’s low

string tension T’and relatively long, felt-damped string

length H to give the tangent a very low bouncing frequency.

The period of oscillation (1/fH) of this bouncing is several

tenths of a second instead of the few hundredths of a second

that it is on a piano.

The tangent’s oscillation is exceedingly slow in

comparison to the string’s musical vibrations. The initial

kink imposed on the string at the instant of contact can

therefore be thought of as echoing rapidly back and forth

along a string whose “fixed” end at the tangent is gradually

moving upward and downward. According to wave physics,

the string modes that combine to give such a motion follow

a recipe that is almost identical with the recipe of a string

plucked very close to one end by a narrow plectrum. In other

words, all the lower-numbered modes decrease with mode

number very nearly as 1/n (instead of 1/n2) up to that mode

whose wiggliness has a curvature matching the curve

produced by the stiffness of the string at the plucking point

(see sec. 7.3, sec. 7.4, part 6, and sec. 8.4).

The actual vibration recipe of a clavichord string is not

quite like that described in the preceding paragraph. During

the earliest instants after the tangent touches the string, the

contact force is not very large, so that each of the first few

echoes returning from the bridge actually makes the string

jump off the tangent momentarily once per cycle of the



lowest string mode. These jumps are rapidly damped out,

however, because at each jump a considerable amount of

wave energy escapes past the tangent to be eaten up by the

felt damper on the string beyond. What we hear then is a

very brief “tzip” of sound at the beginning of each tone. The

components of this initial sound are of course in exact

harmonic relationship to the echo repetition rate. The

sustained portion of the clavichord sound quite resembles

the tone of a harpsichord, though it is considerably softer.

18.2. The Harpsichord

The harpsichord has enjoyed a long period of popularity that

extends to the present day. Its development began well

before 1600 and peaked during the first half of the

eighteenth century. Even in the early part of this period the

art of harpsichord building and design was well developed

and sophisticated, and the harpsichord gave way to the

piano only when the latter instrument was improved to the

point where it became competitive. Fine harpsichords made

as long ago as 1618 by the Ruckers family show much of the

subtlety of soundboard-ribs-and-bridge design and string

scaling that we find in today’s pianos. Wire of brass, iron,

and steel was available in accurately graded sizes for use by

early harpsichord builders. The predominant British and

German system of the eighteenth century gave 9.4 percent

reductions in going from one numbered size to the next, so

that there were eight wire sizes for each doubling of

diameter, quite enough to take care of the necessary

changes for scaling harpsichord strings.1

Let us make a quick survey of the relation between the

note C4 on a particular Ruckers harpsichord and the same

note on a typical grand piano of today. On the old

instrument, the string length is slightly greater—70 cm

instead of 62.5—as comports with a lower overall tuning



based on an A4 setting near 410 Hz. The steel strings for this

note have a diameter of 0.32 mm instead of the piano’s 1

mm, and the harpsichord’s string tension is about 11

percent of that used on a piano. This reduction in string

tension is almost entirely attributable to the use of thinner

strings rather than to limitations of strength in the materials.

Typically, for each octave one goes up from C4, the strings

are 50 percent as long as the corresponding ones in the

lower octave, in contrast to 53 percent on the piano. The

diameter of a harpsichord string will be 73 percent of the

measure of its mate an octave lower, while on a piano the

higher note has string diameters that are 94 percent of

those for the note an octave below it. As we go down from

mid-scale, the bass strings of a harpsichord grow according

to the rule described for the upper scale. The soundboard on

this harpsichord has a thickness varying between 2.5 and 3

mm, in contrast to a thickness near 10 mm that is typical of

a piano.2

The mounting of light, low-tension strings on a thinner

soundboard gives a string-to-soundboard wave impedance

ratio for the harpsichord that is higher by a factor of 1.3 than

the ratio between a single string and the piano soundboard.

This might lead us to expect the decay time on a

harpsichord to be about 20/1.3 = 15.4 seconds (see

statement 8, sec. 17.5; why is it correct here to use the

single-string rather than the triple-string wave impedance

for the piano?). I find by informal trial on a similarly

proportioned modern harpsichord that the apparent

persistence of the overall tone is in fact much less than this,

the time being on the order of half a dozen seconds.

However, the above prediction based on wave impedance

ratios is oversimplified, since it does not take into account

the damping of string vibrations by viscous friction in the

surrounding air. This damping has only a small role to play in



the behavior of a piano string, but it cannot be ignored on

the harpsichord.

In 1856 the distinguished British physicist Sir George

Stokes worked out the theory of such air damping of string

vibrations by viscous friction, and showed among other

things that the vibrations of small-diameter wires are more

quickly damped than are those of large wires (halving the

diameter halves the decay time). He further showed that the

high-frequency modes die away more quickly than do the

lower ones (doubling the frequency reduces the decay time

by about 70 percent). If we confine our attention to the

lowest-frequency component (mode 1) of sounds from the

two instruments, it is possible to reconcile their decay times

reasonably well by including the effects of air friction.3

Numbered statement 4, below, implies the resolution of any

remaining discrepancy in the perceived decay times.

Digression on Archimedes and Mersenne.

The inverse relationship between vibration frequency and

both string length and diameter was recognized long ago by

Archimedes (287-212 B.C.), at least in the sense that

halving either dimension would raise the pitch by an octave.

The fondness of Greek intellectuals and their successors in

Europe for simple ratios as a means for expressing the

perfection of nature obscured for many years the fact that

the vibrations of bars and those of water in a cup do not

follow such relationships, and (in particular) also obscured

the square-root relationship between string tension and

vibrating frequency. It is perhaps significant that the

Frenchman Marin Mersenne (1588—1648), who is credited

today with scientifically clarifying the nature of string

vibrations, lived at a time when craftsmen were already



very expert in making use of musical strings. Mersenne was

quite aware of the influence of stiffness on the effective

lengths of strings. We should realize, however, that the class

of ideas implied by our term wave impedance did not

become well systematized until the latter half of the

nineteenth century, following the laying of the Atlantic

telegraph cable.4

We are now in a position to describe the tonal nature of

the harpsichord sound, which we will do chiefly by

comparing it with what we already know of the sounds

produced by the piano and the clavichord.

1. When a harpsichord key is depressed, the plectrum is in

contact with the string for a short time before the string slips

off of it to vibrate freely. During this short contact time,

small-amplitude but audible clavichord-like vibrations are

set up on the portion of string between plectrum and bridge,

and also in the part between plectrum and fixed string end.

In particular, the sound begins with a brief but complex buzz

as the echoing impulses on both sides of the string cause it

to tap against the plectrum. The sound recipe also contains

harmonic components belonging to the characteristic

vibrations of the short and long portions of the string acting

independently. These are not generally in tune with the note

eventually to be produced, the exact frequencies depending

on the position of the plucking point along the string.

2. Once the jack has pulled the string aside and released

it, ordinary plucked-string vibrations of the sort discussed in

sections 7.3, 8.1, and 8.4 are set up on the whole string.



Furthermore, the string shapes and velocities that are

present on the two sides of the jack before the string slips

clear now become free to travel up and down the length of

the entire string. The presence of these additional vibrations

means that, as in the case of the piano tone, the complete

recipe has in it modes of vibration that have nodes at the

plucking point.

3. When the player releases a key, the plectrum brushes

past the string slightly before the damper comes down into

action. During this interval of time an extra bit of sound

arises from the momentary tapping (buzzing) of the string

as the plectrum slips past it. Because this tapping takes

place between the string and a relatively hard, narrow

object, a great many of the string modes are excited to

appreciable amplitude. This is particularly true because, in

contrast to the effect of a single, metallic tangent blow, we

have here repeated blows, all exactly in step with the

natural vibrations of the string. The duration of the tapping

excitation is somewhat longer than that of its clavichordlike

predecessor during initial plucking. The brief chirp that one

generally hears at the end of a harpsichord tone is

compounded out of the main tone plus the components

added on the plectrum’s return trip, these being permitted

to decay over a period of 1/4 to 1/2 a second after the

relatively narrow damper comes into action.

4. Besides the expected brief ringing after the damper

touches the string, there is one more aspect of the damped

sound of a harpsichord string that helps to establish the

musical personality of the instrument. Since the damper is

firm and narrow, the segment of string between the fixed

end and the damper vibrates briefly at its own natural

frequencies. In general the pitch of this short sound is not in

any musical relation to the main tone. One finds, however,

that certain strings of a harpsichord scale have their

dampers located close to a node for one of their higher



partials (typically the 5th, 6th, or 7th). For these strings,

then, our ears are provided with a more lingering,

harmonically related reminder of the main tone, which may

last for a second or two.

5. The tone color and (to a slight extent) the loudness are

both altered when a key is struck more or less hard. That is

in part due to changes in the amount and duration of the

clavichordlike fraction of the tone. The remaining

contribution comes from changes in the relative amounts of

soundboard and damped-string sound that are produced in

comparison with the relatively fixed amplitudes of the main

string sounds (see sec. 17.6, statement 5).

6. The sound pressure recipe for a harpsichord note

contains a much larger number of important partials than

does the tone of a piano. The effect of frictional damping by

the air on the slender strings of a harpsichord causes the

high-frequency components of its tone to die away very

much more quickly than do the lower partials, so that the

perceived duration of the tone as a whole is very short.

During the decay, the tone color changes because the

vibration recipe rapidly loses its higher partials, exactly the

reverse of the way in which piano tones are heard to survive

longest via their higher partials.

7. Due to the slenderness of harpsichord strings, the

inharmonicity of the partials of a harpsichord tone is

generally very much less (e.g., 1/14th as large at C4) than

that found on a piano. The musical effect of the greater

harmonicity is not particularly apparent, however, because

partials 2, 4, 6, . . . of the harpsichord tone have, very

crudely speaking, the same frequency shifts at C4 due to

inharmonicity as do partials 1, 2, 3, . . . of the piano tone.

The harpsichord’s larger string impedance relative to that of

its bridge also increases the random inharmonicity due to

soundboard resonances. The harpsichord tone thus collects



by means of its large number of important partials an

aggretate inharmonicity that does not differ much from the

inharmonicity associated with the fewer partials in a piano

tone. Tuning discrepancies are perhaps a little harder to

detect in the more diffuse but shorter-lived sound of a

harpsichord.

18.3. Examples, Experiments, and

Questions

1. On large harpsichords one finds stops that give the

player a choice of varying tone colors. One of these stops

arranges for the strings to be plucked a considerable

distance from their fixed ends. Another arrangement presses

a small block of felt against each string very near to the

fixed end, so as to damp its vibrations lightly. See how many

musical implications you can draw from the acoustical

changes produced by these stops. Consider in particular that

the influence of the added felt block at the end of the string

increases progressively as we go to the higher modes.

2. Most harpsichords have at least a pair of strings for each

note of the main scale, and the player has the option of

plucking one or both of these. For both mechanical and

tonal reasons, the distance between the fixed string end and

the plucking point is different for the two strings. If both

strings of a pair could be plucked exactly together, the

acoustical consequences would be very similar to those

associated with multiple stringing on a piano. In practice the

strings are not released precisely together, which at the very

least eliminates the rapid initial decay. Think about the

auditory consequences of having strings excited a few

hundredths to one-tenth of a second apart. Consider next

what goes on if only one string of a closely tuned pair is

excited directly by the player, the ordinary damper being

lifted for both. Each vibrational mode of the plucked string

then drives its originally silent counterpart into transient



motion fo the sort described in chapter 10. As the driven

oscillations of the second or “sympathetic” string build up,

they in turn start driving the soundboard, and so produce a

certain share of the audible sound. See if you can figure out

why the vibrations of the plucked string may die out very

rapidly at first, and yet leave us with an actual swelling of

audible sound. What sort of tonal effect would you expect

from the fact that the sympathetic string receives an initial

impulsive excitation when the first kink arrives at the bridge

after the plectrum slips free of the other string?

3. Harpsichords are usually provided with a set of so-called

“four-foot” strings in addition to the normal “eight-foot” ones

that provide the basic scale. The four-foot strings are tuned

to sound an octave above their nominal note names. Thus

the C4 key of a harpsichord keyboard can pluck strings

tuned to 261.6 Hz and also one tuned to 523.2 Hz. On the

Ruckers harpsichord described earlier, the string lengths of

the four-foot strings are approximately half those of their

eight-foot brothers. The wire sizes are not quite the same,

however: at C6 the wires are alike, at C4 the higher-pitched

string is about 10 percent thinner than the lower, while at C2

(the bottom note), the four-foot string is about 20 percent

smaller. The thinner, high-pitched set of strings thus runs at

a reduced tension, so that at C6 the wave impedance is 90

percent of the eight-foot value; at C4 and at C2 the figures

are close to 80 and 70 percent. See what you can predict

about the loudness and sustaining power of the four-foot

strings, taking account of the fact that we hear better at

high frequencies and also considering the fact that the short

strings run over their own slender bridge, after which they

are anchored with large downbearing directly to the

soundboard in the region between the two bridges. The four-

foot strings are generally plucked a little closer to their

centers than is customary for the full-size strings.



4. Some concerts of baroque music are played at today’s

pitch, based on A-440, while at other times the choice favors

a reference frequency near 415 Hz, which is a semitone

lower. Harpsichords are sometimes built so that either pitch

can be selected by mechanical transposition, the keyboard

being slid sideways to operate on different plectra and

strings. On other instruments it becomes necessary to

retune the strings themselves to shift from high pitch to low

pitch or vice versa. Consider what happens to a satisfactory

high-pitch instrument when the string tension is slackened

about 12 percent to bring it to the lower tuning. What will

happen to the decay time of the tones and to their

loudnesses? (Be careful here—there are several aspects to

the physics and also to the perception process.) How will the

stiffness and soundboard-resonance contributions to the

inharmonicity be changed? What musical consequences will

these have? The initial thump from the soundboard and

frame will have an audibly different relationship to the main

sound. A serious builder of harpsichords might find similar

cogitations useful in suggesting ways to guide his

proportioning of string gauges and lengths, soundboard

thickness, bridge and rib dimensions, downbearing angles,

etc., when he adapts a successful design intended for one

tuning to the construction of an instrument tuned to the

other pitch.

5. Unlike the piano, the bottom surface of a harpsichord

case is closed by a large board traversed by several

stiffening ribs mounted on its inner surface from one side

plank of the case to the other. Soundboard vibrations

communicated to the somewhat compartmentalized air

cavity within the case are radiated into the room via the

long, narrow opening left at the keyboard end of the

soundboard. The overall balance of sound from different

parts of a harpsichord scale (both loudness and tone color)

can be influenced by the acoustical relationship of the air



cavity modes to those of the soundboard (see sec. 17.6, part

10, concerning the lid on a piano). The effect is particularly

noticeable at the bass end of the scale. Refer back to section

9.5 and see how much of the discussion there of the

interaction of kettledrum cavity and drumhead can be

adapted to the present situation. Why could the cutting of a

hole in the case bottom, or of an elaborately carved “rose” in

the soundboard, be expected to produce tonal changes? 6.

One occasionally meets notes on a harpsichord that “beat

with themselves” even when only a single string is

permitted to vibrate. The simplest way in which this

phenomenon can come about is the following. At the bridge,

the stiffness of the anchorage appears considerably greater

to a string that vibrates from side to side in a horizontal

plane (parallel to the soundboard) than it does to a string

vibrating more normally in a vertical plane. Because of this,

any given mode of oscillation will have a slightly higher

frequency when excited in a horizontal plane than in a

vertical (see sec. 16.5). Furthermore, we find that the plane

of oscillation for such a string will slowly rotate, at a rate

equal to the frequency difference between the two versions

of the mode. As a result, an initial vertically oriented

oscillation produced by normal plucking will slowly rotate a

quarter revolution into a horizontal oscillation (which cannot

drive the bridge) before continuing another quarter

revolution, at which time it will again become a vertical

oscillation, etc. Verify that the sound waxes and wanes, as a

result of this rotation, at twice the frequency we normally

would associate with ordinary beats between the modes.

Why is this whole phenomenon most likely to manifest itself

for string modes whose frequencies lie close to resonances

of the soundboard? Can you figure out why even a slight

kink put into a wire during installation can give rise to a

similar kind of beating sound?
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19

The Voice as a Musical

Instrument

The preceding chapters of this book have concentrated on

impulsively excited tones that die away—clangs, drum

thumps, guitar pluckings, and the sounds made by the

stringed keyboard instruments. It is now time to consider

sound sources that are capable of producing a sustained

tone. This chapter will be devoted to the human voice, after

which we will take up the orchestral brasses, woodwinds,

and stringed instruments. (In chapter 16 we devoted some

attention to two sustained-tone instruments—the pipe organ

and its electronic counterpart—but our interest was

restricted to the pitch relationships of their sounds, and we

took no account of the ways in which these sounds are

generated.)

In the present chapter we will consider how voice sounds

are generated and how these sounds are modified in the

mouth and nose cavities before being radiated into the

room, after which we will look into some of the implications

of these operations for speech and for music. Our interest in

the sound production processes of the voice is twofold. On

the one hand, the singing voice has considerable musical

significance; on the other hand, several of its acoustical

aspects provide us with a particularly good introduction to

much that is important in the nature of woodwinds, brasses,

and bowed string instruments.



19.1. The Voice: A Source

of Controllable Sound

One has only to listen for a moment to a singer to realize

that the voice is a sound source whose pitch is controllable.

In physical terms this means that the human voice can

produce acoustic signals having repetition rates that can be

varied over a large range. The fact that a singer can

enunciate different sustained sounds (e.g., one vowel or

another) while maintaining his pitch suggests further that

the other important aspect of a sustained sound—the

amplitudes of its sinusoidal components—is subject to

control. It may seem curious in a book on musical acoustics

that we will be giving a fair amount of attention in this

chapter to speech sounds, particularly vowels. They prove to

be useful to a study of musical acoustics for two reasons.

First, they are a musical element of singing quite aside from

their information-carrying function. Second, the ways in

which recognizable word sounds are shaped out of the

original relatively featureless vibration recipe from our vocal

cords can give us considerable insight into acoustic

connections between tone color, pitch, and the strengths of

the partials we hear.

The relationship between vowel sounds and tone color can

be illustrated if we imagine building a pair of musical

keyboard instruments; one instrument uses the sound

component recipe for a particular vowel sung at C4 as a

basis for constructing its tones (by transposition), while the

other similarly made instrument uses the recipe for a

different vowel sung at the same pitch. We would be

unanimous in recognizing that the two instruments have

distinctly different tone colors, even though very few of us

would recognize that the sounds from the two keyboards



were copies of spoken vowels. Contrast this with what

happens when two of your friends sing or enunciate a wide

variety of words at a wide variety of pitches; their voices will

retain some kind of overall tone color or flavor through all

this that allows us to recognize them as the voices of

specific people. Obviously musical sounds, including voices,

have a tone color that is connected in a nontrivial fashion to

their vibration recipes, quite aside from processing

complications introduced by room acoustics.

It is fortunate indeed for our present purposes that the

human voice mechanism separates itself very easily into

unambiguously recognizable functional parts, each of which

can be thought about in isolation. Once we have examined

the various parts separately, we can put everything back

together to make the central part of what Peter Denes and

Elliot Pinson of the Bell Telephone Laboratories have called

the speech chain.1 In our investigations in this chapter we

will focus our attention almost entirely on the vibration

physics of vocal sound production; this means that we plan

to ignore the mental and neurophysiological processes

governing the selection and formation of voice sounds.

Figure 19.1 is a block diagram of the voice mechanism as it

concerns us. The labels within most of the boxes give

ordinary names to the various physiological objects with

which we are dealing, while the words written above these

boxes describe the acoustical function or nature of these

objects. The box marked “sibilants, etc.,” does not quite fit

into the labeling scheme just described. It serves simply as

a graphical device for reminding us that the production of

sounds like s, sh, k, t, and th involves an auxiliary,

broadband (multicomponent) random source which can be

located almost anywhere within the vocal cavity region.

When speech sounds are made, the larynx may or may not

itself be vibrating to produce an oscillatory flow of air; it is



this choice that makes the distinction between the voiced

and the unvoiced consonants.
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Fig. 19.1.

We may quite properly think of the larynx as being what we

defined in chapter 11 as a simple source. This simple source

feeds into a small, very elongated (i.e., more or less one-

dimensional) room of complex shape formed by the vocal

cavities. Our study in chapter 11 of the acoustical response

of rooms to excitation by such a source should have

prepared us for the idea that the sound pressure at any

given point in the vocal cavity (away from the source) will

depend drastically both on the excitation frequency and on

the point of observation. We should also recognize that

(wherever we observe it) the acoustical response will be

particularly large if the excitation frequency components of

the source match one or another of the characteristic

vibrational modes of the cavity.

Over and over in this book we have met examples of the

way in which alterations in the structure of a vibrating

object, and more particularly of its boundaries, can alter the

frequencies of its characteristic modes. In the course of

speaking or singing, one continually alters the shape of

one’s vocal cavities. The production of each particular vowel

or consonant is associated with a fairly well-defined shape

for the cavities, and therefore with a particular pattern of

strong and weak responses to the various sinusoidal

components of the airflow controlled by the vocal cords.

As we explore what happens inside the vocal cavity to the

sound produced by the vocal cords, we will confine our

attention to what happens at the mouth aperture. (The nose



aperture, which is also used separately or with the mouth,

has very similar properties; therefore we need make no

further mention of it.) At the mouth opening, the oscillatory

flow of air depends on the relation between the excitation

frequency (from the larynx) and the various resonances of

the vocal cavity. The mouth, of course, also has acoustical

importance since it serves as the source for sounds as we

hear them in the room. (The specific things going on

acoustically inside the vocal cavity that we do not have time

to explore are well understood. Research is done by using a

tiny probe microphone to measure the sound pressure set

up at various points inside the vocal cavity; also, motion

pictures have been made of the movements of the vocal

cords.)

In the next two sections we will first consider the way in

which the flesh folds that are known as the vocal cords set

themselves into oscillation at a frequency corresponding to

the speaker’s or singer’s desired pitch, and then we will

enquire into the particular ways in which the resulting

oscillatory flow from the larynx has its vibration recipe

modified on its way through the vocal cavities to the room

and thence to our ears. The various patterns of these

modifications are what make different voice sounds

recognizable.

19.2. The Larynx: A Self-

Sustaining Oscillatory

Flow Controller

The vocal cords, which do the actual vibrating in the larynx,

are flaplike folds of muscle attached to the interior of the

larynx in such a way as to produce a slit-like opening



through which air can pass. The cords are capable of

assuming a wide variety of shapes and spacings. When we

breathe normally, they pull themselves back out of the way,

so as to leave an unobstructed air passage. When we

whisper, they are held close enough together that air

flowing between them generates a rushing or hissing sound

made up of roughly equal amounts of all possible frequency

components (“white” noise); the vocal tract can operate on

this random collection of closely spaced sinusoidal

components to produce intelligible speech, even though the

sound has a radiated sound pressure spectrum in the room

quite different from that of normal speech. When one

phonates (produces vocal sound) normally, the cords are

given a shape and spacing that permits the aerodynamic

forces which arise from the air flowing between them to set

them into oscillation. However, the speed of the airflow only

slightly influences the frequency of this oscillation; the

predominant control comes from the mass of the vocal cords

and the muscle tension set up in them. The oscillation of the

cords is of such a nature that they alternately approach one

another and recede, bringing about a corresponding

oscillatory decrease and increase in the amount of air that is

permitted to flow between them. Not only can the speaker

choose the frequency of oscillation of the cords (and so the

pitch of the resulting sounds), he can also choose to have

the cords swing with sufficient amplitude that they can

press together during a controllable portion of each

oscillatory cycle. Under these conditions, the flow consists of

momentary puffs of air whose duration can be adjusted

more or less independently of their repetition rate. As a

result the singer is provided additionally with an adjustable

recipe for his internal sound source, and therefore with one

of his means for altering the tone color of his music.

As an initial step in our quest for understanding how the air

passing between vocal cords can maintain their oscillations,



we should remind ourselves of a few facts about the motion

of fluids and some of the initial consequences of these facts.

Most of us are quite familiar with these facts in an everyday

way, even if we have not thought about them formally or

tried to describe them in words. Because of their basic

importance to our understanding of many things we will

examine in the rest of this book (not just in connection with

the maintenance of oscillations), I shall set down these basic

ideas as the first few members of a set of numbered

statements to which we can easily make reference whenever

the need arises.

1. Fluids (including air) tend to flow from regions of high

pressure toward regions where the pressure is low.

2. As a consequence of the influence of pressure on fluid

flow, we recognize that if we see an increasing flow velocity

of a fluid as it moves from one point to another in its travels,

we can deduce that the pressure at a high-velocity spot

must be lower than at the low-velocity point from which the

fluid came. One cannot speed anything up without

arranging to have an excess of force acting behind it.

3. When a fluid flows steadily and continuously in a long

duct, we expect the velocity of flow to be higher in any

narrow parts of the duct than in the wider parts.

Statement 3 is simply a recognition of the fact that, for fluid

flowing in a leak-free duct, a fixed volume of fluid passes

any given point per second. Where the pipe cross-section is



large, many small “chunks” of the slow-moving fluid travel

abreast of one another; in the narrower parts these must run

quickly through the constriction in single file.

4. A joint implic

ation of statements 2 and 3 is that we should expect the

fluid pressure in the narrow parts of a long duct to be lower

than it is in the broad parts.

The argument leading to statement 4 runs thus: in a leak-

proof pipe any given small chunk of fluid (which you might

wish to identify by squirting in a tiny droplet of ink) finds

itself accelerating to a higher velocity as it enters a narrow

region, and then slowing back down as it continues on into a

broader part of the duct. Looking at things from the point of

view of the small piece of fluid, we realize that it will not

change its state of motion unless a force acts on it. It speeds

up as it enters a constriction; therefore, the pressure behind

it must be greater than in the constricted region it is

approaching. Similarly, it slows down as it leaves the

constriction; therefore, an excess pressure must be acting

on its front surface to retard it. The quantitative expression

of statement 4 and an elucidation of some of its remarkable

consequences were first worked out by the Swiss physicist

Daniel Bernoulli in 1738. The formal expression of our

statement 4 is known as Bernoulli’s Theorem for Steady

Flow.

5. The presence of viscous friction that is normally found in

a fluid and between the fluid and its containing walls does



not change the qualitative correctness of statements 1

through 4. However, it leads to a reduction in the total

amount of fluid that passes through the system per second

under the influence of a given driving pressure of the

source.

We are now provided with the information needed for a look

at the vocal cords in their role as oscillators. If a mechanical

engineer were asked to design a simplified machine that

worked in much the same way as the vocal cords, he might

very well come up with something of the sort shown in

figure 19.2. Air from the lungs flows in the diagram from left

to right through a large-diameter duct (A) which

corresponds to the windpipe or trachea. The air then flows

through a constriction (B) and out again into an enlarged

portion of the duct (C), which is the beginning of the vocal

tract. The upper boundary of the constriction consists

chiefly of a mass M mounted on a spring having a stiffness

coefficient S, the mass being free to oscillate smoothly up

and down along a carefully fitted guide. This guide is made

leak-proof by means of some grease, which also serves to

lubricate the guide. Our engineer has chosen to represent

one of the two vocal cords by this spring-mass system (with

viscous damping D provided by the sealing grease). The

other cord would move symmetrically with the first under

the influence of similar forces, and so can be left out of our

initial consideration.

If no air is sent through our iron larynx, it is easy for us to

see that the natural frequency of oscillation of the mass M is

proportional to the quantity e9780486150710_i0206.jpg ,

and that if it is pulled aside and released, the oscillations

will die away with a halving time proportional to M/D (see



sec. 6.1). It is this natural frequency which the singer

changes as he shifts from one musical pitch to another.
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Fig. 19.2. A Mechanical Analog of the Larynx

If the airstream is turned on, we recognize on the basis of

statement 4 above that the air pressure at (B) will be

reduced relative to what it is both at (A) and at (C). If the

mass moves downward, further constricting the opening,

two opposing things will happen. Narrowing the aperture

will increase the speed of the air motion at (B), as a result of

which the pressure here is also reduced, thus tending to

suck the mass even farther down. On the other hand, the

added frictional resistance produced in the narrowed

opening will (if the lung pressure is kept the same) reduce

the total volume of air that flows past per second. As a

result, the flow-dependent pressure will not change in quite

the way we would otherwise expect. When everything so far

is taken into account, we find that the presence of flowing

air causes M to feel an aerodynamic force that has two

recognizable components: a steady inward force, plus one

which fluctuates as the mass vibrates in and out. We shall

call this last, fluctuating part the oscillatory Bernoulli force.

Let us see how the presence of flow can be expected to

modify the sinusoidal oscillation which would normally

result from the interaction of the spring with the mass. The

steady part of the flow-induced force pulls M in against the

elasticity of the spring to a new equilibrium position in

which the aperture is slightly reduced. We find further that

as the mass oscillates, the other flow-induced force

component acts against the spring as an additional force

tending to pull the mass further away from its altered

equilibrium position. It is thus perfectly permissible for us at



this stage in our thinking to consider the joint action of the

spring and the airflow as being equivalent to the action of a

single spring having a somewhat smaller stiffness

coefficient. The conclusion follows then that the natural

frequency of oscillation of our imitation vocal cord is slightly

lowered by the existence of an airflow past it. Notice,

however, that we have not yet found anything that can

counteract the damping effect of the lubricating grease. In

other words, we have not yet discovered any means

whereby the flowing current of air can initiate or maintain

oscillations of the vocal cord.

Let us digress a moment now and examine the motion of a

child on a swing, and notice what we must do while pushing

him. This examination will suggest to us what to look for in

the larynx, which is a device whose cords are of course

known to oscillate. As a child swings back and forth, we

recognize first the springlike restoring force that arises from

the joint effect of his weight and of the oblique rope which

supports him. As we learned in chapter 6, this force acts in a

direction opposite to the child’s displacement; it determines

the frequency of oscillation according to a familiar formula.

Once the child is pulled to one side and released, he swings

in ever-decreasing arcs; the decrease is the result of the

viscous friction of the air through which he moves (see fig.

10.5). Notice that the viscous friction is a damping force

that acts in a direction opposite to the motion of the child.

The contrast between the restoring force and the damping

force can be made clear if we realize that the restoring force

is zero at midswing, where the damping force on the rapidly

moving child reaches a maximum. Conversely, the damping

force falls to zero as the child comes to rest at the limits of

his travel, which are the points at which the restoring force

has its largest value.



If we wish to maintain the swinging motion of the child, it

seems pretty obvious that it is necessary to do our pushing

in the direction of the child’s motion. More accurately, we

realize that if we push on him over an appreciable fraction

of the time of one cycle, at least the predominant share of

our pushing should take place in the helpful direction. Let

us distill these ideas into the sixth of our numbered

statements:

6. Because the damping force on a vibrating object always

acts to oppose the motion of the object, any successful

attempt to maintain the oscillation requires the application

of a periodic force that acts (at least predominantly) in the

same direction as the motion.

Let us now go back to our artificial larynx to seek the

missing force contribution that meets the requirements laid

down in statement 6. Our model at this point is too simple in

that it takes insufficient account of the fact that the airflow

is by no means steady: it increases and decreases as the

valve opens and closes. In the case of unsteady flow,

Bernoulli’s theorem does not quite hold true. Because of the

inertia of the moving air, the velocity of air flowing through

a constriction cannot instantaneously readjust itself as the

aperture is changed. In other words, the sinusoidally varying

aperture determined by our oscillating mass has passing

through it an airflow whose variations lag behind by a small

amount.

e9780486150710_i0208.jpg



Fig. 19.3. Relationship between the Position of the Vocal

Cord and the Aerodynamic Force Acting on It

Figure 19.3 will allow us to see how the oscillation is

maintained. At the top of the diagram we see a curve that

represents the sinusoidal up-and-down oscillations of the

mass M. The bottom part of the figure shows the

corresponding variation of the flow-induced oscillatory

Bernoulli force that acts upon it. Notice that the force

reaches its upward and downward maxima at instants of

time that are slightly later than those at which the

maximum excursions of the mass itself take place. To help

us recognize the relationship between the Bernoulli force

and the direction of motion of M, all parts of the

displacement curve that correspond to downward motion

are so labeled, and they are also drawn using a beaded line.

In similar fashion, those parts of the force curve that

represent a downward urging on the mass are labeled and

drawn with a beaded line. The parts of the two curves

corresponding respectively to upward motion and upward

force are also labeled, and are drawn using plain lines. In

the middle area of figure 19.3 we find a series of shaded

boxes which call our attention to those periods of time

during which the Bernoulli force acts in the same direction

as the motion of the vocal-cord surrogate M. These are the

times during which the force contributes to the

maintenance of oscillation. Notice that these intervals of

“helpful” interaction are longer than the intervening periods

during which the force tends to diminish the oscillation. The

net action is therefore of the sort needed for the

maintenance of oscillation, according to the requirements of

statement 6.

Detailed study of our mechanical model of the larynx shows

that it has all of the major properties of the real larynx, but

lacks some of the subtler features. James Flanagan and his



co-workers at the Bell Telephone Laboratories have found,

however, that almost everything can be well accounted for

with only a slight elaboration of our simple machine.2 All

that is required is the provision of two adjacent movable

lumps of matter, each with its own spring and damper, plus

a coupling spring between them. This makes the whole

larynx model into a cousin of the two-mass chain, with

consequences some of which you will be able to guess with

the help of what is said in sections 6.3 and 10.5.

We will close this section with a brief look at the actual flow

patterns (and their sinusoidal components) that come

through the larynx to act as a sound source for the rest of

the vocal system.3 The patterns range between the two

limiting forms shown in figure 19.4. The top part of the

figure shows the successive puffs of air produced when a

man sings a note a little above G2 (100 Hz) with a relatively

high breath pressure and fairly close initial spacing of the

vocal cords. Notice first of all that the successive puffs of air

are quite uniformly spaced (0.01 seconds apart), giving a

well-defined repetition rate. This tells us that the partials are

harmonically related. During each puff, the flow rises fairly

slowly to its peak, and then decreases more rapidly. Notice

further that the flow ceases completely for about one-third

of each cycle, during the interval when the two cords have

pressed themselves together.
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Fig. 19.4. Limiting Forms of the Airflow Patterns from a

Larynx

The lower part of figure 19.4 shows the other extreme in

voice production. A gentle stream of air is sent past the

cords, flowing just strongly enough to keep them vibrating.

The cords do not close completely, however, so that the flow



is never shut off altogether. The waveform here is not as

spiky as before, being shaped more like a slightly skewed

sinusoid. We will postpone until later in the chapter any

consideration of the implications of the slight irregularities

existing between successive pulsations.

The vibration recipes for the two flow patterns illustrated in

figure 19.4 differ chiefly in the relative amplitudes of the

first half dozen pairs of corresponding partials. In the spiky

waveform, partials from 1 to about 6 are of roughly equal

amplitude, whereas above this the amplitude of the nth

component is about 1/n2 as large as that of the first partial.

In the more rounded signal, the 100-Hz fundamental

component is considerably stronger than the other

harmonic components, say 4 or 5 times the amplitude of

partial 2, after which the amplitudes fall away with extreme

rapidity.

For ordinary speech we may safely assume a pattern of flow

intermediate between the two we have just considered. This

intermediate pattern has a slightly skewed triangular shape.

The flow is reduced to zero only momentarily, and the

pattern shows a slightly rounded peak at the top. This shape

is almost precisely what one sees at the start-up of a guitar

string that is plucked somewhat to one side of center. This

means that if we want the recipe for a typical intermediate

voice sound, we can take over exactly the same recipe

described in section 7.2, as modified by the corner-rounding

explained in section 8.4. That is, the amplitude An of the

nth harmonic partial is primarily related to the fundamental

amplitude A1 by the formula An = A1/n2, with a few partials

being weakened because their nodes (in time now instead

of in space along the string) lie near the top corner of the

waveform (the analog of the plucking point). A

communications engineer would describe a recipe like this



as having a few “zeros” in it, with the shape being outlined

by an “envelope” that falls at the rate of 12 dB per octave.

19.3. Sound Transmission

through the Vocal Cavities

and into the Room

The vocal tract, which extends from the larynx to the mouth

(and/or nose) aperture, has the duty of transforming the

rather simple airflow spectrum provided by the vocal cords

into the recognizable acoustical patterns needed for speech

and music. We have already learned in broad outline that

the larynx, acting as a source, feeds one point in an

elongated, roughly tubular, one-dimensional “room” whose

set of natural frequencies can be adjusted (by movements

of the tongue, lips, etc.). The mouth aperture is a sort of

window at the far end of this room, acting in its turn as a

simple source for the excitation of the vibrational modes of

the three-dimensional room in which we can imagine we are

listening.

The pressure variations produced by the larynx in the vocal

tract, and thence the strength of the resulting source at the

mouth, depend in a simple way on the adjustable resonance

properties of the vocal tract. The pressure amplitudes

produced for the various voice partials in the room

surrounding the listener do not, however, have a simple

proportionality to the strengths of the corresponding airflow

components from the mouth. Simple sources radiating into a

three-dimensional room have the fundamental property

(mentioned earlier in connection with the discussion of

figure 11.3) that the room-averaged sound pressure

resulting from a given source strength is larger for high-



frequency sources than for those oscillating more slowly.

More precisely, for every doubling of frequency, there is a

doubling of sound pressure in the room, provided the source

strength is kept constant. A telephone engineer would say

that the sound pressure in a room due to a constant-

strength source rises at the rate of 6 dB/octave. The

physical explanation of this relative emphasis at high

frequencies is to be found in the rapidly increasing number

of off-resonance room modes whose collected responses

make up so much of the sound in a room (see sec. 11.4).

There is no corresponding increase in the number of modes

at high frequencies in a one-dimensional (i.e., long and

narrow) room, which explains why we do not find a similar

“treble boost” taking place at the junction of larynx and

vocal tract.

In addition to the systematic effect of the mouth’s radiation

behavior on the sound pressure recipe, we need to take into

account the fact that our ears themselves have

progressively greater sensitivity for high frequencies (up to

about 3500 Hz) than they have for lower frequencies. In

what follows, both effects will be taken into account, and

the discussion will be confined to the loudnesses, expressed

in sones (see secs. 13.4 and 13.6), of the individual voice

partials that someone would perceive if they came to his ear

one by one, on the assumption that he is listening only a

short distance away from the mouth of the singer or the

person speaking. We will give the name loudness recipe or

loudness spectrum to the description of the strengths of the

various partials calculated in this way for a given vocal tone.

The top part of figure 19.5 shows the loudness recipe that is

typical of the vowel [ah] steadily pronounced as in the word

father by a man who pitches his voice 35 cents above G2.4

The sinusoidal components of his voice sounding at this

pitch will be exact multiples of 100 Hz. If the fundamental



component of this sound reaches the listener’s ear to

produce a loudness of a trifle over two sones (as shown), the

second partial would be heard at about 4.2 sones, etc.

Notice that partial number 7 is very loud. We notice further

that the loudness of the 11th partial is also greater than

that of its adjacent neighbors. In similar fashion the 26th

harmonic is also emphasized in the overall loudness

spectrum of our 100-Hz tone.

The lower half of figure 19.5 shows the loudness spectrum

associated with a 220-Hz (A3) tone produced by the same

man if he keeps his jaw, tongue, and lip positions

unchanged from those used for the 100-Hz tone. The pitch

of this tone is somewhat more than an octave higher than

the first, but we would still agree that the same {ah} vowel

is being produced. Notice that the overall shapes of the two

spectra are quite similar. In both cases we find a particularly

strong component in the region from 600 to 700 Hz, another

near 1100 Hz, and a third one lying near 2600 Hz that is

louder than its neighbors. In between these loud

components we find weaker ones, and the strengths of these

in the two tones are quite similar as long as we confine our

attention to some particular frequency region. For example,

the 20th partial of the 100-Hz tone and the 9th one of A-220

both lie close to 2000 Hz and have loudnesses of about 2

sones.
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Fig. 19.5. Loudness Recipes for a Vowel Sung at Two

Different Pitches

The common element of the two differently pitched [ah]

sounds that we have examined is the presence of especially

strong components near 700, 1100, and 2600 Hz, and the

existence of frequency regions near 900 and 2000 Hz and



below about 300 Hz in which the partials are especially

weak. The explanation of these peaks and dips in the

loudness spectrum is easy to find—the peaks correspond to

the characteristic frequencies of the particular vocal tract

air column used by our subject when he is asked to

pronounce the vowel {ah}, and the dips arise from the

tendency for cancellation between the in-phase responses

of a higher mode driven below resonance and of a lower

mode driven above its natural frequency. These matters

were carefully discussed in section 10.5.

What is often called the spectrum envelope of the [ah]

sound is a smooth curve drawn to indicate the pattern of

loudness of this vowel, regardless of what fundamental

voice frequency is used for its production. This spectrum

envelope is almost exactly the ordinary resonance response

curve measured between the point of original excitation and

the position of the detector. Figure 11.3 is an example of

such a curve measured between two points in a room, while

figure 10.14 shows the corresponding transmission for

vibration between points on a metal tray. In this chapter we

are using a slightly modified version of these transmission

curves, since we want to make allowance for the properties

of the ear itself.

The middle part of figure 19.6 is the loudness spectrum

envelope for [ah]; the top and bottom parts of the figure

show the corresponding envelopes for the vowels {oo}, the

middle sound of the word pool, and [ee], whose sound is

found in the word feet. Each recognizable vocal sound that

we produce is associated with its own particular

arrangement of characteristic mode frequencies for the

vocal tract, and each of these is brought about by a

particular shaping of the air column.



We are now in a position to summarize and slightly extend

the basic ideas of vocal sound production as we have met

them so far. This summary is an abbreviated paraphrase of

the opening remarks in the present-day classic study,

Acoustic Theory of Speech Production, by the Swedish

scientist Gunnar Fant, who is director of the Speech

Transmission Laboratory at the Royal Institute of Technology

in Stockholm.5

1. The vocal cords oscillate at a frequency determined

primarily by their mass and tension, with frictional losses

being restored by means of aerodynamic (Bernoulli) forces

produced by the stream of air from the lungs.

2. This oscillation of the vocal cords transmits roughly

triangular puffs of air into the vocal tract. The repetition rate

of these puffs is equal to the vibration rate of the cords. The

vibration of the cords, and therefore the shape of the

resulting puffs, varies slightly from cycle to cycle, even

when an attempt is made to generate a perfectly steady

sound.

3. A voice source (as heard in the room) is characterized by

a spectrum envelope. Each vowel (and consonant) sound

that one may wish to produce has its own characteristic

spectrum envelope. The peaks and dips of any such

spectrum envelope are determined by the frequencies of the

characteristic vibrational modes of the corresponding vocal

tract configuration.
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Fig. 19.6. Loudness Spectrum Envelopes for Three Vowels

4. The peaks that are observed in the spectrum envelope

are called formants. Conventionally one assigns an

identifying serial number to these formant peaks, formant 1

being the one having the lowest frequency.

5. For males the first formant peak of any vocal sound lies in

the frequency region between 150 and 850 Hz, the second

in the range between 500 and 2500 Hz, and the third and

fourth in the 1500-to-3500-Hz and 2500-to-4800-Hz

regions.

6. As a consequence of the one-dimensional, long and

narrow nature of the vocal tract, the average spacing of the

formant frequencies is roughly constant. Its length is such

that for males the average spacing is about 1000 Hz.

Because of these limitations, it is not possible for a person to

achieve every arbitrarily chosen pattern of formants within

the ranges given above.

7. Two people uttering the “same” sound will generally use

slightly different formant frequencies, partly because of

differences in their regional accent, and partly because of

differences in the dimensions of their vocal tracts. Women’s

formants generally lie about 17 percent higher, and

children’s about 25 percent higher, than those typical of

men.

8. The first three formants dominate the recognizability of

speech, and much intelligibility is retained if only two

formants are present.



The importance of the formant peaks, and in particular of

the frequencies of these peaks, suggests that a sound made

up of a few inharmonically related sinusoids each of which is

matched to one of the formant frequencies of a particular

vowel might be heard as giving that particular vowel. For

example, we might guess that the [ah] sound could arise

from the simultaneous sounding of components at 700,

1100, and 2600 Hz, or that {oo} would be produced by

components at 300, 625, and 2500 Hz. This does not in

general prove to be the case.

We consider next the much more serious problem of the

possibility of ambiguity in the recognition of a given

formant pattern, and learn of the way in which our ears

exploit the information available to them to resolve the

ambiguity. Suppose for example that our experimental

subject is asked to produce exactly the same [ah] sound

that led to the spectra shown in figure 19.5, except that he

is to use a frequency of 440 Hz as the fundamental

frequency rather than the 100- and 220-Hz values he used

before. For a man to sound a 440-Hz tone generally requires

a shift to what is called the falsetto, a type of sound

production that is understandable in terms of a double-mass

vocal cord model in which the motion is a combination of

mode-1 and mode-2 oscillations. The relationship between

walking and running is an analogous piece of physics in

which we recognize differing combinations of two

characteristic modes of oscillation. The loudness spectrum

for the higher-pitched 440-Hz sound is readily deduced from

the one appropriate to the 220-Hz tone an octave lower: one

has only to obliterate the odd-numbered components from

the lower diagram in figure 19.5. Elimination of the odd

components appears (at least on paper) to do a rather

destructive thing to therecognizability of the formant

pattern, since the strong components at 660 and 1100 Hz

are eliminated, along with the noticeably weak one close to



2000 Hz. The remaining partials (harmonics of 440 Hz) are

indicated in the diagram by crosses drawn above each one

of them, so that your eye can more easily visualize a rather

broad implied formant hump extending from around 200 Hz

to nearly 1500 Hz, together with a spike at 2640 Hz

belonging to the strong 6th harmonic of the 440-Hz tone.

Comparison of this implied spectrum envelope with the

envelope given for {oo} at the top of figure 19.6 shows that

the two have a very similar appearance. This means that

these two vowels would be hard to distinguish when spoken

at a pitch corresponding to 440 Hz. There would of course

be no difficulty in distinguishing the 440-Hz version of [ee]

from the other two sounds.

The resolution of the ambiguity proves to be

straightforward. The fact that the repetitive motion of the

vocal cords is not precisely regular (due in part to

inescapable muscle tremor and in part to certain

aerodynamic instabilities of flow) means among other things

that there is a continual fluctuation of the fundamental

frequency—a sort of random vibrato. A typical extent for this

fluctuation is 0.5 percent, corresponding to variations of 2.2

Hz, 4.4 Hz, and 6.6 Hz at the first three harmonics of 440

Hz. Since the component near 440 Hz is fluctuating a little

in frequency, the strength of this partial also fluctuates as

the excitation slides up and down on the resonance curve of

the vocal tract. For instance, an upward fluctuation of

frequency brings this component closer to the first formant

resonance, and so increases the loudness of what we hear.

At 440 Hz, then, our ear is supplied with the information

that the spectrum envelope curve is steeply rising toward

high frequencies (verify this by looking at the slope of the

curve for [ah] at 440 Hz in fig. 19.6). This tells our ears that

a formant peak lies a little above 440 Hz. In an exactly

similar fashion, fluctuations of the 880-Hz second partial

inform us that in this neighborhood the spectrum envelope



is roughly horizontal (i.e., this component lies at either the

top of a formant peak or at the bottom of a dip in the

spectrum envelope). To continue, the downward slope to the

response curve brought to light by fluctuations of the third

harmonic (around 1320 Hz) implies the existence of a

formant peak lying below this frequency. Let us put these

various pieces of information together now to see how

completely the ambiguity has resolved itself. The behavior

of partial 1 tells us there is a peak on the high-frequency

side of it. This missing peak must lie between partials 1 and

2 since partial 2 could not possibly be at the top of a peak

and still match partial 1 in loudness. A similar argument

establishes the presence of formant 2 between partials 2

and 3.

There is an even more clear-cut way in which our hearing

process manages to keep track of the formant locations that

might otherwise sandwich themselves between the voice

harmonics. In speaking and singing, one is constantly going

from one sound to another, and each formant moves

smoothly from its position for one part of the utterance to

that belonging to the next part. If the pitch is maintained

constant throughout, we have the spectrum envelope

moving past the fixed voice harmonics to plot out their

shapes in time, just as we earlier found that pitch

fluctuations are able to explore the shape of a fixed formant

pattern. In actual speech and singing, of course, both

processes are going on continually as we raise and lower the

pitch of our voices and simultaneously change the formant

patterns belonging to the separate parts of the words we are

enunciating.

19.4. The Male Voice and

the “Singer’s Formant”



The bass-baritone voice can be thought of as a musical

instrument whose lowest note has a fundamental frequency

lying in the region of 80 Hz (near E2), with its top note (near

F4) having a fundamental in the neighborhood of 350 Hz. In

this section we will seek some of the musically relevant

elements that characterize the tones of this vocal

instrument (which elements are typical also of the higher

male voices), and learn how the singer can make alterations

in his mode of tone production. We will ignore the verbal

communication aspects of singing, considering only those

musical effects that might be noticed by a listener who is

not acquainted with the language being sung.

The relatively stable and featureless source spectrum

generated in a singer’s larynx is operated on by his vocal

tract to produce the elaborately shaped and rapidly varying

audible spectrum that comes to our ears as the singer goes

from note to note and from vowel to vowel (see secs. 19.2

and 19.3). While we are listening to a singer, our nervous

system (in the midst of its many other duties) deduces a

kind of running average and seeks correlations over

successive brief but overlapping spans of time; this

continual processing gives us a good perceptual idea of the

common element in the singer’s varied sounds, this

common element being the source spectrum generated by

his larynx. When the puffs of air are short and spiky, we say

that the singer is using a light or bright voice. The darker

voice colors are associated with a rounded, smoothed-out

pattern of airflow (see fig. 19.4).

Digression on the Extraction of Average Properties: The

LTAS.



The following laboratory technique is based on a much

simplified cousin of the way in which our nervous system

works to extract the common elements of a sound. A sound

is tape-recorded over a suitably chosen interval of time; this

tape is then made into a loop and played over and over into

an electronic analyzer that picks out successive frequency

bands (say 50 or 100 Hz wide) and measures the aggregate

strength of the partials lying within them, averaging the

results of each measurement over the entire duration of the

passage. If we wish to apply this procedure to a singer’s

voice, the recording must be long enough that the singer

has had time for several repetitions of a substantial fraction

of his voice’s repertory of pitches and vowels. Under these

conditions, the long time average spectrum (abbreviated

LTAS) gives us something that is a close cousin to the larynx

spectrum as modified by the “treble boost” property of the

mouth-to-room coupling. The peaks and dips of the vocal

tract transmission for various enunciations tend to average

themselves out when various pitches are sung in an LTAS,

leaving evidence of their statistical aggregate in the form of

a somewhat accentuated region near 450 Hz, analogous to

the mouth-aperture trend toward accentuated high

frequencies that was just mentioned. (While the LTAS

technique has many uses in the study of musical sounds,

one cannot use it trivially to deduce such things as the flow

spectrum at the reed end of a woodwind, or the force

spectrum at the bowing point of a violin, despite their

apparent analogy with the excitation spectrum from the

larynx.)

In the above digression and the immediately preceding

paragraph we have considered an aspect of vocal sounds



whose description remains fairly constant even when the

singing pitch is altered. It proves possible to make

statements of the sort, “we learn from a certain singer’s LTAS

that the higher partials of his voice become successively

weaker at the rate of 12 dB/octave,” without having to

specify the repetition rate of the source. The musical

relevance of this possibility comes at present from the fact

that our hearing mechanism is able to extricate an auditory

version of this same information. It is time now to look at the

interplay between a constant element of a given vowel (its

formants) and the variations in pitch that are the basis of

singing.

The fact that the upper two-thirds of the bass-baritone

singing instrument’s range overlaps the lower third of the

150-to-850-Hz range of the first voice formant guarantees

the impossibility of specifying the amplitude relation

between successive partials measured in the room without

also specifying the singing pitch. Thus we deduce from

figure 19.6 that the 700-Hz first formant for the vowel sound

[ah] lies three octaves plus about a semitone above the 80-

Hz bottom note singable by a typical male voice, so that the

strongest partials of the E 2 note (as we hear it) will be the

8th and 9th. On the other hand, the top note of our

hypothetical male singing instrument has a 350-Hz

fundamental frequency, so that when it sounds [ah] while

singing F4, this same first formant will cause the 2nd partial

to come to our ears most strongly.

We, as listeners experienced with human speech, would

have no difficulty in recognizing the vowel [ah] as produced

by our singer at either of the above-mentioned pitch

extremes. On the other hand, as musicians interested in

tone color who imagine ourselves to be listening to abstract

sounds, we might not be willing to say that the singer

produces the same tone color when he sings [ah] at the



bottom of his range as he does at the top of it. Let us

sharpen up the contrast between the musical and verbal

versions of our perceptions with the help of an example

mentioned early in section 19.1. Suppose we tape record

the sound of a singer producing the sustained vowel {ee} at

the pitch C4, and then play this tape back at various speeds

so as to transpose the tone to all the semitones of the

musical scale. In this process the formant frequencies

(peaks in the spectrum envelope) are transposed to higher

and lower frequencies, along with the partials of the tone

itself. An engineer would say that the spectra of the

resulting tones all have the same shape, and he could

deduce from the bottom curve in figure 19.6 that the

fundamental component (which was originally at 261.6 Hz)

is more than 3 times as loud as partial 2 and about 15 times

louder than partial 3 (lying near 784 Hz); partial 6 is almost

inaudible since it lies at the dip in the formant curve (near

1570 Hz), while partials 8 and 9 straddle the second

formant peak and so are about as strong as partial 3. If this

description omits the frequency designations (which were

purely explanatory) leaving only the serial numbers of the

various partials and their relative strengths, the above

statements remain true for the entire scale of transposed

notes, as already noted by the engineer.

As long as we do not wander more than an octave or two on

our scale above or below C4, our musical ears would agree

with the engineer’s description given above in the sense

that they would recognize that all these [ee] sounds have a

rather constant tone color. At a subtler level of listening we

would detect a slow trend toward what many people would

call brightness or lightness in this sort of sound as we go up

the scale, and a corresponding darkening as we go down.

This description of relative lightness or darkness, however,

is not associated with quite the same sort of acoustical



change that we find associated with these adjectives when a

singer changes the excitation recipe from his larynx.

If we change our mode of listening to that used in

recognizing human speech, we find, on the other hand, that

the sound of our tape playbacks would not preserve the [ee]

vowel character very far as we go up or down in the scale

from the C4 starting point. This is because in playback the

formant frequencies themselves are being shifted, thus

destroying the identifying marks of the vowel. To be sure, no

trouble at all comes from going up or down the scale by a

major third because this leaves us within the 25-percent

range spanned by the average formant frequencies of men,

women, and children. Experiment shows, however, that a

50-percent shift of the formants by the transposition of our

tones up or down by a musical fifth will change speech

sounds enough to hinder intelligibility seriously.

Opera singers and others who perform with large orchestral

accompaniment have developed several very interesting

ways of coping with the problem of being heard

recognizably. While parts of the two phenomena I shall

describe here have been recognized for several decades,

our understanding of their implications has been clarified

greatly by the recent work of Johan Sundberg at the Speech

Transmission Laboratory in Stockholm.6

Let us first investigate the acoustical nature of the singer-

versus-orchestra audibility problem, so that its solution can

be made intelligible. To begin with, we must be aware that

the shape of the long time average sound pressure

spectrum (LTAS, see the previous digression in this section)

of orchestral music is very much the same, whether one

measures a Mozart violin concerto or an operatic overture

by Wagner. There are of course small differences, and loud

passages in particular have an LTAS with a slight increase of



their high-frequency components relative to the low-

frequency ones. We can describe the sound pressure level

(decibel) version of the orchestral LTAS by saying that it

rises quickly from low frequencies to a peak near 450 Hz,

and then falls away with an average slope of about 9

dB/octave. The actual measured spectrum can be translated

into the corresponding loudness curve, which gives at any

frequency the loudness that that particular segment of the

spectrum would have if it were heard by itself. We find here

that the peak at 450 Hz has now become very marked

indeed, falling to half loudness on the two sides of the peak

at about 150 and 900 Hz. The loudness is roughly constant

from 1000 Hz to about 2500 Hz, above which it decreases

steadily to nothing at the upper limit of hearing. A typical

example of this behavior is shown by the smooth curve in

figure 19.7.

The LTAS for ordinary speech and ordinary singing (but not

for singing in the large-scale, operatic style) has a shape

that is roughly similar to what we have just described as

belonging to an orchestra. This remark provides us with at

least an indication that a singer might have problems being

heard; he apparently does not sound very different (in one

sense) from the orchestra, and it is unlikely that he can

overpower it through sheer vocal exertion. If the LTAS of an

orchestra and an ordinary voice are quite similar, we would

expect a certain amount of masking to take place (see chap.

13). When one listens in a room to pairs of sinusoids,

fluctuations in the transmission of both the masking and the

masked sound from source to our ears normally make

masking unimportant. However, when there are many

components from various sources having frequencies within

the ear’s critical bandwidth (about four semitones) centered

around the frequency of the test sinusoid, masking can be a

problem. Sundberg has found in a preliminary way that, for

a single sinusoid to be audible in the presence of a noise



source whose spectrum has been given the same shape as

the orchestral LTAS, this single sinusoid must have a

pressure amplitude roughly equal to the aggregate masking

sound pressure of the noise that is within the critical

bandwidth surrounding the sinusoid. In a musical

surrounding one might expect the highly organized

harmonic components of the singer’s voice to survive

masking somewhat better than this, because they can

advertise themselves quite well as a single entity: that is,

they have exactly synchronized beginnings and endings,

precisely tracking vibratos, and well-defined patterns of

swelling and diminishing as the formants change during

articulation. All these things prove to be somewhat

effective, particularly since many of these patterns of

change are quite different from those that help characterize

the various orchestral instruments. Nevertheless, the sheer

weight of numbers leads to trouble when one man tries to

make himself heard above the sounds from many.

Furthermore, the overall similarity of the orchestral LTAS and

its ordinary vocal counterpart guarantees that at no place in

the frequency range do the voice partials have a chance to

predominate over their orchestral setting, and so “carry”

their weaker brothers to our attention.
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Fig. 19.7. Long Time Averaged Loudness Spectrum for an

Orchestra with and without a Singer

The first of the acoustical alterations cultivated by the

operatic singer to help him in the audibility contest is his

habit of singing with a vocal cord placement and lung

pressure relationship that produce short, sharp puffs of air in

the output of his larynx. By this means he can, as we have

seen earlier, strengthen the upper partials in his voice. The

increased audibility of these upper partials helps us to



follow the rest of his voice components through the

orchestral sound.

The second large-voice acoustical phenomenon we will

consider is the so-called singer’s formant. At least 25 years

ago it was noticed that skilled male operatic singers did not

sing words with quite the arrangement of formants that they

would use in speaking those same words. Many of these

differences are relatively small, and for present purposes

unimportant. However, there is one very significant

alteration that turns out to contribute enormously to the

audibility of a singer who competes with an orchestra.

Tucked in among the other formants of his voice is a very

strongly marked extra one lying somewhere in the region

between 2500 and 3000 Hz. When we measure the various

speech sounds one by one in an operatic singer’s voice, we

find that this particular formant has a frequency that is

independent of the placement of the other, more ordinary

formants. The enormous contribution of the singer’s formant

to his audibility can readily be understood by comparing the

loudness LTAS for ordinary music (solid line in fig. 19.7) with

the one obtained by Sundberg for the tenor Jussi Björling

singing with loud orchestral accompaniment, which is

shown as the beaded line in figure 19.7.

The fact that the singer’s formant is independent of the

placement of the other formants tells us that this formant

arises from resonances in some part of the vocal tract that

somehow escapes the influence of the ordinary changes in

its shape. We can make good use of the ideas of wave

impedance (which were first met in section 17.1) to help

ourselves find the origin of the singer’s formant. The vocal

cords form an adjustable closure at the bottom of a small

tube (the larynx tube) which is a little more than 2 cm long.

The larynx tube has a slight bulge at its lower end, and its

upper end opens into a somewhat enlarged throat region



which then connects with mouth and nose cavities. The

operatic singer has learned to exaggerate the change in

cross-section that exists at the junction of the larynx tube

and the throat, thus increasing the discontinuity of wave

impedance between the two ducts. The second digression in

section 17. 1 explains that if two parts of a large system

have drastically different wave impedances, it is permissible

to think about the characteristic frequencies of each part

more or less independently. Sundberg has shown that the

first characteristic mode of vibration of air in the short

larynx tube is associated with the singer’s formant. The

excitation in the short tube is given its acoustical identity

by the trained singer’s ability to provide a strong

discontinuity in the cross-section at its upper end. If the

discontinuity is not emphasized, the larynx tube is merely

part of the “room” of irregular shape called the vocal tract. If

we like, the operatic singer’s larynx tube can be thought of

as a miniature vocal tract in its own right, whose upper end

serves as a kind of mouth which excites the long narrow

room provided by the rest of the vocal tract. In this way of

looking at things, the singer’s formant is the first formant of

the miniature vocal tract. In other words, the oscillatory flow

recipe from the larynx is first given, in the short tube of the

larynx, a strongly peaked boost in the 2500-to-3000-Hz

region before it is passed on for a more familiar type of

processing by the rest of the vocal system.

To summarize, the trained operatic male voice is produced

by a singer who has learned to cope with his orchestral

accompaniment by means of several changes in his

acoustical output. First of all, he can generate a flow pattern

from his larynx whose higher partials become progressively

weaker at a more gradual rate than those used in ordinary

speech or in a smaller-scale type of singing. In addition, he

has learned (sometimes at the expense of a certain amount

of strain, or even discomfort) to pull the lower end of his



vocal tract into a shape that permits the production of the

singer’s formant. Finally, he tends to use a fair amount of

vibrato, which adds a great deal of recognizability to the

various sinusoidal components of his voice by providing

them with a synchronized pulsation in frequency and

amplitude (as they sweep across their various formants).

Such synchronized variations in an otherwise complex

signal are of course exactly the sort of things our auditory

recognition machine works well upon. The synchronized

pulsations of vibrato are one more common element in the

singer’s sound which we can seize upon as our ears pursue

his voice through the music.

The special skills of the male operatic singer have, as we

have seen, a particular value to him in his chosen

profession, but they are not an entirely unmixed blessing.

The singer’s formant, whose frequency is essentially

unchangeable, can become a harsh and obtrusive element

sawing away on the listener’s consciousness. This harshness

can be avoided to some degree if the performer is artistic

enough to vary his singer’s formant from nothing on up to

its maximum prominence, changing its magnitude as his

musical surroundings change. Similarly, his customary form

of vibrato, which runs continually and at its own pace

completely independent of the rhythmic pattern of the

music, can give great audibility to his voice precisely

because of the individuality of its pattern. However, any

piece of music is likely to require a resourceful musician to

employ once again the full range of variation, from no

vibrato at all, through one which comes and goes during the

longer notes, to the more fixed variety whose function we

have already described. In short, maximum audibility is not

automatically advantageous—a voice whose rich variability

is skillfully made to appear and disappear in various ways

provides a marvelous vehicle for the display of true artistry.



19.5. Formant Tuning and

the Soprano Singing Voice

The soprano singer uses tones from the upper portion of the

range for human voices. The relationships between a

soprano’s relatively high voice frequencies and those of the

formants she uses for speech will help us understand

several of her practices that are quite different from those of

her male colleague. A particularly striking practice of some

sopranos will be the subject of this section.

One evening in the fall of 1971 my wife and I noticed an

arresting and most attractive quality in the sounds we heard

in a recording by the soprano Teresa Stich-Randall as she

performed the aria Porgi amor from Mozart’s opera The

Marriage of Figaro.7 Whenever a note of the aria persisted a

little, she seemed to be “tuning” one or another of the vowel

formants to a harmonic component of the voice spectrum. It

did not seem possible for her to start each note with this

formant matching already complete, but the adjustment

would take place rather quickly, making the tone “bloom” in

a most pleasing way. Enquiry among singers shows that this

mode of singing is not in general consciously cultivated. As

a matter of fact, only a few singers do it with the precision

that first brought it to our attention. Many listeners also

seem to find it difficult at first to focus their attention on

these acoustical changes, though most will say they find the

resulting tone color admirable. It was easy for me to

recognize this soprano’s tuning process, since it was simply

a new example of what I am accustomed to listen for as I

alter the resonances of musical instruments by shading a

woodwind tone hole with my finger or by moving an object

in and out of the bell of a woodwind or a brass instrument.

Such effects are important when I am asked to work on an



instrument, because they act as a guide to more permanent

adjustments to its physical structure.

To help us see what is going on when a singer tunes her

formants in the way we noticed on the recording, we will

look at a specific example. We will suppose that our

soprano, while singing a word having the vowel sound [oo],

comes to rest on the note B4♭ in the middle of the treble

staff. At this point she is producing a tone made up of

harmonic partials whose frequencies are 466.2, 932.3,

1398.5, ...Hz. Clearly, the first partial of her voice lies

somewhat above the 350-Hz position we would expect her

to give formant 1 (17 percent above the 300-Hz value

shown in the top part of fig. 19.6 for a male voice). The

singer alters her tongue, jaw, and lip positions a little bit

from her normal way of producing the [oo] sound, in such a

way as to raise this formant to match the fundamental

component of her voice sound. Our meticulous singer is

next called on to sing a word having the vowel sound [ah]

while producing the note D5, whose frequency components

lie at 587.3, 1174.7, 1762.0, ... Hz. While sustaining her

note she can make a small downward adjustment in the

frequency of her 1287-Hz second formant to make it

coincide with the second voice partial.

In 1972 Johan Sundberg made a set of observations on the

way a professional soprano placed her formants while

singing various vowels. He found that singers tend to align

their formant frequencies in approximately the way just

described, although his experimental subject did not align

her formant tunings as closely as do certain singers whom I

have noticed. However, the general behavior observed by

Sundberg is entirely consistent with the possibility of exact

tuning.8



Figure 19.8 shows the kind of things that a soprano can do if

she wishes (and is able) to make close tunings of her own

voice formants to the voice frequencies required by the

musical circumstances. Marks for the chromatic scale notes

between C4 and A5♯ are arranged along the bottom axis of

the figure, along with an indication for the fundamental

frequencies belonging to these notes. The vertical axis is

marked off with a frequency scale to indicate the voice-

partial frequencies, and those of various formants. The solid-

line curves that rise toward the right show the trend of the

fundamental frequency and of its harmonics as one sings up

the scale. Each curve is numbered at its left-hand end to

indicate the harmonic to which it refers.
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Fig. 19.8. Influence of Voice Harmonics on the Formants of

Various Sung Vowels

The sequence of dots along the lowest part of the graph

shows the way in which the frequency of formant one varies

if one sings either [oo] or {ee} up the chromatic scale

between C4 and A5♯. This formant frequency is about 350

Hz for all notes below D4♯, and therefore is not close to any

of the voice harmonics. When the singer gets to E4, formant

one for these two vowels has a frequency that matches that

of her voice fundamental. As she sings further up the scale,

she opens her mouth progressively wider, moves her jaw,

etc., to keep formant one in tune with partial 1, even though

their frequency rises from 329.6 Hz all the way up to 932.3

Hz. In other words, over a great part of her singing range a

soprano is able to strengthen partial 1 by letting it ride on

the peak of the first formant of either [oo] or {ee}.

The next progression of dots above the one we have just

discussed shows what happens semitone-by-semitone to



formant one of the vowel [ah] as our fine-tuned singer

progresses up the scale. Below E4, this formant cannot be

brought into tune with a voice partial. From E4 to about G4 it

is possible for vocal-tract adjustments to be made matching

formant one with the frequency of the singer’s second

partial. Above this point in the scale, there is no reasonable

way to bring the first formant belonging to [ah] into

resonance until we come to E5. Beyond this the voice

fundamental has risen sufficiently that it can be used to

guide the matching of the first formant of [ah] as well as

those belonging to the {oo} and [ee] sounds recognized

earlier.

Just above the dots showing the first-formant behavior of

[ah] we find a similar sequence for the variation of formant

two belonging to {oo}. This formant can come under the

control of the second voice harmonic from about A4♯ all the

way to the top of the range. Notice that above A4♯ the

singer has the possibility of keeping both fundamental and

second harmonic of her singing pitch in tune with formants

of [oo]. Whether she does this, or picks one or the other, or

tunes neither to the formants of {oo} presumably would

depend on her skill and also on the time available. There is

also the possibility that for some singing pitches it is not

physiologically possible to attain both matchings

simultaneously.

The second formant of [ah] jogs along in the general

neighborhood of 1200 Hz over the whole singing range,

although it becomes a candidate for tuning below D4♯ and

in the immediate neighborhoods of G4 and D5. Sundberg

found no evidence for an attempt at tuning the second

formant of [ee], as indicated by the gently sloping row of

dots at the top of the diagram. He finds this same lack of

influence of upper partials on the tuning for the second



formants of two or three other vowels, all of which lie very

close to that shown for [ee]. This observed lack of influence

of the higher partials is consistent with my own experience

in the adjustment of wind instruments. If one can get two or

three air column resonances accurately lined up with the

lower partials of the sound spectrum, the listener and the

player are very pleased with the result. Evidence in support

of this observation can be traced in instrument making and

performance practice at least back to 1720.

Let us ask now what musical resources are made available

to a singer who can tune one or two of her vowel formants to

match at least approximately the harmonic components of

the note she is producing. Sundberg points out that the

most obvious advantage that comes from even an

approximate tuning of the first formant is a very large

increase in the loudness of the sound a singer can achieve

for a given vocal effort. Not only will this be of use when she

must compete with strong accompaniments, but also in

more normal musical surroundings it has the advantage of

increasing the range of dynamics that she can produce

between a just-audible pianissimo and the fortissimo level

that corresponds to the maximum effort of which she is

capable.

There is a subtler effect of considerable musical importance

which can be noticed when there is exact tuning of any

formant. We learned earlier in this chapter that the inherent

unsteadiness of the vocal cord oscillations gives rise to

minute fluctuations in both amplitude and frequency of the

sinusoidal components of the airflow recipe. In the closing

part of section 19.3 we noticed that fluctuations in the

frequency of a voice partial located on the sloping side of a

formant peak give rise to fluctuations in the amplitude of

the component as it is given to the room. In other words,

there is more amplitude unsteadiness to be detected in the



radiated sound than is present in the original excitation

recipe from the larynx. When, however, the voice partial

finds itself perched at the rounded top of a formant peak,

the frequency fluctuations no longer give rise to additional

amplitude variations, and the tone takes on a particular

smoothness and fullness. Once again it should be remarked

that my first awareness of the perceptual importance of an

altered relationship between the two kinds of source

unsteadiness came from study of the analogous behavior of

orchestral wind instruments. This also led to the

development of a simple but highly precise method for the

measurement of air column resonance frequencies.

Whether or not a singer tunes a formant precisely to a voice

partial, we recognize that her use of vibrato will have a very

marked effect on the overall tone. The vibrato is of course a

smoothly varying fluctuation in frequency which varies

almost sinusoidally half a dozen times per second. This

makes for a corresponding variation in the loudness of any

partial that lies on the side of a formant peak. If the vibrato

centers itself to vary equally on either side of a formant

peak, the loudness drops briefly twice per cycle of the

vibrato, as its excitation frequency slides down alternately

on the two sides of the formant peak.

19.6. Intermediate Voices

and Various Musical

Implications

You will perhaps be wondering by now whether the male

singer tunes formants to the harmonic partials of his voice

after the manner of the soprano, and you may also be

curious to know whether she borrows his custom of



generating a singer’s formant. The answers to these

questions lead us toward an understanding of the ways in

which tenors and altos cope with the musical demands

made on their voices, which lie acoustically in the region

between the high and low voices we have been studying.

Because the male voice has formant peaks whose widths are

comparable to the distance between its closely spaced

harmonics (see the top part of fig. 19.5), very little change

in the loudness of such a voice would be expected when

formant tuning takes place. The loudness contributed by a

pair of partials that straddle a formant peak is not very

different from that produced when one of these lies exactly

on the peak while the other one is displaced some distance

down along the shoulder. To be sure, we can expect to find

in the low voice a slight and rather pleasant change of tone

color caused, in passing, by ordinary vowel changes and by

vibrato, as discussed in earlier sections.

The soprano makes almost no use of the singer’s formant

that is an important resource of the male singer. We have

learned that her habit of formant tuning already gives her a

powerful weapon in the battle for audibility (quite aside

from its important aesthetic function). Thus she has no

particular reason to seek additional reinforcements.

Sundberg finds in addition that the muscular requirements

that must be met to produce the singer’s formant are

sometimes incompatible with the adjustments that many of

these same muscles must make in tuning the formants.

Singers whose voices lie between the bass and the soprano

are apt to borrow heavily from the techniques used by their

higher- and lower-pitched neighbors. Thus the alto will

frequently use the singer’s formant. In the same way one

gets more than a hint of formant tuning when tenors and



altos use the higher parts of their registers, where the

technique becomes acoustically more effective.

Most singers, throughout their musical range, constantly

(though usually unconsciously) manipulate the vocal tract

formants to place their frequencies at musically useful

spots. These modifications in formant frequencies provide

the major explanation for the difficulty we often have in

understanding the words of a song. The patterns we are

accustomed to use for the identification of spoken words are

modified in music to meet other requirements. Often the

words used in a musical setting require a high degree of

understandability (for instance, in musical comedy, light

opera, and lieder singing). In this type of music the singer

and the composer both face an extremely difficult

challenge, quite aside from the question of competition with

an accompaniment, since both must constantly work toward

getting the right word sounds together with the right

pitches.

Before we leave the singers for a study of other musical

instruments, we should notice one more feature of their tone

production which is of considerable musical importance. The

inherent unsteadiness of the vocal cord motion produces, as

we have seen, a slight fluctuation in the amplitudes and

frequencies of the various voice partials, even when there is

no deliberate vibrato. It is useful to recast our description of

the resulting sound by recognizing that each unsteady

partial is in fact a closely spaced clump of randomly

arranged steady sinusoids; the strongest members of these

clumps have very nearly the nominal frequency of the

partial, with weaker components being spread over a narrow

surrounding region of frequency. For some voices, each of

these narrow-band clumps of sound is spread across a pitch

range of about 15 cents; for others it is as narrow as 5 cents.

My own voice lies in the middle of this classification.



We have already learned in our study of the piano the useful

consequences of having multiple clumps of partials (see sec.

17.3). For singers the same consequences are manifested,

but in a broader and smoother way. The beat phenomenon

(which is so pronounced between pairs of sinusoids) is very

little heard between the sounds of two slightly mistuned

clumps of partials. For this reason, then, slight errors of

tuning between two singers produce far less clashing and

roughness than would arise, for example, from similar errors

in the tuning of two electric organ tones whose partials are

made up of single sinusoids. Curiously enough, the slight

smearing of the partials of a singer’s tone does not prevent

the production of audible heterodyne components (see

chap. 14). As a matter of fact, the production of difference

tones, as defined in the digression in section 14.4, is

particularly easy to demonstrate with the help of two

sopranos.

The following example will show how the natural small

fluctuations of the voice affect the generation of heterodyne

components. Suppose we feed two clumps of components, P

and Q, to a nonlinear device such as the human ear, P being

centered at 300 Hz and Q at 450 Hz. Let us assume for the

sake of numerical simplicity that in both cases the smearing

width of the clumps is one percent, so that in P the

components are spread over a range of 3 Hz, while in Q they

extend over 4.5 Hz. The simplest heterodyne components

that are born of this pair of sounds are clumps which are

centered at the following frequencies:

2P = 600 Hz, 2Q = 900 Hz, (P + Q) 

= 750 Hz, (P — Q) = 150 Hz

The extent of the smearing of the resulting partials at these

various locations depends jointly on the widths of the

ancestral clumps and on the details of the strengths of the



partials which are distributed within them. The spread of the

heterodyne clumps at 600, 900, etc., Hz might be

something like the following: 4.2, 6.4, 5.4, 5.4 Hz. In every

case the width of a heterodyne clump is somewhat broader

than the widths of its ancestors.

If you refer back to our investigation in section 14.4 of the

special relationships between musical sounds, it will be

apparent that the broadening of spectrum components into

clumps by voice instabilities by no means destroys these

relationships. It does, however, remove the clear-cut, all-or-

nothing nature of the beat-free intervals, converting them

into a sort of pastel version. This gives the composer a range

between consonance and dissonance as he writes his

chords, making many things musically possible that are not

successful when he writes for instruments whose tones are

made up of strictly sinusoidal (single-component) partials.

19.7. Examples,

Experiments, and

Questions

1. Close your lips around one open end of a long piece of

tubing with a 20-to-25-mm diameter and sing a slowly rising

glissando from your bottom note. You will find certain

sharply defined pitches at which it is essentially impossible

to produce any sound at all. Your vocal cords will insist on

jumping to either a higher or a lower frequency of oscillation

in a most unsettling and unfamiliar manner. For a pipe that

is 150 cm long, a voice will act in this way at frequencies

close to 90, 185, and 265 Hz (only the highest of these is

likely to be reachable by a woman); if the pipe is 100 cm

long, the disruptions occur near 130 and 250 Hz; for a 50



cm pipe, the effect takes place at a lowest frequency near

245 Hz.9 You may wish to verify that, as the piece of tubing

is progressively shortened, its disruptive effects become

progressively weaker, and the frequencies at which they

occur rise above 1000 Hz, which carries the phenomenon

out of the singing range for most of us.

The upsetting effects produced by a piece of pipe on the

vocal cord oscillations take place at very narrowly defined

frequencies, between which nothing unusual is noticed in

the “feel” of the experimenter’s larynx. Since the effect

disappears completely as the pipe is shortened, it was

indeed correct in section 19.1 to treat the vocal cords as a

normally autonomous self-oscillating system which is not

itself much influenced by the varying acoustical properties

of the vocal tract to which it is coupled.

2. Several experiments having to do with formants can be

done with a piece of hard-walled tubing about 15 cm long

with a diameter large enough (50 mm or so) to fit around

your ear while you press the pipe airtight against the side of

your head. With the pipe in place, listen to the rushing

sound produced by its response to random noise in the room

as you progressively close off the open end by sliding the

flat of your hand across it. The resonances of the cavity

impose on the room noise a spectrum envelope having

formantlike behavior, so that you hear something like a

progression of whispered vowel sounds. The lowest three

formantlike frequencies associated with this cavity will be

close to the following values:
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The last of these will give you a rough imitation of an [oo]

sound, even though the formants do not coincide with those

given in the top part of figure 19.6.



3. If you sing a vowel sound in the presence of a piano

whose dampers are lifted, many of the strings will be set

into vibration. When your tone ceases, these strings will be

heard to give back a crude but often recognizable echo of

your vowel. This phenomenon can be exploited in many

ways. For instance, you could hold down only the key whose

note name is the same as that of the tone you sing, on the

assumption that the various string modes will respond to

your sound. Why will this experiment work better if you

simultaneously hold down three keys, corresponding to the

pitch of the note you are singing plus the ones a semitone

above and below? Numerous other combinations of

selectively damped or undamped strings will suggest

themselves for your experimentation.

4. Playing back various long-sustained vowels on a tape

recorder at a speed greater or less than that used in

recording them can make quite startling changes in what

they sound like. For example, playing [ah] back at half

speed turns it into [oh] despite the fact the first-formant

frequencies for these two vowels are in the ratio 0.77, while

the second formant ratio is 0.7, and the higher formants

have ratios close to unity. The tape recorder running at half

speed of course produces a ratio of 0.5 for all frequencies.

Do you expect that a double-speed playback of [oh] will

necessarily give an [ah]?

5. Deep-sea divers must work under conditions in which the

atmosphere they breathe is under very high pressure. To

prevent “the bends,” this atmosphere generally has helium

gas mixed in with the oxygen that is necessary to sustain

life. In such an atmosphere, the speed of sound and hence

the frequencies of the voice formants are raised

considerably. In contrast to this change, why would you

expect only a small change in the oscillation frequency of

the diver’s vocal cords, and so also in the pitch of his voice?



There is a considerable disruption of the intelligibility of

speech when diving, caused in part by the changes listed

above and in part because the production of consonants is

deranged through changes in the air viscosity and density.

Taking everything into account, would you expect greater

disruption of speech intelligibility for men or women divers?

Would you expect the diver to have trouble understanding

what he hears over the telephone from his helper who is at

the water’s surface?

6. Sound spectrographs are immensely useful laboratory

tools for displaying visually the changing patterns of strong

and weak partials in the sounds of human speech. It is

inherent in the nature of these devices that sufficient speed

to follow rapidly changing sounds is attained at the expense

of an ability to measure accurately the frequencies of the

individual partials; a sound spectrograph shows only the

general outline of the behavior of the formants.

From comic strips and television shows one sometimes gets

the impression that prints generated by the sound

spectrograph can be used to identify criminals in the same

dependable way that is possible with fingerprints. You might

find it interesting to list for yourself a few of the important

aspects of human speech recognition which cannot be

displayed by such a device. It turns out that the most

dependable identifications are made by expert human

listeners who supplement the evidence of their ears with

several instruments, including the spectrograph.10

7. It is sometimes possible to describe the tone quality of

musical instruments by telling what vowel their tone

imitates (e.g., the [aw] sound attributed to the English

horn). This occasionally tempts people to draw the

erroneous conclusion that the spectrum of the instrument

resembles that of the vowel. In the late nineteenth and early



twentieth centuries, studies of human speech were

generally able to uncover only the strongest formant

(usually the first), which led to a particularly trivial

characterization of instrumental tone color. A vivid example

of the acoustical disparity between a musical sound and its

vocal imitation is the “whee” sound that was attributed (in

part 5 of section 17.7) to the sound of brushed-across piano

strings. When one enunciates this word, the first formant

starts near 300 Hz, rises steadily to about 700 Hz, and then

falls to 250 Hz. The second formant meanwhile starts at 650

Hz, rises above 1000 Hz, and then dips to 900 Hz before

rising fairly smoothly to 2250 Hz. The third formant has a

slowly rising trend from 2500 Hz to about 3200 Hz.

Meanwhile, the sound spectrum of the stroked upper strings

of a piano has a fundamental component that steadily rises

from about 2100 Hz at C7 to about 4200 Hz at C8, while the

second harmonic covers a similar variation at double

frequency, ending up at 8400 Hz. It would be interesting to

know how our nervous system operates on such

complexities to give us impressions of speechlike sounds

when we listen to musical instruments.
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The Brass Wind

Instruments

The orchestral brass instruments and the human speech

system are acoustically similar: both have a flow-control

device that admits puffs of air into an elongated air column

whose open far end acts as a source that excites acoustic

disturbances in the surrounding air. In both cases the

performer controls the pitch of his tones by making

adjustments to the tension and inertia of a pair of fleshy

folds (either the singer’s vocal cords or the brass player’s

lips). In both cases the placement of resonances of the air

column (contained either within the vocal tract or within the

flaring brass tube) is critical to the production of musically

useful sounds. However, we must be careful not to take the

analogy too far.

In the voice system, we observed that the vocal cords

oscillate autonomously, with no appreciable influence

exerted on their motion by the vocal tract. Quite the

contrary is true in the playing of brass instruments: the

player’s lips have a motion that is very strongly influenced

by the acoustical properties of the air column to which they

are connected. That is, the mechanical shape of a trumpet

(and hence the location of its characteristic frequencies) has

a direct influence on the shapes of the puffs of air which

enter its mouthpiece. The brass instrument’s air column has

a dual function, then: not only does it (like the vocal tract)

transmit sound components selectively from the flow source



to the room, it also plays a large role in determining the

nature of the incoming flow pattern itself.

In most of this chapter we will concern ourselves exclusively

with what goes on inside a brass instrument; only when we

reach section 20.8 will we finally compare the pressure

amplitudes for the various partials measured in the

mouthpiece cup (where they control the oscillation of the

lips) with those that are observed out in the room where we

hear the music.1

20.1. A Model of the Brass

Player’s Excitation

Mechanism: The Water

Trumpet

A brass instrument consists of a long and carefully shaped

metal duct coupled to a flow-control mechanism which

converts a steady wind supply from the player’s lungs into

oscillations of the air column contained within the duct. The

flow of air from the player passes between his lips, which

open and close rapidly in response to the acoustical

variations within the mouthpiece and so admit a periodically

varying flow of air into the mouthpiece. The air column, on

the other hand, is kept oscillating in its longitudinal

vibratory motion because of these periodic puffs of air

supplied to it via the lip-valve.
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Fig. 20.1.



As shown in figure 20.1, all brass instruments consist of a

mouthpiece (which generally has a cup and a tapered back

bore), a mouthpipe (which also has a carefully controlled

taper), a main bore (which is either cylindrical or conical),

and a flaring bell that forms the exit from the interior of the

horn into the space around the instrument. It is possible to

reproduce the complex shape of such an air column in the

form of an open channel filled with water (see part 3 of sec.

6.6). Water waves moving in such a channel of varying cross

section obey precisely the same equations as do the sound

waves that oscillate along an air column of varying cross

section: the lengthwise swinging of air in the horn is

replaced in the water model by sloshing water, and our lips

are replaced by a flow-control valve.

Figure 20.2 shows an example of an air column visualized in

terms of its water equivalent, which we might call a “water

trumpet.” In this machine we have arranged to have a water

supply valve that opens progressively as the water level

rises at the “mouthpiece” end of the trough; this supply

valve reduces the flow when the float moves downward. We

need not assume at this point that the flow through the

valve is ever cut off entirely—all that is required is that an

increase of flow into the channel take place when the water

at the valve end is above “sea level” and a decrease of flow

take place when the water level is low. In section 19.2 we

learned that in order to maintain an oscillatory motion, such

as that of a child swinging, one must apply the excitation at

properly timed instants during the swing. Notice that our

flow-control valve is arranged to meet this same

requirement for maintaining the oscillation of water in the

channel. At instants during the sloshing when water is

collecting at the trough end, the valve injects yet more

water there, to enhance the piling-up of fluid. Similarly, at

times of low water, the injected flow is reduced below the

average rate and causes a temporary deficit in the



otherwise steady (non-oscillatory) flow of water that would

run along the trough and out if the valve were held at its

sea-level position.
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Fig. 20.2. A Water Trumpet

In 1877 the German physicist Hermann Helmholtz added an

appendix to the fourth German edition of his classic work,

On the Sensations of Tone; this appendix gives a brief but

complete analysis of the way in which a pressure-controlled

valve collaborates with a single, longitudinally vibrating

mode of the air in a duct to maintain it in oscillation.2 Our

water trumpet, as described so far, is an exact equivalent in

water of the system analyzed by Helmholtz, as we can easily

verify with the help of some ideas sketched out earlier in

section 11.1. In that section we recognized that when water

sloshes back and forth longitudinally in a duct, the alternate

piling up and lowering of water near the closed end also

gives rise to fluid pressure variations at the bottom of the

trough; the water pressure there varies above and below the

average value (corresponding to the pressure measured at

the bottom when the water surface is at rest). These

pressure variations are of course the consequences of the

highly visible oscillatory changes in the height of the water.

It should be obvious that the water trumpet is a device in

which the entering fluid flow is controlled by pressure

variations at the input end of the trough. The brass-player’s

lips perform an almost strictly analogous flow-control

function as they open and close under the influence of the

acoustic (i.e., oscillatory) pressure variations that take place

within the mouthpiece cup. For brevity and general

applicability to woodwinds as well as brasses, we will

generally refer to the flow controller as a reed-valve or a lip-

valve (this reed- or lip-valve should not be confused with



the valves on brass instruments that add varying amounts

of tubing to the overall length of the instrument).

Let us summarize our conclusions so far in the first member

of a set of fundamental principles governing the self-

sustained oscillations of an air column acting in

collaboration with a pressure-operated flow controller:

1. A pressure-operated reed-valve will collaborate with an

air column to favor the maintenance of oscillation at

frequencies closely matching one or another of the natural

frequencies characteristic of the air column itself.

So far we have said nothing about what determines the

shapes of air columns that are useful for making good brass

instruments. If we proceed upon the basis of what we have

learned so far, it would seem possible to make a usable horn

by choosing an air-column shape whose characteristic

frequencies possess almost any desired musical

relationship. For example, mode 1 could be located at 110

Hz, presumably to play A2, with mode 2 placed at 196 Hz to

provide us with G3, while modes 3 and 4 might be located at

294 Hz and 523 Hz to provide the notes D4 and C5.

Certainly a musician might make a choice of frequencies

more suited to his convenience, but the choice described

here might be expected at least to play one or another of

these notes. This expectation proves to be false, for reasons

that will appear in the next section along with a rather neat

way of gaining several significant advantages.



20.2. Multiple-Mode

Cooperations: Regimes of

Oscillation

A trombonist trying to play the hypothetical instrument

described in the last section would meet many difficulties.

The notes would be hard to start, they would be unsteady,

and they would be extremely fatiguing to play over any

length of time. The sound would be rather dull and muffled

as well. Our musician would probably plead with us that if

he is to be deprived of his noble and responsive trombone,

he should at least be permitted to use a garden hose

instead of the balky horror we have given him.

Let us examine more closely the physics of what takes place

as a player’s lips collaborate with one of the modes

belonging to the hypothetical instrument proposed above,

in the hope of finding out how a real trombone happens to

work so much more satisfactorily than does our initial

invention. Harking back to our study of the vocal cords, we

can recognize that a pair of lips vibrating at 196 Hz in

collaboration with mode 2 of our column will admit a

repetitive train of puffs whose flow recipe includes harmonic

partials at 392 and 588 Hz (etc.) in addition to the 196-Hz

fundamental component that excites air-column mode 2.

The additional components in the flow recipe arise from the

fact that even if the player’s lips were to move sinusoidally

as they open and close,3 the airflow through them is not

normally sinusoidal, because of the nonlinearity of the

valve-control characteristic. The upper harmonic

components in the flow contribute nothing to the

maintenance of oscillation and are therefore a drain on the

physical resources of the player. As a matter of fact, for



certain shapes of air column, these components can end up

exerting a disruptive effect on the original oscillation in a

way that is reminiscent of the disruptions produced in the

vocal cord oscillations when pipes of certain lengths are

sung into (see example 1, sec. 19.7).

Suppose we alter the shape of our peculiar horn in a metal-

worker’s analog to the formant-tuning procedure employed

by some soprano singers. If we raise the frequency of mode

3 (or lower that of mode 4) to place it at 392 Hz, then the

already existing second harmonic in the flow spectrum will

be able to excite this altered mode, so that there would now

be two oscillations taking place in the air column, either one

of which might maintain itself according to the fundamental

principle enunciated in statement 1. These would

synchronize themselves, because they both act on the same

lip-valve, causing it to produce a much stronger and more

spiky airflow pattern than before. Our trombone player

would be somewhat happier with this modified instrument

than he was before. The 110-Hz’ A2 note would be as bad as

before and the newly arranged G4 at 392 Hz would be no

better, but G3 would play at least plausibly, because it

would now be produced with oscillatory contributions to the

reed motion coming from two air-column modes running at

harmonically related frequencies. A redesigned air column

that somehow provides two or more harmonically arranged

modes to help the production of each of the notes to be

played would begin to seem quite usable to our musician.

The usefulness of the harmonically related air-column

resonances in fostering stable oscillations sustained by a

reed-valve was first pointed out by the French physicist

Henri Bouasse in his book Instruments à Vent, the two

volumes of which appeared in 1929 and 1930.4 These

volumes contain what still constitutes one of the most



thoroughand dependable accounts of the acoustics of wind

instruments, despite the fact that Bouasse had some

misunderstandings about the mouthpieces and bells of

brasses. The second of our set of statements is a slightly

elaborated version of the observation he made on the

properties of musical wind instruments:

2. If the reed-valve is nonlinear (i.e., if the flow through it

varies in a way that is not simply proportional to the

acoustic pressure which controls it), then oscillation is

favored if the air column has one or more natural

frequencies that correspond to one or more of the higher

partials of the tone being produced.

All of the instruments (string as well as wind) that we will

consider in the rest of this book function in a manner that is

consistent with the requirements we have laid down in

statements 1 and 2. Because it is not always possible to

arrange precise matching of air-column (or string) resonance

frequencies with harmonics of the tone that is to be played,

we need to provide ourselves with a means for discussing

such matters as the relative ease with which the instrument

produces its different sounds, the loudness and pitch

stability of various notes, the variation of both playing pitch

and sound spectrum as the loudness is altered, and the

nature of the sound-pressure spectrum generated within the

instrument.

As a first step in setting up the basis for our discussion, we

must recognize that when we make use of a lip- or reed-



valve and an air column, the independent existence of the

various characteristic air-column modes (which so far in this

book we have assumed) is destroyed by the mutual

influence these modes have on one another via the

nonlinearly shared flow through the reed-valve. The

heterodyne frequencies generated at the valve by a pair of

oscillatory components can themselves stir up air-column

oscillations that alter the lip or reed motion. The valve and

the air column must therefore mutually adjust themselves to

produce a definite multifrequency oscillatory state which we

shall call a regime of oscillation. We will devote the third of

our set of statements to a formal definition of this term:

3. A regime of oscillation is that state of the collective

motion of an air column in which a nonlinear excitation

mechanism (the reed) collaborates with a set of air-column

modes to maintain a steady oscillation containing several

harmonically related frequency components, each with its

own definite amplitude.

As will become increasingly apparent in the pages to follow,

the word regime was chosen deliberately, to call attention to

what we might imagine to be political negotiations that go

on simultaneously at various frequencies between the air

column and the reed, as changing musical conditions give

dominance to different members of the regime.



20.3. Acoustical

Measurements and

Playing Experiments on

Simple Air Columns

The vibration of a brass-player’s lips is controlled by a basic

property of the air column; this basic property is the

acoustic pressure developed in the mouthpiece in response

to the stimulus of a pulsating flow of air injected from the

player’s lungs. Let us see how this response at the

mouthpiece end of the air column might be measured in the

laboratory by methods that are independent of the

complications engendered by the interaction of the air

column with the player’s lips. Figure 20.3 shows in

simplified form how an oscillatory pump can feed the

mouthpiece cavity via a capillary tube such as one might

cut from a hypodermic syringe. The pump cylinder produces

sinusoidal variations of air pressure at the driving motor’s

frequency; these pressure variations give rise to a small flow

into and out of the mouthpiece. A tiny microphone is placed

inside the mouthpiece to measure the amplitude of the

pressure fluctuations. This microphone gives us the desired

response information, which can be displayed on a graph as

a function of pump driving frequency.

Digression on Air-Column Excitation Methods.

In excitation machines that are used in the laboratory, the

crank-driven pump of figure 20.3 is replaced by some



variation of a loudspeaker. Such a driver is then monitored

and controlled by an auxiliary microphone which maintains

constant flow stimulus as one sweeps automatically through

the interesting range of frequencies. In the 1950s, Earle

Kent and his co-workers at C. G. Conn Ltd. in Elkhart,

Indiana, developed the capillary excitation method to a

degree of precision which has never been surpassed. Up

until 1968 I made great use of an adaptation of their

equipment. More recently I have also used an apparatus in

which a closely controlled excitatory diaphragm acts

directly on the air column, which gives certain advantages.

One piece of my newer equipment is based on a design by

the Czech engineer Josef Merhaut, and the other one is an

adaptation of the work of John Coltman of the Westinghouse

Research Laboratory in Pittsburgh. In every case the

excitation devices function exactly as do the acoustic

sources described in section 11.2.5
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Fig. 20.3. Excitation Mechanism for Study of Pressure

Response of an Air Column

Suppose we mount on our laboratory machine a duct (of

uniform cross section) that is long enough for us to

complete our measurements before any disturbances can

travel down it and return from the far end. Such a set-up

provides us with a convenient reference for understanding

what goes on in an air column of normal length. The

microphone pressure signal measured at the “mouthpiece”

end of this long duct proves to be independent of

frequency, having a magnitude that is equal to the product

of the capillary driver’s source strength and the wave

impedance of the duct. For a duct having a strictly uniform

cross-sectional area A, the wave impedance is the ratio of



the pressure to the volume flow injected into the duct. Its

value is:
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Here d is the density of air and B is its bulk modulus, a

measure of the springiness that we feel when a small

volume of air is compressed. (Compare this formula for wave

impedance with those given in section 17. 1 for a piano

string and for a soundboard.) If the cross section of the duct

varies somewhat in the region next to the input end, the

wave impedance will have a value that is somewhat

different from the one given here, and this value will depend

on the excitation frequency used in measuring it.

Let us now consider what takes place when we measure the

pressure response of a piece of cylindrical tubing of more

normal size—e.g., about the length of a trumpet. The flow

disturbance produced by the source gives rise, as before, to

a pressure wave that travels down the length of the pipe.

This pressure wave loses amplitude as it goes because of

viscous friction and the transfer of heat from the wave to the

walls of the pipe. At the far end, where the pipe opens into

the room, there is a strong discontinuity in wave impedance,

since the room can be imagined to be a second duct of

enormously large cross-sectional area, which therefore has a

very small wave impedance. Just as we found that a

mechanical displacement sent down a piano string is almost

totally reflected at the point where it joins the high-

impedance bridge and soundboard, so also we find here that

the acoustic pressure pulse is almost totally reflected at the

junction of the pipe and the room, where the wave

impedance suddenly becomes very much lower. In both

cases the return pulse is inverted: an upward impulse on the

string returns as a downward one, and a high-pressure pulse

in the pipe is reflected as a momentary rarefaction. The



wave that is reflected back up the pipe toward the

excitatory and measurement end combines with newly

injected waves to produce what is called a standing wave.

If the round-trip time that the wave takes to go from the

mouthpiece or excitation end to the open end is suitable,

the waves traveling in the duct reinforce one another, and

in due course a large pressure disturbance is set up in the

pipe. All this is simply another way of saying that if we

excite the pipe at one of its characteristic frequencies, the

corresponding vibrational shape builds up in the duct, after

a more or less complicated transient takes place. At certain

other frequencies, the returned pressure wave arrives out of

step with the excitation, and the overall response of the air

column is at a minimum. The top part of figure 20.4 shows

the resonance response curve produced when one measures

the properties of a cylindrical piece of trumpet tubing about

140 cm long. The curve shows dozens of peaks lying at

regularly spaced frequencies that are odd multiples of about

63 Hz. Since the frictional losses and thermal dissipation

taking place at the pipe walls increase with frequency, these

resonance peaks become less and less tall at higher

frequencies. Because of the wave-impedance discontinuity

at the open end, the sound that escapes into the room is

nearly inaudible under the conditions of this experiment.
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Fig. 20.4. Input Impedance Curves for a Piece of Cylindrical

Trumpet Tubing. Top, tubing alone; bottom, tubing with

normal bell attached.

Just as we find that the pressure response at the driving end

of a very long pipe is proportional to what is defined as the

wave impedance of the pipe, so also is it convenient to talk

about the response of a duct of finite length in terms of



what is called its input impedance. The measure of input

impedance is larger or smaller than the duct’s wave

impedance, depending on the relationship of the excitation

frequency to the natural frequencies of the duct. The peaks

we observe in our resonance curve lie at the natural

frequencies associated with that duct if the air within it is

set ringing by slapping it closed abruptly at the

“mouthpiece” end with the palm of one’s hand.

A real brass instrument is provided with a flaring expansion

to the air column at its open end, which means we should

consider the simpler acoustic consequences of adding an

actual trumpet bell to the piece of tubing that we have been

studying. The lower part of figure 20.4 shows the input

impedance curve measured for such a combination.

Comparison of this curve with the one just above it for the

pipe alone shows us immediately that this new air column

has its resonance peaks shifted toward lower frequencies, as

befits a duct in which sounds will take a longer time to make

a round trip. The peaks are also less tall, which is in accord

with the greater amount of dissipation which takes place at

the pipe walls. We also notice that above about 1500 Hz the

input impedance peaks and dips have almost disappeared.

We shall postpone an examination of the reasons for this till

sections 20.4 and 20. 5 , and look briefly at the frequency

relations between the resonance peaks, since it is these

which will enter into any possible regimes of oscillation.

Using the instrument whose resonance curve is shown in the

lower part of figure 20.4, a player attempts to sound a tone

based on the 60-Hz first-mode resonance. He will find this

note extremely difficult and wobbly, because almost all of

its upper harmonics fall near dips in the resonance curve,

and therefore subject the lip-valve to a great deal of

disruptive influence. However, the player will find it possible

to sound a reasonably stable tone near 165 Hz, where peaks



2, 4, 6, and 8 are quite harmonically related and so join

without trouble to form a well-defined regime of oscillation.

The musician will discover several more such tones that he

can play, but none of them will give him the free-blowing,

stable, and ringing tone that he has come to expect from a

truly fine brass instrument.

Our rudimentary trumpet and its resonance curves show

that while it is helpful to have resonance peaks

corresponding to all of the lower harmonics of each of the

desired tones, this alone is not sufficient to give us a good

instrument. In the next section we will learn of the

important role played by the mouthpiece itself in

contributing to the proper behavior of a brass instrument,

and then apply our knowledge to a study of the properties

of various notes throughout its musical range.

20.4. The Influence of the

Mouthpiece on the Heights

of Resonance Peaks; Some

Playing Properties of a

Trumpet

I have studied a wide variety of air columns of different

shapes chosen to meet in varying degree Bouasse’s

requirement that their natural frequencies must be suitably

related if they are to join with the player’s lip-valve to set up

stable regimes of oscillation. The more resonances that are

present to cooperate and the more accurately these are

aligned, the easier it is to play the notes. Such cooperatively

tuned air columns must however meet one additional



requirement before they are ready to play properly as brass

instruments: they must include some cousin to a normal

mouthpiece having a cup cavity and a constricted back

bore. The reason for this additional requirement is implied

by the air-column physics that we have already studied.

Let us turn our attention back to the lower part of figure

20.4, which shows the input impedance curve of a piece of

tubing to which a trumpet bell is attached. We have already

noticed that the resonance peaks almost disappear when

the excitation frequency is above 1500 Hz, leaving a trace

that fluctuates slightly above and below the horizontal

dashed line that is drawn across the chart. If we were to

distribute many small wisps of cotton along the pipe and in

the bell, so as to increase the damping of our oscillatory

system, we would find that all the resonance peaks become

less tall and all the dips less deep. As more damping is

added, the peaks and dips of the curve would gradually

merge (at all frequencies) with the horizontal dashed line, a

line which is precisely what we would have obtained from a

wave-impedance measurement of an infinitely long piece of

tubing. These auxiliary experiments with cotton tell us how

to interpret the disappearance of resonances above 1500

Hz: high-frequency sound sent down toward the bell is

transmitted almost totally into the room—very little of the

sound returns to set up a standing wave with its resulting

resonance peaks and dips.

A close examination of the heights of the resonance peaks

and the depths of the dips shows that the corresponding

impedances have a curious relationship with the value of

the wave impedance (which is represented on our chart by

the horizontal reference line). Let us introduce the

relationship by means of a few examples. Peak 1 turns out

here to represent an input impedance that is about 7.5

times as large as the wave impedance, while the input



impedance measured at the dip next to this peak has a

value about (1/7.5)th that of the wave impedance.

Anywhere along the chart we find similarly that adjacent

peaks and dips differ from the wave impedance by very

nearly the same numerical factor, which can be called Q0. To

summarize:

(impedance at peak) = (wave impedance) X Q0 

(impedance at dip) = (wave impedance)/Q0

We have already had indications that the heights of the

resonance peaks (and therefore Q0) depend on the

amplitude of the return wave arriving at the input end

relative to the one sent out by the source. As a matter of

fact, we can calculate Q0 very easily in terms of the

fractional reduction wave amplitude produced by a single

round trip in the air column:
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For example, if in some duct the return wave has an

amplitude of 85 percent of the original one, then Q0=

1.85/0.15 = 12.33. You may wish to verify that for our pipe-

plus-bell the round-trip reduction is 76.5 percent. Notice

that Q0 takes account of all forms of attenuation, whether

the dissipation takes place at the pipe walls or at the bell

end, where sound leaks out into the room.

We are now ready to consider the mouthpiece as the lead-in

part of an elongated air column. If we excite and measure

the response of a duct consisting of a trumpet mouthpiece

connected to an extremely long piece of tubing, we do not

expect the wave impedance to remain constant, because of

the variation of cross section found at the driving end of the

composite duct (refer back to the remarks subsequent to



the formula given for wave impedance in sec. 20.3). As a

matter of fact, measurement of this sort using trumpet parts

shows that, at very low frequencies, the wave impedance

starts out with a value equal to that of the pipe alone. It

then rises in the neighborhood of 850 Hz to a value almost

five times larger. Above 850 Hz it decreases steadily, falling

below the simple pipe value in the region above about 3500

Hz.

This broad peaking-up of the wave impedance near 850 Hz

turns out to be connected with the fact that the mouthpiece,

taken by itself, has its first natural frequency near 875 Hz.

This resonant influence of the mouthpiece shows that it

retains some vestige of its own identity when it is merged

with the rest of the extended duct. The other resonances of

the mouthpiece do not show up recognizably in the wave

impedance curve. The mouthpiece’s own lowest frequency

will henceforth be called its popping frequency (Fp) because

even in the absence of laboratory equipment it can

conveniently be measured by listening to the lowest

impulsively excited sound produced by taking the

mouthpiece cup and slapping it closed against the palm of

the hand.

Figure 20.5 shows the resonance curve for a piece of

trumpet tubing about 72 cm long, with and without a

normal mouthpiece. The values of Q0 are roughly the same

in the two examples (since the wall and radiation losses are

closely similar), so that it is easy to compare the two curves.

Mode 1 in both cases has about the same peak input

impedance, because the wave impedances are alike here at

low frequencies. On the other hand, peaks 4 and 5 are about

five times taller for the composite tube than for the plain

one, because these peaks lie in the region near 850 Hz

where the wave impedance is particularly altered. Notice

also that the impedances in the dips also show a fivefold



increase when the mouthpiece is present, thus confirming

that the effect has been properly associated with the

variation of wave impedance.

The presence of the mouthpiece cup cavity and its

associated back-bore constriction produce the same large

increase in the heights of impedance peaks in the

resonance curve of a complete trumpet, and we now have

an explanation of the musical superiority of the

conventional construction over air columns which achieve

suitable frequency relationships without making use of a

normal mouthpiece. The player’s lips form a rather massive

vibrator, which does not respond very well to the bidding of

an air column unless the pressure fluctuations due to a

given flow are made very large; i.e., the input impedances

of the resonances must be magnified by whatever means

are available and the conventional mouthpiece can be

arranged to do this job very well.
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Fig. 20.5. Input Impedance Curves for a Piece of Cylindrical

Trumpet Tubing. Top, tubing alone; bottom, tubing with

mouthpiece attached at input end.

Figure 20.6 shows the measured input impedance curve for

a first-quality modern Bb trumpet, along with diagrammatic

indications of how the resonance peaks are related to the

production of the written notes C4 and G4. The regime of

oscillation for C4 is based on the second of the input

impedance maxima of the air column acting in consort with

the 4th, 6th, and 8th peaks in the curve. When the tone is

sounded at the pianissimo level, the flow variation produced

at the player’s lips is very nearly sinusoidal, so that only the

second mode of the pipe is appreciably concerned with

maintaining oscillation. In other words, we are back at



Helmholtz’s version of oscillation theory, and the playing

frequency closely matches that of the second peak. As the

loudness level increases, the progressively more abrupt

motion of the lip-valve generates stronger harmonics, which

then actively reinforce themselves and each other by

interacting more vigorously with the other peaks mentioned

above. An amateur musician finds this note wobbly when he

plays softly, because the not-very-tall peak that sustains the

fundamental component of his tone is not able to command

much steadiness in the vibrations of his untrained lips. As

he plays louder, however, the higher resonances become

influential in the regime of oscillation, thereby stabilizing

the tone.
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Fig. 20.6. Resonance Curve of a B b Trumpet. Regimes of

oscillation for C 4 and G 4 are indicated.

When the player sounds the note G4, the input impedance

maxima that collaborate to form the regime of oscillation are

peaks number 3, 6, and to some extent 9. The dominant

member of this regime is of course peak number 3, which

contributes primarily to the fundamental component of the

tone. Since this peak is considerably taller than peak 2, we

can readily understand why G4 is a much more stable note

when played pianissimo than is C4. As one plays somewhat

louder, the very tall 6th peak enters the regime, providing a

great deal of energy at the frequency of the second

harmonic. Since G4 has two tall peaks which dominate its

regime, it proves to be one of the strongest and easiest

notes to play on the trumpet.

In figure 20.7 we show once more the response curve for our

trumpet; this time the regimes of oscillation are indicated



for the written notes G5, C6, and high E6. These regimes

show us why notes become increasingly hard to play as we

go up the scale. G5 is quite easy to play at the pianissimo

level, because it is maintained by the action of the tall 6th

impedance peak. There is no increase in the ease of playing

of this note during a crescendo, however, because the 2nd

harmonic, as it grows by heterodyne action at the lips, is not

itself regenerated by the minute contribution from peak 12.

We might very well describe the production of G5 as a solo

performance by peak 6 at all dynamic levels. The same

remark applies to C6 and E6 above G5. Both of these notes

are somewhat difficult to play (quite aside from any

problems the player might have in getting adequate tension

in his lips) because each has only a single active peak that

is not very tall. It takes an athletic trumpeter to play the

highest notes, where his lips must operate almost solely

under the influence of the oscillatory Bernoulli force, almost

exactly as the vocal cords function. At these frequencies the

air column has changed from a resonator into a sort of

megaphone which spews out every part of the sound into

the room without returning any of it to breed the next

generation, so to speak. (On the baroque trumpet the

design of the bell and mouthpiece is such that the

resonance peaks that help sustain the upper notes are tall

and therefore active to somewhat higher frequencies than is

the case for the modern instrument.)
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Fig. 20.7. Resonance Curve of a B b trumpet. Regimes of

oscillation for G 5, C 6, and E 6 are indicated.

We close this section with a brief examination of the notes

which are available to the air column of a normal brass

instrument when the trombone slide or piston valves are not



employed. On a trumpet having none of its pistons

depressed, modes 2, 3, 4, ... cooperate with one or more of

the higher modes to give us the following sequence of

notes:

C4, G4, C5, E5, G5, (B5b), C6, D6, E6, ...

(These are the notes the player sees on his music. On the

commonest Bb trumpet, the C4 shown above sounds a pitch

of Bb, since all its notes sound a whole step lower than their

written value. Trumpets are built in a variety of other sizes.)

This sequence is familiar because the lowest half dozen

tones are the ones used in playing bugle and hunting calls.

Notice in the above open-horn sequence that the frequency

ratio (and hence the musical interval) between any pair of

notes in the sequence is in exact agreement with one or

another of the special relationships that lie at the root of

formal music. We can say this more succinctly by noting

that the repetition rates’ belonging to these tones are the

second and higher members of a harmonic series whose

fundamental lies at C3. (The trumpet’s pedal note C3 is

peculiar in that resonance peak 1 is located at too low a

frequency to cooperate. This tone is sustained totally by the

contributions that peaks 2, 3, 4, etc., make to the 2nd, 3rd,

4th, etc., harmonics of the tone.)

The basic shape of a trumpet is dictated by the need to

provide a set of harmonically related air-column resonances

that can be used in various combinations to set up

oscillatory regimes. The physical requirements for successful

oscillation run parallel with those that point the way toward

musically useful pitch relationships. This parallelism is not

surprising, since in both cases we are dealing with the ways

in which various frequency components are combined and

separated by heterodyne action in a nonlinear system.



20.5. Musically Useful

Shapes: The Flaring and

Conical Families of

Brasses

The earlier sections of this chapter have sketched out a

pretty clear picture of how the positions and heights of the

various input impedance peaks must be arranged in a

musically useful air column. Now we should look at the

interplay between the desired input impedance

requirements and the horn shapes that are useful for

producing these input impedances. The horn shape also

governs the way in which the sound pressure spectrum

measured in the mouthpiece is modified to produce the

sound that is heard in the concert hall. Finally, we would like

to have some idea of the way in which small corrections to

the air-column shape can be worked out in a systematic way

to improve an already fairly good instrument. For all of these

reasons we should turn our attention to the ways in which

waves travel in a duct of varying cross section.

The acoustical study of waves in what is generally referred

to as a duct or a horn goes back to the eighteenth century.

The Swiss physicist Daniel Bernoulli (whom we met earlier

as the discoverer of a relation between pressure and steady

flow in a duct), the Swiss mathematician Leonhard Euler,

and the French mathematician Joseph Louis Lagrange were

the first to discuss the equations for waves in horns during

the decade following 1760, although the theory did not

have much application until the 1920s.6



Let us list here some of the properties of waves in a horn

that can be deduced from what we already know.7 It should,

for example, be fairly obvious that as a wave travels into the

enlarging portion of any horn its pressure amplitude will

decrease systematically, simply because the acoustic

disturbance is being spread over an ever-wider front.

Furthermore, we can suspect that in a duct that starts out

with a gradual taper and then flares out abruptly (as is the

case in the bell of a trumpet, a trombone, or a French horn),

waves traveling toward the large end might well find

themselves reflected at some point where the increasing

flare causes an excessively rapid change in the wave

impedance. This phenomenon, which is of paramount

importance in the behavior of musical horns, is a gentler

version of the reflection that happens at the end of a tube

opening into a large room. (If a pipe opens through a large

disc attached flush to its end, we could consider the abrupt

transition from the cylindrical pipe to the flat disc as being

an extremely rapidly flaring bell!)

The above deductions are given confirmation and

quantative meaning by a mathematical study of the wave

equation and measurements of many sorts of ducts.

Moreover, it should be easy to understand that sounds

propagate with different speeds as they travel through

different parts of a horn: wherever the duct walls curve

outward to produce the familiar flaring shape of a trumpet,

the speed is greater than the 345 m/sec expected in the

open air; on the other hand, in any part of the horn where

the walls are straight-sided, as in the cylindrical part of a

trumpet or in the simplest of conical bells, the velocity of

sound is exactly the same as it is in free air.

When a disturbance produced at the small end of a horn

reaches a trumpetlike bell whose flare is rapidly increasing

toward the open end, we find that most of its musically



important frequency components are trapped within the

flare some distance back from the bell end; these trapped

components are reflected back to help produce the standing

wave. Only a small fraction of the original and continuing

disturbance can penetrate the acoustical barrier posed by

what we might call the acoustically forbidden region near

the open end, a region where nearly everything that enters

is strongly reflected by the rapidly changing wave

impedance. Low-frequency sounds are turned back in the

smaller, less flaring part of the bell, while those having high

frequency penetrate to regions of greater flare. As a result,

the lowest-numbered modes of a flaring horn have higher

frequencies than the same modes of a cylindrical pipe of

equal length (in which waves can run clear to the end

before reflection), whereas the highest modes in flaring and

cylindrical air columns tend to have roughly the same

frequencies. If you refer back to figure 20.4, you can see an

illustration of the different ways in which low- and high-

frequency sounds leak out through a trumpet bell. In this

figure, the peaks for the low frequencies are tall because

only a small amount of sound can leak out into the room

through the thick barrier created by the bell flare; at high

frequencies this barrier is thinner, so the high-frequency

excitations have to penetrate only a short way to lose some

of their energy into the room. Above 1500 Hz, the barrier

has disappeared, and waves simply run out of the horn with

negligible reflection.

The solid lines in figure 20.8 show the first three

characteristic shapes of the pressure distribution in a flaring

horn that is similar to those used in musical instruments.

These mode shapes remind us of sinusoids that are

progressively stretched-out in the parts nearest the open

end (as is to be expected from the increasing wave velocity

in this region). Notice that these patterns all lose their

sinusoidal shape and become strongly attenuated in the



rapidly flaring part of the bell. In order to help you visualize

what is going on, dotted lines are drawn to indicate the

nature of the standing wave patterns that would be found

for each of these modes in a cylindrical pipe whose length is

chosen to give an equal frequency for this mode. Notice that

the horn may be said (in a purely metaphorical sense) to

behave like a short pipe at low frequencies and like a long

pipe at high frequencies.8 It is important to notice that all

successive modes have an odd number of half humps in

their vibrational shapes, so that the nth mode has (2n—1)

half humps. The half humps near the mouthpiece end look

fairly sinusoidal, whereas the one nearest the bell has a

considerably different shape as a result of the reflection

behavior in this region.
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Fig. 20.8. First Three Characteristic Shapes of the Pressure

Distribution in a Flaring Horn

I am often asked what the mathematical description is of the

sort of air column that is useful in a trumpet, a trombone, or

a French horn. There is in fact no simple answer to this

question, because there are many combinations of bell flare,

mouthpipe taper, and mouthpiece proportion that can

produce a fine instrument. It is a waste of time to look for

the ideal shape for any one of these individual segments of

an instrument, since each one must be fitted to the others.

Very few of the acoustical properties of a complete

instrument can be associated with any one segment alone.

For research purposes, however, it is useful to have

available an easily specified and mathematically tractable

idealized air column. Erik Jansson (now of the Speech

Transmission Laboratory in Stockholm) and I have found

that a certain family of what are called Bessel horns, which

were first studied in the 1760s, serves this purpose



admirably.9 Their usefulness to us is greatly enhanced by

the fact that their shapes correspond closely enough to

what has proved musically serviceable to permit quite

passable instruments to be made from them.

Figure 20.9 shows a few Bessel-horn shapes, along with an

indication of how their dimensions are specified. For a

Bessel horn, the diameter D at any point is defined in terms

of the distance y from the large open end:

D = B/(y + y0)m

where B and y0 are chosen to give proper diameters at the

small and large ends, and m is the “flare parameter” which

dominates the acoustical behavior of the air column. Notice

that the nonflared cylindrical pipe is itself a member of the

Bessel-horn family; in such a pipe, m = 0. To the extent that

brass instruments are of the Bessel form, we can say that

the value of m differs from one instrument to another,

depending on its mouthpiece and mouthpipe design and on

the length of cylindrical tubing which is included in the

complete instrument. Over a period extending from the

present on back to at least 1600, the bell parts of trumpets

and trombones have been made in shapes that correspond

closely to the shapes of Bessel horns having values of m

lying between the limits of 0.5 and 0.65 (the vibrational

shapes shown in figure 20.8 are those belonging to a Bessel

horn with m = 0.5). French-horn bells tend to have a value

of m that is somewhat larger, in the range from 0.7 to 0.9. It

is interesting that the bell shapes which have evolved by

the tradition of practical experience combined with eye-

pleasing artistry are notably similar in their acoustical

description.10
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Fig. 20.9. Members of the Bessel Horn Family

A rather simple formula for the characteristic frequencies of

a Bessel horn that is closed at the small end can be given in

terms of its overall length L, its flare parameter m, and the

wave velocity v of sound out-of-doors. For the nth mode of

oscillation, the frequency fn is:
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For horns similar to those used in trumpets and trombones

(for which y0 is no more than 2 or 3 cm) the formula gives

frequencies that differ by only a fraction of one percent from

those found by exact calculation. Above m = 0.8, the

formula becomes equally accurate if the numerical factor is

changed from 0.637 to 0.707, whence we notice that for m

= 1, the successive resonances become exact whole-

number multiples of the first-mode frequency f1 = (v/2L),

and so form a harmonic series. We have noticed already that

for m =0 the frequencies are the odd-numbered multiples of

the first-mode frequency f1 =(v/4L). For intermediate values

of m the resonances are not arranged in harmonic

relationships, and so would fail to set up very many useful

regimes of oscillation. This limitation does not make it

impossible to use Bessel horns having intermediate values

of m as parts of real musical air columns, in which account

must be taken of the presence of cylindrical tubing, of the

mouthpipe, and of the mouthpiece. Such accounting is

perfectly possible and is in fact the convenient way to

proceed in designing an instrument.

Digression on the Effect of Bends and Loops in the Tubing of

Brass Instruments.



The more or less sharp bends that are made in the tubing of

brass instruments to fold them enough for easy portability

have an acoustical effect of their own. Even a pipe of

uniform cross section acts somewhat like a flaring duct if it

is given a curved shape. Just as for horns with flare, the

speed of sound is increased within the bend, and the wave

impedance is reduced (i.e., the duct acts as if it is a little

oversize). This latter effect differs from that in flaring ducts.

Moreover, at the junction of curved and straight pipe

segments one can have several kinds of wave reflections.

For all these reasons instruments with many sharp bends act

quite differently from their straighter cousins. The

resonances can be shifted quite enough to be noticed in

playing steady tones, and the beginnings of notes can be

affected even more. 11

So far we have confined our attention to air columns of the

sort used in trumpets, trombones, and French horns, all of

which start out with a very slight taper near the mouthpiece

and have a rapidly flaring bell at the other end. Let us now

find the connection between these instruments and the

other major family of brasses, which have a more or less

conical shape throughout their length.

In 1965 Robert Pyle, then at the Harvard Acoustics

Laboratory, recognized a remarkable property of waves in

horns. Consider a pair of horns such that the product A1A2

of their cross-sectional areas is a constant from one end to



the other, as is illustrated for a somewhat peculiar special

case in figure 20.10. Notice that if one horn has an

enlargement of its cross section at some spot, the other horn

must have a corresponding narrowing of its cross section at

the same place for the product of their cross sections to

remain constant. If the small ends of both these horns are

closed off, the two air columns turn out to have identical

natural frequencies! The simplest musical implication of this

is the following: if we can somehow find a useful horn shape,

then its mate (or dual, as it is technically called) can easily

be calculated, making it also available for musical

application. (In recent years, electrical engineers have

found uses for signal transmission lines which are dual to

one another.)
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Fig. 20.10. A Horn and Its Dual

We have already noticed that the Bessel horn having a flare

parameter m = 1 can be considered to be a candidate for

musical use, since its characteristic frequencies form a

harmonic series. It is easy to show mathematically that the

dual of such a horn is the ordinary straight-sided cone, so

that it too is a candidate for serious musical consideration. A

mathematician would say that the cone is a Bessel horn with

flare parameter m = —1.

It must be emphasized that even though horns that are dual

to one another have the same characteristic frequencies,

they do not necessarily have the same standing wave

patterns, radiation behavior, or variation of wave impedance

with frequency. We note in particular that because a cone

has straight-sided nonflaring walls, the speed of the

pressure waves remains constant as the waves run toward

the large end, rather than increasing as it does in the case



of flaring horns. For the same reason, in a simple cone there

is no acoustically forbidden region in the large part of the

horn and all the reflection takes place at the open end. As a

result, the conical instruments begin to leak sound at lower

frequencies than do their flaring cousins having the same

bell diameter, and this leakage deprives conical instruments

of their upper resonances.

Looking in at the small end of the horn, we find that the

wave impedance of a conical duct rises very rapidly from

zero at low frequencies to a high-frequency value equal to

that of a cylindrical pipe having the same inlet diameter.

The rapidly varying wave impedance at the small end

combines with the reflected wave behavior (which by itself

is almost exactly like that of a parallel-walled pipe) to give

resonance peak frequencies that are members of a complete

harmonic series, as is to be expected of the dual to a horn in

which m = 1.

Another consequence of the low wave impedance at low

frequencies (caused by the conical entryway to the horn) is

that the resonance peaks in this neighborhood are even less

tall than they are for the flaring horn. To help boost these

peaks, the musical cone is provided not only with a

conventional mouthpiece, but with a mouthpipe which

generally has a smaller taper than that of the main run of

the air column.

The required presence of a cavity-plus-constriction

mouthpiece on both flaring-and conical-type brasses spoils

the strict duality between their shapes. To get the needed

cooperative effects between resonances in the fluegel horn,

the alto, and the baritone, their makers include in the mid-

section of the horn some cylindrical or mildly tapered

tubing, and they give the bell end a slight outward flare as

well. In other words, the basic mouthpiece design that is



shared by the two families (which is forced by the need to

get sufficiently tall resonance peaks) leads to a considerable

similarity in other elements of their design; all of these

design elements are dictated by the need for the resonance

peaks to be properly located for setting up useful regimes of

oscillation.

We have already noticed a peculiarity in the flaring-horn

family of real instruments: the first resonance peak of these

instruments is not properly placed to join with other peaks

in the pedal-note oscillation. It only proves possible to get

good cooperation among the rest of the resonances when

the desirable location of the first resonance peak is

sacrificed. A conical instrument, on the other hand, normally

has its first-mode resonance peak very close to the desired

pedal-note frequency, so that this note is easily produced.

This is the reason why the lower brass instruments tend to

be members of the conical horn family. It is interesting to

note that cornets and tubas do not fit neatly into one or the

other of the two families of brass instruments. One could say

that some members of their tribe are found settled in each

of the two musical territories, between which there is no

clear line of demarcation.

20.6. The Selection of

Valve Slides to Give a

Complete Scale

Most of us have an intuitive idea of how to fill in the gaps in

the scale of what the brass player calls the open horn; it is

only necessary to lengthen the instrument a little bit to get

a set of notes whose playing frequencies are a semitone

lower, a little more for a set a tone lower, and so forth. This



is of course exactly what the brass player does. Plausible as

this scheme may appear, there is a catch to it. No matter

how you do it, the addition of tubing into the middle of a

horn makes its average taper less than before; crudely

speaking we can say that the average flare parameter is

reduced. This means that the addition of a piece of tubing to

a horn will make a bigger percentage change in the

frequencies of its lower modes than it will for the higher

ones.

Brass-instrument makers have for many years based their

valve length calculations on a rule of thumb whose origin

lies in a misconceived analogy between brass instruments

and a doubly open cylindrical pipe. In such an

oversimplification, no account is taken of the change of flare

produced by adding tubing or of effects due to the

mouthpiece. One simply calculates tube lengths in the same

way that one works out the positions of frets on a guitar. Let

us compare the predictions of the hornmaker’s rule with

what actually happens.

A typical design for the valves of a brass instrument is the

following. The first valve is arranged to add enough tubing

to lower G4 (the regime based on peaks 3, 6, and 9) by

exactly two semitones to F4. The second valve is similarly

arranged to lower G4 by one semitone (to F4#), and the

third valve tubing is arranged so that when it is used in

conjunction with the already determined length added by

the first valve, the resulting lowering of exactly five

semitones produces D4. The rule of thumb leads one to

choose tubing extensions that are 181, 88, and 314 mm

long if we consider the trumpet to have a nominal length of

1840 mm. When these extension tubes are used in different

combinations to provide other notes in the scale, various

tuning errors will arise. For example, calculating the change



produced by simultaneously using the three lengths of

valve tubing given by the rule of thumb tells us that the

trumpet is 30 mm too short for the F3♯ note (33 cents

sharp). The top part of figure 20.11 shows the tuning errors

expected over the main part of a trumpet scale when all

calculations are made on the basis of the instrument-

makers’ rule. The circled notes are the ones that are made

exact by adjustment of the instrument’s main tuning slide

and by the three valve slides. Notice that the “theoretical”

errors range from 20 cents flat to 33 cents sharp.

The lower part of figure 20.11 shows the measured tuning

errors on an instrument whose original excellent design I

have modified in small ways to provide the best possible

cooperations between the modes that participate in its

various regimes of oscillation. The pitch measurements were

made at a mezzo-forte playing level, so that the upper

partials in the tone “talked” to the upper resonances

enough to exert considerable influence in stabilizing the

oscillation and in equalizing the tuning.

Notice that over the main playing range from B3♭ up to E5,

this trumpet has a much more even scale than the one

calculated by traditional means. While the fluctuations

above and below equal temperament on this instrument are

somewhat smaller than on most trumpets that are in daily

use, the main trend is quite typical: reasonably smooth

tuning is found in the main part of the scale, while below C4

the notes run progressively flat, as the elongated tube used

for these notes (whose regimes involve peaks 2, 4, 6, ...)

exaggerates the downward frequency shift of resonance

peak 2, and thus weakens its cooperation with the upper

peaks. These notes play even flatter when sounded more

and more softly, as the upper resonances lose their

stabilizing influence.
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Fig. 20.11. Traditionally Calculated Valve Tuning Errors

Contrasted with Those Measured on a Good Trumpet

When a carefully aligned instrument of the sort just

described is played at a mezzo-forte dynamic level, a shift of

5 cents above or below the optimum playing frequency

produces a clearly defined change in tone color, stability of

pitch, and “feel” at the player’s lips. Meaningful pitch

measurements can therefore be made on such an

instrument to an accuracy that is unimaginable on a

mediocre one.

We can now understand why a careful player must

continually use his finger-operated tuning slides in the

course of music-making. To play strictly in tune with his

fellows, he must be able to play a dozen cents above and

below the equal-temperament pitch; this amount is more

than twice the distance he can “lip” a note without suffering

a significant loss of tone.

For reasons we met at the end of section 20.5, the bottom

two resonances of a conical-type brass instrument do not

tend to be as flat as they are among the flared instruments.

Thus, conical instruments react to their valves more nearly

according to the traditional expectation than does the

trumpet we have been discussing. As a practical

consequence, the bottom notes of conical instruments tend

to be better tuned than they are on flaring-horn

instruments, while the middle notes are less satisfactory.

One might well wonder what happens to all of the varied

cooperations of a brass instrument when any of the pistons

are depressed. Interestingly enough, nothing radically new

takes place. The bell, the mouthpipe, and the mouthpiece



design dominate the overall pattern or “envelope” of the

resonance curve (the pattern of peaks getting taller and

taller as one goes from low frequencies to about 850 Hz and

then falling away and disappearing at high frequencies). As

we have already noticed, the frequency ratios between the

various modes (which ultimately determine the

effectiveness of any cooperations) are not drastically altered

when reasonable amounts of tubing are inserted. To be sure,

the instrument works best with a particular set of

proportions, but players are not unduly disturbed by the

addition of enough tubing to increase the overall length of

the instrument by the 40 percent or so that is required for

the valves described above. However, the problem becomes

serious in the cases of the French horn, the bass trombone,

and certain tubas, where the addition of tubing by means of

valves can in one way or another double the instrument’s

overall length.

20.7. Further Properties of

the Mouthpiece;

Adjustment Techniques

We have already learned of the crucial role played by the

mouthpiece in getting the input impedance peaks to be

sufficiently tall, and you may also have noticed (from fig.

20.5) that joining a mouthpiece to the end of a cylindrical

tube has a considerably greater effect on the upper

resonance frequencies than on the lower ones. It is time for

us to study these effects in a more detailed manner in order

to see how a mouthpiece can be adjusted to fit a particular

instrument.



A very convenient laboratory method for studying the effect

of a mouthpiece on the resonances of a cylindrical pipe is to

determine experimentally for each vibrational mode the

length of purely cylindrical tubing that has the same

resonance frequency as does the composite pipe-plus-

mouthpiece. 12 Subtraction of the shorter of these lengths

of cylindrical tubing from the longer one found in the two

parts of each experiment allows us to deduce a somewhat

metaphorical quantity—the mouthpiece equivalent length

Le (there is a different mouthpiece equivalent length for

each frequency at which the measurement is made). A long

series of such comparisons is carried out by exciting several

modes of each of several tube lengths attached to the

mouthpiece; such a series allows us to determine the

variation of Le over the whole range of musically relevant

frequencies. Figure 20.12 shows experimentally measured

values of Le which I have obtained for three different

trumpet mouthpiece configurations.

It has been known by some acousticians and some

instrument makers for about a century that the use of any

sort of cavity (regardless of its shape) at the closed end of a

cylindrical tube gives at low frequencies a value of Le equal

to the length of a piece of pipe whose volume is equal to the

total volume of the cavity. The left side of figure 20.12

illustrates the truth of this observation very well. The two

mouthpieces having a volume of 3.4 cubic centimeters

(whose curves are marked by black dots and open circles)

both show a 40-mm Le; reducing the total volume of the cup

of one of these mouthpieces by partially filling it in with wax

lowers the value to about 34 mm (the curve for the

mouthpiece with reduced volume is marked by x’s).
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Fig. 20.12. Variation of Equivalent Length with Frequency for

Three Trumpet Mouthpieces

A much less widely known but still long-recognized property

of bottle-shaped cavities that are attached to a cylindrical

pipe is the following: at the mouthpiece’s own popping

frequency, Le is the length of a pipe whose own first-mode

(popping) frequency matches that of the mouthpiece. The

dashed line curving downward toward the left in figure

20.12 shows the trend of Le’s that go with various popping

frequencies. This line intersects each of the Le curves at the

popping frequency belonging to that mouthpiece. At

frequencies above the popping frequency, the Le continues

to rise, until it reaches a maximum which, for mouthpieces

having a cup and a back bore, is always about 40 percent

larger than the value it has at the popping frequency. The

frequency at which this maximum is found is about 30

percent above the popping frequency. At yet higher

frequencies we notice that all mouthpieces that might be

used on an instrument have pretty much the same variation

of Le.

The important features of mouthpiece acoustics can be

summarized as follows:

1. For a cylindrical pipe, the equivalent length Le of a

mouthpiece at low frequencies is equal to the length of

cylindrical tube whose volume matches the total volume of

the mouthpiece, regardless of its shape.

2. At the mouthpiece popping frequency Fp, Le is the length

of cylindrical tube (closed at one end) whose first-mode



frequency equals Fp, that is, Le =v/4Fp. This result is also

independent of the internal shape of the mouthpiece.

3. To a very great extent, the total volume and the popping

frequency determine the variation of Le by “anchoring” it at

two points along the frequency scale. Subtle differences in

the value of Le at other frequencies are caused by variations

in the proportions of mouthpiece cup and back bore.

4. The overall trend of Le with frequency is a steady increase

nearly to the top of the instrument’s playing range. If two

mouthpieces have the same volume, the one having lower

popping frequency will show a greater total change in

effective length as one goes up in frequency.

Our measurement of the equivalent lengths associated with

a trumpet mouthpiece at different frequencies was only a

laboratory convenience, and cannot be put simple-mindedly

to use in predicting the resonance frequencies of trumpets.

The remarks made earlier about the complications

associated with the use of valved extensions to the air

column apply with particular force to the variable length

contribution associated with the mouthpiece. Your

appreciation of this fact will perhaps be made more vivid

when you learn that measurements of Le made with a

normally tapered mouthpipe interposed between the

cylindrical tubing and the mouthpiece give rather different

results. Under these more realistic conditions, Le at low

frequencies has only about half the value shown in figure

20.12; it then rises along a slightly wavy curve, through

very nearly the original Le found at the popping frequency,

and continues to rise on up to a slightly reduced maximum

at 1100 Hz, after which it joins the original curve. The

overall sloping trend is thereby made less steep than before,

and the slope continues to lower frequencies.



Let us now consider the simplest aspects of the way in

which one actually goes about adjusting a good mouthpiece

to make it play properly with a particular trumpet which is

known to be of good quality. One warms up the instrument

by playing over the entire mid-range, at the same time

making sure that the various tuning slides are properly set.

One next plays crescendos and diminuendos between

pianissimo and mezzo-forte on the trumpet’s written note

G4, where modes 3 and 6 of the open horn dominate the

regime of oscillation (see fig. 20.6). At several dynamic

levels one floats the pitch up and down to seek out the

fullest, clearest, and steadiest tone, without regard to the

correctness of its tuning. It is helpful to concentrate your

attention on the second-harmonic component of the tone,

because it is often heard most clearly and steadily when the

pitch setting associated with steadiest tone is attained.

When one plays softly, peak 3 is the only influential member

of the regime, so that the playing frequency and best-

oscillation conditions are predominantly controlled by the

frequency of this resonance. Playing more loudly brings in

the influence of mode 6, which acts on the second harmonic

of the tone. If this peak is placed too high in frequency

relative to peak 3, the pitch will rise a little when you have

found the most favorable playing condition. Conversely, if

the playing pitch falls during a crescendo, the upper

resonance is on the low side of its correct position.

Suppose that our trumpet is one that runs flat during a

crescendo at its written note G4 (fundamental frequency

near 350 Hz on a Bb trumpet). We would then want to

change the mouthpiece in such a way as to raise the

frequency of peak 6 (near 700 Hz) without moving peak 3.

Since changes in resonance frequency are correlated at

least qualitatively with changes in the mouthpiece

equivalent length Le, we deduce the need for reducing Le



near 700 Hz, leaving it untouched near 350 Hz. Inspection

of figure 20.12 suggests that we seek a way to raise the

popping frequency (to make the correction near 700 Hz)

without making much change in the total volume (which

controls Le near 350 Hz). Reducing the volume of the cup

will raise the popping frequency, but at the expense of a

decreased total volume; we wish to preserve the total

volume for many reasons having to do with getting a correct

wave impedance. Our other option is to enlarge the

narrowest part of the back bore by a small amount. This can

significantly raise Fp with only a minuscule change in total

mouthpiece volume.

At this stage, however, one does not cut anything; it is

essential to do some additional diminuendo-crescendo

experiments (at least at C4 and C5) to discover whether they

also have implications for mouthpiece adjustment that are

consistent with those determined at G4. If all the symptoms

are consistent in indicating that it is appropriate to raise Fp,

then the back-bore constriction is enlarged by no more than

about 0.05 mm, after which the whole procedure is

repeated. It is essential to stop making changes somewhat

short of complete correction. To make “just one more little

scrape” beyond this point is an easy route to a ruined

mouthpiece. It is good tactics to leave a little metal,

because careful playing of the improved instrument will

undoubtedly expose discrepancies at a subtler level than

those manifested earlier. Correction of these elsewhere in

the instrument may very well lead to a situation where the

back-bore enlargement is already sufficient. It goes without

saying that if the instrument is one that runs consistently

sharp during a crescendo, we are faced with the more

difficult problem of lowering Fp, which requires one to

lacquer or electroplate the interior of the back bore. This

change is a serious one, however, because it can easily lead



to excessive damping of the resonances unless the back-

bore profile is carefully modified.

An instrument whose resonances are carefully adjusted

under the guidance of laboratory measurement and player’s

experiments along the lines just described is much admired

by musicians. They find it easy to make friends with, and

different performers tend to play it at very much the same

pitch. This is because of the rewards it gives when the

player finds its frequencies of maximum cooperation.

Brass players have built up an enormous lore about the

influence of mouthpiece cup depth and back-bore shape on

the tone and response of their instruments. Much that is

mysterious in their observations becomes clear when it is

recognized that easy blowing, clear speech, and good

tuning all are dominated by the relationship of the total

mouthpiece volume and the popping frequency. If these are

not suited to the instrument, one musical effect must then

be bought at the expense of another. A favorite lecture

demonstration of mine is to ask a trumpeter to play a few

scales on his own instrument, using each of three

mouthpieces that I provide (which he is not permitted to

examine beforehand). Even when the audience consists

mainly of brass players, they agree that the sounds

produced using the three mouthpieces are very similar. The

player also agrees that while he has small preferences

among the mouthpieces, they all feel very much alike to

him. Everyone is astounded to discover afterwards that only

one of the mouthpieces is a high-quality commercial model.

The others have the same outward appearance, but one is

provided with a cylindrical rather than tapered back bore

(whose diameter is nearly 6 mm), while the other has a short

tapered back bore with an unusually deep and almost

conical cup. The acoustical features that these mouthpieces

have in common are total volume and popping frequency,



accurately matched to well within one percent. As a result

they behave very similarly on any reasonably good

instrument whether they are precisely adjusted to it or not.

20.8. The Internal and

External Sound Spectra of

a Trumpet

In this section we will concern ourselves with the internal

sound pressure recipe generated by a regime of oscillation,

as measured in a brass-instrument mouthpiece, and then we

will consider how this internally measured spectrum is

related to the external spectrum, which is what we actually

hear.

When one plays pianissimo on any of the lower notes of a

brass instrument, the internally measured sound has an

almost purely sinusoidal waveform that shows only traces of

the higher harmonics. As one plays more vigorously, the

sound spectrum develops, harmonic by harmonic, the lower

partials growing first. Any tones that are generated by an

oscillatory regime involving several resonance peaks

develop their higher partials rather quickly, and the internal

sound fills out at a lower dynamic level than is the case for

notes that rely upon only one or two air-column resonances.

We also find that, as a rule, any particular partial generated

is strong if the resonance peak associated with it in the

regime is tall and well aligned, and weaker if the peak is less

tall or is displaced from perfect frequency matching. At

present we will look at qualitative relationships among the

playing level, the heights and locations of the resonance

peaks, and the internally generated sound spectrum of

wind-instrument regimes of oscillation, reserving a



consideration of the more quantitative aspects of these for

chapter 21.

As part of a continuing study by Edward Tarr and myself of

the relationship between modern and baroque trumpets, a

series of measurements was made with the help of Charles

Schlueter, who plays principal
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Fig. 20.13. Internally Measured Pressure Spectra of a

Trumpet for Various Dynamic Levels

trumpet in the Minneapolis Symphony (when the

experiments were done in 1970, he was a member of the

Cleveland Orchestra). Among other things, Schlueter played

a series of crescendos and diminuendos on various notes of

one of my instruments (the one we have already met in this

chapter). This was equipped with a probe microphone to

detect sounds inside the mouthpiece cup, and also with an

external microphone mounted on a lightweight “spider”

attached to the bell, so that it was held about 5 cm away

from the end of the bell. Signals from the two microphones

were fed to a tape recorder so that they could be studied at

leisure. An example of the curves made from these tapes is

shown in figure 20.13, which displays the relative

amplitudes of the internally measured partials belonging to

the written note C4 (see fig. 20.6 for the air-column

resonances that participate in the generation of this tone).

The uppermost of the curves connects black dots that

indicate the strengths of the first eleven partials produced

when the trumpet is played fortissimo. The lower families of

curves indicate similarly the strengths of the partials at

lower dynamic levels. We can see clearly here that as one

plays more softly, the partials having higher frequency

become weak more quickly than do the lower ones. At the



weakest pianissimo that can be sustained by a player, the

internal tone contains almost nothing beyond its

fundamental component. I should like to emphasize that

data of this sort are extremely stable. Several C4 tones were

taped, some starting mp and swelling to fff and some

diminishing from mf to ppp, and the tapes were analyzed

and the spectra plotted on a graph. At any given playing

level the analyzed sounds were essentially the same for all

the samples. For example, the open-circled data points in

figure 20.13 refer to a tone which I myself played and

recorded in the course of setting up, testing, and calibrating

my equipment several days before Schlueter came in for the

more formal experiments. Since I am primarily a player of

woodwinds rather than brasses, the agreement of this curve

with the others shows that the behavior we are studying is

determined chiefly by the trumpet and its mouthpiece,

provided the player is able to recognize a suitably

cooperative relationship between his lips and the air

column. Note that the spectra described here have been

plotted to include only the first eleven harmonic

components of the tone. The components at higher

frequencies are very much weaker, but cannot be totally

ignored since, taken together, they have a small effect on

the overall tone color.

Up until now in this section we have been discussing the

strengths of the various harmonic components of a tone as

they are measured inside the mouthpiece by means of a

special microphone. What one hears in the concert hall is of

course a very different thing. The spectrum generated

inside the mouthpiece is transformed into the spectrum

found in the concert hall by the selective nature of the

transmission of sound from the mouthpiece out through the

bell flare into the room.



It is not easy to obtain a meaningful measure of the external

sound spectrum of a trumpet or other brass instrument. As

we learned in section 12.2, a trumpet bell tends to

concentrate the high-frequency components of its sound

into a narrow beam, while spreading the low frequencies

more or less equally in all directions. 13 Because of this,

when one works in an anechoic chamber, placing the

microphone some distance away along the bell axis will lead

to an overestimation of the strengths of the partials whose

frequencies are above about 1000 Hz. In similar tests with

the microphone placed off to one side of the bell, on the

other hand, the data will show a deficiency in the high-

frequency spectrum.

Our ears appear to do best in gaining an impression of

musical tone color when they operate on signals picked up

from all directions in a reverberant room, with the signals

integrated over a time whose duration is about that of the

precedence effect—30 or 40 milliseconds (see sec. 12.2).

Because of this, we should provide ourselves with composite

sound spectra calculated by combining the analyzed data

from each one of many microphones placed in a reverberant

room, with people moving around within the room to “stir

up” the various room modes (see chap. 11).

The radiation behavior of flaring horns is such that a

microphone placed just in front of a bell (about one bell

radius away) receives a sound signal that is in reasonably

good agreement with what one expects from the

complicated room-averaging procedures described in the

preceding paragraph.14 It is for this reason that the

microphone was mounted by means of a spider just beyond

the end of the bell in the experiments with Schlueter.
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Fig. 20.14. Spectrum Transformation Function for a Trumpet

As we have learned earlier, the qualitative nature of the

transformation of the spectrum from inside the mouthpiece

to that heard in the concert hall is reminiscent of the treble-

boost control of a hi-fi amplifier, because the higher

components of the internally generated tone are

preferentially radiated. Figure 20.14 shows the general

trend of the spectrum transformation function T relating the

externally measured pressure amplitudes of the various

partials to the amplitudes of the same partials as measured

within the mouthpiece. The dots along this curve show the

value of the transformation function at the various

harmonics of the tone whose internal spectrum was

presented in figure 20.13. One can get the shape of the

external sound pressure spectrum from the internal

spectrum simply by multiplying the internally measured

pressure component amplitudes pn (int) by the value Tn of

the transformation function corresponding to their

frequencies. This relationship can be written out as a

formula:

pn (ext) =Tn × pn (int)

Figure 20.15 shows the result of this sort of calculation,

which converts the spectra shown in figure 20.13 into the

corresponding spectra for the same dynamic levels as they

are measured just outside the trumpet bell.

Returning to figure 20.14, you should notice the small, U-

shaped, dotted curves superimposed on the solid curve.

These are intended to show that the overall behavior of a

trumpet is complicated by the fact that the ratio of external

to internal sound pressure is at a minimum at frequencies

lying close to those generated within the instrument.

Because of this, if one lips a note up or down in pitch, the



external strength of each of its partials generally rises

relative to the internally measured pressure amplitudes.

Notice that the minima in T do not fall precisely at

harmonics of the playing frequency, nor do their positions

correspond exactly with the internally measured resonance

frequencies. They lie above or below, depending on whether

we examine resonances lying above or below the

mouthpiece popping frequency.

Let us examine the tonal consequences of having dips in the

transformation function at frequencies that roughly

correspond to the peaks of the input impedance curve. As

the player lips a given tone above and below the frequency

giving maximum cooperation within the regime of

oscillation, we expect the strengths of the various internally

measured partials to rise or fall depending on their positions

relative to the various resonance peaks. We also expect the

higher partials to be somewhat stronger relative to the lower

members of the collection making up the tone when the

regime is under its most cooperative conditions. In brief, the

various internally generated partials tend to become

stronger as their frequencies are matched up with those of

the horn resonances. The presence of dips in the

transformation function means on the other hand that, in

simplest terms, the effect of changed playing pitch on the

measured external spectrum is somewhat offset by the

opposite behavior of the transformation function.

Our ears treat these things somewhat differently: they take

into account the nature of the entire spectral envelope (as

they do in recognizing the vowels in speech). They also pick

up the special status of the well-aligned notes simply

because, whatever spectrum changes may be taking place,

the well-aligned notes show a singular and well-marked

behavior relative to notes played slightly higher or lower in

pitch.
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Fig. 20.15. External Spectra of a Trumpet Obtained by Use of

the Transformation Function

There is a further clue that the player’s ears are provided

with as he seeks the best playing pitch. The vibrations of

the player’s lips are subject to small, random fluctuations,

just as the vocal cords are. Lining up the air-column

resonances will produce an added smoothness in the tone

for the reasons discussed in section 19.5 in connection with

the soprano’s subtle kind of formant tuning. Also (and much

more significantly), the tone is made smoother because the

amount of random fluctuation in the lip-valve action is

greatly reduced when a solidly organized regime of

oscillation is set up. This is one reason why a well-played

instrument is described as having a “clear” tone: its

individual notes are steady because their partials are made

up of narrowly clustered sinusoidal groups that clearly

display the basic musical relationships.

Before we leave the subject of brass-instrument sound

spectra, a little attention should be given to the loudnesses

of the various partials as they present themselves to our

ears. Figure 20.16 shows the general nature of the loudness

spectrum of the partials, each one being calculated by itself

from the data in figure 20.15 with the help of the curves for

perceived loudness given in figure 13.4. Notice how much

the sound-pressure spectra and the loudness spectra differ

(especially above 2000 Hz where the sensitivity of the ear

becomes particularly great), and also how much change

there is in the overall shape of the loudness spectrum with

changes in the player’s dynamic level.

We have little difficulty in telling whether a trumpet is

loudly or softly played, regardless of its distance from our



ears. (This is also true of a radio or a record player.) The

spectrum itself changes with playing level in a fashion that

is characteristic not only of brass instruments as a group,

but also of the individual instrument and the accuracy of its

alignments. It -is no wonder that a musician and someone

using a sound level meter so often differ in their usage of

the words “loudness” and “intensity”; they are actually

talking about quite different things.
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Fig. 20.16. Loudness Spectrum of a Trumpet Tone

20.9. The Problem of

Clean Attack

So far we have explored the acoustical requirements that

must be met by a brass instrument if it is to play steady

tones one by one. I have also implied that in general an

instrument that speaks with stability and clarity will also

have a good tone, in the musician’s sense, and that it can

be built to play accurately in tune. There is one more

attribute that is required of a musical instrument if it is to be

considered of first quality: it must start its tones cleanly and

promptly and be forgiving of small inaccuracies in the

player’s lip tension as he shifts rapidly from one note to the

next.

The acoustical properties of an air column that contribute to

a clean attack for every note may be looked at in two parts.

To begin with, anything that makes for a “happy”

collaboration during the time a note is sustained will in

general contribute to a prompt build-up of an oscillation

when the tone is started. For the woodwind player, this is



very nearly the complete story. The brass player must also

deal with the fact that it takes a long time for acoustical

“messages” to travel from mouthpiece to bell and back,

informing the lips of the collaborative job they must do with

the air column.15

Let us see what happens to the initial part of the acoustical

disturbance set up by the player’s lips as he attempts to

start a tone. This disturbance travels down the bore with a

speed that depends on the rate of flare of the air column,

and then in the flaring part of the bell some of this wave is

reflected back toward the mouthpiece. The reflected wave,

upon returning to the mouthpiece, “tells” the lips how and

when they must reopen to admit the next puff of air in the

sequence of puffs that sustain the tone after everything has

settled down. Until the first reflections begin to come back,

the lips are on their own. The air column has not yet

expressed its preference for one or another of the

frequencies with which it is able to collaborate. Assuming

the player has buzzed his lips accurately for the desired

note, the air column is happy to begin collaboration as soon

as there has been time for the initial sound to make at least

one complete round trip of the air column. Several more

round trips are required before the regime of oscillation has

set itself up completely. In a fast running passage, there is

barely time for one regime of oscillation to be set up before

it must give way to the next. Trouble can be caused by a

small change in cross section, a sharp bend, or an ill-chosen

change in the taper (of the sort that is particularly common

in tuba construction). Such discontinuities return a

premature echo of significant size to the mouthpiece, an

echo that is not even a replica of the original disturbance.

Such ill-timed, ill-shaped return echoes can upset the best-

trained of lips, and, having spoiled the steadiness of their

initial vibration, will ruin the attack. Such irregularities are

of course a complete disaster for the less skilled player,



even if he can maintain a good sound once it is started.

Curiously enough, it is possible to build an instrument that

is unwilling to start well even though it gives a strong, clear,

sustained note. Various discontinuities may deliberately be

introduced to offset one another, or to counteract other

faults of the air column. This kind of patchwork can lead to a

well-tuned instrument that has good tone and stability,

even though it will be treacherous during the attack of its

various notes. Every musician has met such instruments, as

well as those that attack cleanly but lack other virtues that

are needed for the satisfying production of music.

The second item contributing to clean attack on brass-

instrument notes can be understood in terms of the speed

with which disturbances travel in an air column. There are

two different sorts of speed that must be dealt with in these

circumstances: (1) the wave velocity, which is the speed

with which any particular frequency of sinusoid travels (the

wave velocity determines the air-column resonance

frequencies; see sec. 20.5), and (2) the group velocity,

which is a measure of the speed with which abrupt

disturbances travel down an air column. The group velocity

depends on the frequency components that predominate in

the disturbance, and, once again, it depends on the rate of

flare of the horn. The group velocity for sounds in a straight-

sided air column is independent of frequency and is equal to

the open-air speed of sound.

The actual values of the group velocity and the wave

velocity most closely related to it are not at all the same in

most hornlike air columns. The round-trip time for the

initiating disturbance of a brass-instrument tone is

calculated from the group velocity rather than the wave

velocity. In other words, the instrument maker has the very

interesting technical problem of getting a whole set of wave

velocities to come out right if he wants good steady sounds,



while at the same time achieving a correct set of group

velocities if he wants these tones to start cleanly!

20.10. Examples,

Experiments, and

Questions

1. Tying two layers of a handkerchief over the bell of a

trumpet has very little effect on the heights of the first three

or four input impedance peaks, but by peak 7 they are

reduced to about 80 percent of their normal heights, and

the resonances are obliterated above peak 10. Why is it that

at pianissimo levels the player of low notes will hardly feel

the addition or removal of the cloth, but at forte levels he

notices a big difference? Regimes above the written note G5

are somewhat influenced by the additional damping when

the instrument is played pianissimo, and these regimes are

very strongly affected in loud playing.

Musicians have no trouble recognizing the effects of heavily

damped resonances, regardless of their degree of

alignment. Players are so prone to describe the resulting

feel as “stuffy” that we will formally define stuffiness as the

perceptual correlate of high damping (small Qo) in a wind

instrument.

2. Thin-walled brass tubing in many sizes suitable for brass-

instrument experimentation is commonly available in hobby

shops. In the U.S. the sizes run in 1/32-inch (0.794-mm)

increments. A good approximation to the tubing used in

trumpets has a 7/16-inch inside diameter. You might wish to

figure out and then test which combinations of resonances



in the lower part of figure 20.5 are properly related for

setting up regimes of oscillation.

Insert a trumpet mouthpiece into the end of a piece of this

sort of tubing that is long enough to extend about 15 cm

beyond the end of the mouthpiece shank. Such a composite

air column will have its first and second mode resonances

near 440 Hz and 880 Hz. Perhaps you can explain for

yourself how the variation of mouthpiece Le combines with

the 15-cm tube to give this approximately harmonic

frequency relationship. Playing near A4 will allow you to feel

out the cooperation between the two almost-aligned modes.

Why should you put tape on the mouthpiece shank to

prevent a dead air space in the region between its outside

diameter and the inside of the tube wall?

3. A piece of 20-mm tubing about 86 cm long (so that its

input impedance maxima lie close to 100, 300, 500, 700, ...

Hz) will show an interesting set of mild collaborations

between its resonances and your lips. Start at the fairly well-

defined 300-Hz tone (D4+37¢) produced by your lips in

conjunction with the 300-Hz second mode, the 900-Hz 5th

mode, and the 1500-Hz 8th mode, and gradually slacken

your lip tension. The pitch will drop fairly steadily until it

“hangs up” slightly near 250 Hz (B3 + 21¢ ), as pipe mode 3

interacts with the 500-Hz second harmonic of your tone. A

similar hanging up, or at least recognizable alteration in the

tone production, comes near 233 Hz (A3♯) where the 3rd

harmonic partial talks to the pipe’s 4th mode (at 700 Hz).

Perhaps you can work out for yourself the ancestry of events

that may call attention to themselves near 225 Hz (A3 +

39¢), 175 Hz (F3 + 4¢ ), 166 Hz (E3 + 13¢ ), and 150 Hz (D3

+ 37¢). Why would the presence of any sort of mouthpiece

totally rearrange the frequencies at which such effects are

observed?



4. The lower curve of figure 20.17 shows the input

impedance curve measured on a French horn without the

insertion of its player’s hand in the bell. The upper curve

shows that the player’s hand greatly increases the number

of resonances (how so?) which can be adjusted to aid the

various regimes of oscillation in the normal playing range;

notice that the hand in the bell also raises the upper limit of

this range. A skilled player is constantly trimming-up the

resonances note by note with his hand as he plays.

As the hand progressively closes off the bell end, the

various resonances move downward in frequency in a way

similar to that described for the pipe in section 19.7,

example 2. If a player tries to hold his playing pitch steady

while gradually closing the bell, the tone becomes

progressively weaker and more wobbly as the combination

of the rising tension of the lips and the falling pipe

resonance frequencies makes for ever weaker collaboration.

Finally the playing pitch jumps upwards (roughly a semitone

in many parts of the playing range) to the next higher set of

resonances, which are able to seize control of the regime

because they agree satisfactorily with the preferred

vibration frequency of the more tightly set lips. This upward

jump to the next higher set of resonances whose

frequencies have been lowered by the hand is the physical

basis of the ancient technique of “hand-stopping,” which is

used as a means of acquiring extra notes on a valveless

horn.
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Fig. 20.17. The Effect of the Player’s Hand on the Resonance

Curve of a French Horn

5. You may wish to experiment with the effect of dropping a

small wooden or plastic object (such as a kitchen match)



into various parts of a trumpet air column. The resonance

frequencies of the instrument will be shifted upward or

downward (depending on the position of the object relative

to the standing wave humps of the modes). An object of this

size lying anywhere in the middle three-quarters of a

trumpet will make changes that will range up to about 0.3

percent (4.4 cents). On a properly made instrument these

alterations will be reflected clearly in its playing properties.

Some notes may be improved and some spoiled. There will

also be changes in the way in which notes start, and in their

stuffiness or clarity. Perhaps you can work out the reasons

for these changes. I once helped a manufacturer of excellent

French horns, who was refining the mouthpipe design for a

new horn, to discover needed alterations that were only

one-fifth of the amount mentioned above.
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21

The Woodwinds: I

Woodwind musical instruments, like the brasses, have a

flow-control device (the reed-valve) the function of which is

to alter the rate at which air enters the mouthpiece from the

player’s lungs. Woodwinds, again like brasses, also make

use of an air column whose natural frequencies must be

properly arranged to set up regimes of oscillation in

conjunction with the reed-valve. The woodwinds achieve a

complete scale by placing along the air column a set of tone

holes that can be opened to give different sets of natural

frequencies. 1

The lowest note of a woodwind instrument uses a regime of

oscillation based on the complete air column’s first

vibrational mode acting in conjunction with modes 2, 3, 4,

etc. Successively higher notes of the low-register chromatic

scale are produced by opening holes one by one along the

tube, beginning with the one farthest from the mouthpiece.

This successive opening of holes shortens the effective

length of the air column, which of course raises the

frequencies of its modes. The idea of an effective length is

as useful to a discussion of woodwinds as it was for the

brasses, since the standing pressure waves within a

woodwind are very reminiscent of those that exist within a

flaring, trumpetlike horn: these standing pressure waves are

roughly sinusoidal near the woodwind mouthpiece, and in

the region where holes are open they show the same rapid

tailing-off and attenuation that we have learned to associate

in brass instruments with the “acoustically forbidden”

rapidly flaring part of the bell.



The low register of a woodwind has all its notes based on

mode-1 vibrations of the air column. The highest note in the

low register is reached when mode 1 of the shortened tube

has the same frequency as does mode 2 of the complete

tube. The player continues up the chromatic scale by

reclosing all the holes and then again opening holes in

succession while shifting his manner of playing to one that

produces a tone based on mode 2 and its higher

collaborators; this sequence is known as the second playing

register of the instrument. The tuning of these second-

register notes will of course be correct only if the frequency

ratio (and therefore the musical interval) between the first

and second characteristic modes is the same for the

complete horn as for one that is shortened by opening a few

holes. Preserving a constant frequency ratio between the

vibrational modes as the holes are opened is essential in all

woodwinds and provides a limitation on the types of air

column (often referred to as the bore) that are musically

useful. We need not worry about this limitation, however,

because it is automatically satisfied when we select air-

column shapes that are also able to set up useful regimes of

oscillation. For the reed woodwinds, these limitations permit

us to confine our attention to air columns whose shapes are

based on the cylindrical pipe (e.g., clarinets) and on the

straight-sided cone (e.g., saxophones, oboes, English horns,

and bassoons).2 Since the flow-control device of a flute is

not of the pressure-controlled type, we will postpone all

discussion of this instrument until chapter 22.

21.1. Resonance Curves

and the Characteristic

Shapes of Woodwind



Vibrational Modes; The

Tone-Hole Cutoff

Frequency

Let us consider the standing waves that exist in an air

column that is stopped at one end and provided with a

sequence of tone holes at the other; the upper few holes of

this sequence are closed and the lower holes are open, as

indicated in the uppermost part of figure 21.1 Initially we

need not commit ourselves to any particular shape of air

column, since at the present moment we are concerned only

with those aspects which are common to all stopped air

columns that are provided with tone holes.

Whether the basic air column is cylindrical, conical, or of

any reasonably continuous form (such as that sketched), the

pressure standing wave patterns belonging to the lowest

few natural frequencies of the air column are always of the

general sort sketched in the second, third, and fourth lines

of figure 21.1. (Figure 21.2 shows, for purposes of

comparison, the standing wave patterns for the lowest two

modes of vibration of air in an ideal cylinder and an ideal

cone. Notice the similarity of these to the patterns worked

out in figure 21.1 for an air column of more general shape.)

In figure 21.1, we can see that at the closed end (marked X

in the diagram) the pressure wave has the largest possible

amplitude. The point M marks the ending of the closed tone

holes and the beginning of the open tone holes. (We will call

any sequence of open tone holes a tone-hole lattice.) At the

point M where the lattice of open tone holes begins, the

standing-wave pattern has a reversal of curvature, and it

trails off in ever-weakening fashion down the lower part of

the bore which, as a result, has only a very small influence



on the nature of the vibration. This trailing-off part of the

standing wave corresponds exactly to the strongly

attenuated part of the waves in a trumpet.3

The length XN in figure 21.1 is that length of our air column

which, when stopped at one end and sawed off to produce

an ideally open end at the other, will resound in unison with

the actual air column that is provided with open tone holes.

The distance MN is what some people call the open-end

correction associated with the open-holes lattice (compare

with the dotted sinusoids shown in fig. 20.8).

Notice that here, as in the case of the brass instruments, the

standing wave consists of an odd number (1, 3, 5, etc.) of

half humps, depending on the serial number of the

vibrational mode. Notice that so far we are speaking about a

perfectly general air column, which means that these half

humps are not necessarily of equal length in various parts of

the bore (see the lower part of fig. 21.2, and also fig. 20.8).
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Fig. 21.1. Standing Wave Patterns Typical of a Woodwind Air

Column

In figure 21.1, a closer look at the standing wave diagrams

for the first three modes shows that the tone-hole length

correction (the distance MN) increases in magnitude as one

goes from mode 1 to modes 2 and 3. This tells us that an air

column provided with open tone holes “looks” longer when

it is asked to vibrate in a high-frequency mode than it does

when it is vibrating in a lower-frequency mode. On

woodwinds, this phenomenon by itself accounts for a

flattening of any upper resonance frequency relative to the

lowest one. This flattening (which can amount to an

appreciable fraction of a semitone) may need to be offset by



alterations in the bore profile when the instrument is

adjusted to play properly.
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Fig. 21.2. Lowest Two Standing Wave Patterns for a Cylinder

and a Cone

We turn our attention now to the bottom line of figure 21.1,

where the standing-wave pattern of the fourth vibrational

mode is displayed. Here there is no particular change in the

shape of the wave at the point M where the open tone holes

begin. The wave is distributed throughout the whole air

column, and has a pressure node at the bottom end of the

bore, almost exactly as though there were no open tone

holes present! It is a characteristic property of any duct

provided with a sequence of open tone holes that at low

frequencies the sound waves are not able to travel down

along the lattice, and as a result they are reflected at the

place where the lattice meets the more ordinary air column.

This ability of a set of open tone holes to lop off an air

column by providing a strong reflection at a predetermined

length is what we have been discussing in connection with

modes 1, 2, and 3. However, at frequencies above a certain

critical value determined by the sizes of the holes and their

spacing, the open-hole system becomes able to transmit

waves to the lower end of the air column, where they may

be reflected back, just as they would be in an ordinary pipe

having the same open-end diameter. The critical frequency

above which sound waves can run through a lattice is

technically known as the open-holes lattice cutoff

frequency, for which we will use the symbol fc. For the

purposes of illustration, the diagrams of figure 21.1 were

drawn to correspond to a lattice whose cutoff frequency lies

between natural frequencies of the third and fourth modes

of vibration, so that the active air column terminates near



the top open hole for modes 1, 2, and 3, but extends to the

bottom of the instrument for mode 4.

Let us digress for a moment to see how sound may be

expected to leak out of a woodwind into the room. In the

lowest one or two modes of vibration, the pressure

disturbance penetrates so little into the tone-hole lattice

that only the first of the holes is able to emit much sound

into the room. As a result, very little wave energy is radiated

into the room, the rest being reflected back toward the

mouthpiece end so as to produce a strong resonance peak

at the natural frequency of the mode. We have already

noticed that successively higher frequency modes have the

“tails” of their pressure wave patterns extending farther and

farther into the open-hole region, so that an increasing

number of tone holes are able to contribute appreciably to

the acoustic excitation of the room. Air-column modes that

exist above cutoff, such as the one shown at the bottom of

figure 21.1, have standing wave patterns that extend all the

way down the duct, so that all of the open tone holes have

ample opportunity to radiate,

We are now in a position to understand figure 21.3. The top

part of this diagram shows the measured input impedance

curve of a piece of clarinetlike tubing about 61 cm long, as

you can verify from the fact that the resonances fall at odd

multiples of 140 Hz. The lower part of the figure shows the

input impedance measured on this same piece of tubing

when another piece of tubing provided with a long row of

uniformly spaced tone holes is added to it. (Note the

similarity of these two curves to those appearing in fig.

20.17.) We recognize clearly that, as the excitation

frequency rises, more and more of the sound leaks out of the

tone holes; this reduces the reflected wave amplitudes, thus

reducing the heights of the resonance peaks and raising the

dips. Above the cutoff frequency the tone holes radiate so



effectively that Q0 for the higher (complete-bore) modes is

very close to unity, and thus the measured input impedance

wiggles only a little above and below the wave impedance

itself for that size of tubing.
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Fig. 21.3. Impedance Curves for a Piece of Cylindrical

Clarinet Tubing. Top, tubing alone; bottom, tubing extended

by section having equally spaced tone holes.

We should by now have enough knowledge of wind-

instrument acoustics to recognize that both the production

of sound within a woodwind and the way in which it is

transmitted out to our ears will be strongly influenced by

the presence of the tone-holes cutoff frequency. We will

learn in due course that specifying the cutoff frequency for a

woodwind is tantamount to describing almost the whole of

its musical personality (this statement assumes the proper

tuning of playing pitches, and the correct alignment of

resonances for good oscillation).

21.2. The Flow-Control and

Elastic Properties of

Reeds

In chapter 20 we leapt directly from a quick examination of

the flow-control properties needed to maintain oscillation in

a water trumpet to a study of the collaborations that take

place between the player’s lip-valve and the air-column

resonances. It is not easy to measure (or describe) what is

going on at the brass player’s lips. The reed-valve of a

single-reed woodwind is amenable to closer examination,



and this examination will help us to understand a great deal

about what goes on in the playing of all sorts of woodwinds.

In 1830, the German physicist Wilhelm Weber described

experiments on the action of organ reeds that led him to a

correct theory for the effect of a compliant structure (the

reed, or, for that matter, the brass player’s lips) on the input

impedance of a column of air. The effect of the reed in

providing a yielding closure to an air column is quite

separate from its function as a valve. Bouasse devotes a

very large part of Instruments à Vent to a description and

extension of Weber’s work on organ reeds, as well as his own

application of it to the cane reeds of orchestral woodwinds.4

While many workers have studied the behavior of reeds

since the time of Bouasse, his results were neither improved

upon nor extended until 1963, when John Backus of the

University of Southern California described a series of very

careful experiments on the behavior of clarinet reeds. More

recently the Dutch engineer Cornelis Nederveen has

repeated and extended Backus’s work. Nederveen’s studies

on woodwinds are detailed in his excellent little book,

Acoustical Aspects of Woodwind Instruments. 5

We can summarize in three statements the overall influence

of the reed elasticity on the natural frequencies of an air

column:

1. The resonance frequencies of an air column terminated

by a reed are always lowered by the reed’s presence, and

they are never higher than the natural frequency with which

the reed cane itself would vibrate if plucked like a tuning



fork. (Note: this natural frequency is not the one obtained

by blowing on an oboe or bassoon reed or on a clarinet

mouthpiece; in all these cases there is present inside the

reed cavity a miniature air column that has significant

influence.)

2. Changes in the reed’s natural frequency (produced for

example by changes in the way in which it is pressed onto

its mouthpiece by the player) produce small but parallel

changes in the air-column modes that lie far below the

reed’s natural frequency. These changes become

progressively larger for higher modes that lie nearer to the

reed frequency.

3. The reed damping produced by the player’s lips serves

among other things to reduce the magnitude of the changes

described in statements 1 and 2, although they are still

musically important.

One of the most important contributions made by Backus

and Nederveen has to do with the measurement of the

actual flow-control characteristics of various kinds of reed as

they are acted on jointly by two different kinds of pressure:

(1) the pressure P maintained by the player in his own

mouth, and (2) the pressure p that exists within the

mouthpiece of the instrument (the pressure p is ordinarily of

an oscillatory nature).

The lower part of figure 21.4 shows schematically the way in

which a steady pressure difference (P—p) acts to close the

aperture between a clarinetlike reed and the tip of its

mouthpiece. A long tube filled with fiber glass is attached to

the mouthpiece, so as to provide a duct through which the



air can escape without returning any acoustical signals that

might accidentally set the reed into vibration as part of an

oscillatory regime.

The upper part of figure 21.4 shows a pair of curves relating

the rate of airflow through the reed aperture to the pressure

difference (P—p) across it. The upper curve, labeled “loose

embouchure,” corresponds to what is observed when the

laboratory replacement for the player’s lower lip and teeth

presses gently on the reed so that it is not held very close to

the facing, which is the gently curved part of the

mouthpiece onto which the reed rolls as it closes off the

aperture. The curve marked “tight embouchure” shows

similarly the flow behavior expected when the player

presses harder on the reed to hold it more nearly closed.

(Note that the pressure p within the mouthpiece will always

be very small under the conditions of the present, non-

oscillatory experiment, so that for now we can neglect its

influence.)
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Fig. 21.4. Flow-Control Characteristics of a Clarinetlike Reed

and Mouthpiece

If we follow either one of the curves shown in the upper half

of figure 21.4 upward from zero blowing pressure (P = 0), we

will notice first that the flow through the aperture rises with

increasing pressure in a way that anyone would expect for

air pouring through a small hole. As P rises further, however,

it begins to push the reed progressively more closed so that,

after the initial increase, the flow rate through the aperture

decreases until eventually the reed is blown completely

closed. It is not surprising that, for any given blowing

pressure P, the flow rate is less when a tight embouchure is

used than when the embouchure is more relaxed. We also



notice that tightening the embouchure reduces the blowing

pressure required to close the reed completely.

When the reed is very nearly closed, the air flowing past it

into the mouthpiece tip has a particularly high velocity,

which means that there is a Bernoulli force acting there

trying to help close the reed (see sec. 19.2, statement 4).

The magnitude of this extra closing force depends critically

on the inside shape of the mouthpiece tip—the region

known to clarinetists as the baffle. The shaded region at the

right-hand end of each flow curve in figure 21.4 shows how

different baffle profiles can alter the way in which the reed

closes off the airflow. When the Bernoulli effect is made

large, a lower blowing pressure P is required to close off the

reed. In 1969 my co-worker Walter Worman showed that in

the simplest case the Bernoulli force is about 3.5 percent of

the maximum total force acting on the reed due to pressures

P and p.6 However, we find that small changes in the

Bernoulli effect above and below this value can have

dramatic influence on the musical behavior of reed

instruments. For example, the saxophone loudness changes

described in section 13.7 were produced by deliberate

alterations in the shape of the last 2 mm of the mouthpiece

baffle.

Let us now investigate the manner in which a reed finds it

possible to keep an air column in oscillation. Suppose we

remove the tube filled with fiber glass from our

experimental apparatus, and replace it by a musical

instrument air column, such as that from a clarinet or

saxophone. Suppose further that our compressed-air supply

is adjusted to maintain some steady pressure P in the iron

mouth cavity that surrounds the mouthpiece. Choosing P in

this manner locates us at some point on the flow-versus-

pressure curve, and we can determine what happens to the

flow if we somehow impose a small oscillatory variation of



pressure within the mouthpiece. If P has a fairly high value,

locating us on the falling part of the curve, then a

momentary increase of p will reduce the quantity (P—p) and

thus increase the flow through the reed. To say this another

way, an increase of pressure within the mouthpiece has the

effect of pushing the reed aperture wider open, so as to

permit more air to flow in. We can therefore conclude that

on the downhill side of the flow-versus-blowing-pressure

curve an increase of mouthpiece pressure produces an

increase of airflow. This is precisely the relationship required

for the maintenance of oscillation (see sec. 20.1 on the

water-trumpet valve). Notice that on the rising side of the

curves of figure 21.4, before the pressure P giving maximum

flow is reached, the relation between the mouthpiece

pressure p and the airflow is exactly backwards from what is

needed to sustain an oscillation.

Whenever the flow-control curve we have been studying is

steeply sloping, a small change in mouthpiece internal

pressure will produce a large change in the flow; on the

other hand, in the less steeply sloping region near the

maximum of the curve, a small change in p produces almost

no change in flow, which means that under these conditions

the reed-valve does not respond sensitively to the influence

of an air column.

The important features of a reed-valve flow-control system

can be summarized in a continuation of our set of numbered

statements:

4. A reed-valve can sustain oscillation in an air column only

when the player’s embouchure tension and blowing



pressure set the “operating point” of the reed somewhere on

the downward-sloping part of the flow-versus-blowing-

pressure curve.

5. The steeply sloping portions of this curve correspond to

operating conditions in which the flow is sensitively

controlled by acoustic pressure variations p within the

mouthpiece.

6. The presence of the Bernoulli effect at the reed tip results

in an increase in the steepness of the flow-control curve in

the region where the reed is about to be blown shut.

7. Partly because of the Bernoulli effect at the reed tip,

increasing either blowing pressure or embouchure tension

will generally move the operating point toward a region of

greater steepness in the curve (there are important

exceptions to this remark, however).

8. The shapes of the pressure-control curves for various

embouchure tensions are such that, in order to produce a

specified steepness of the curve at the operating point (i.e.,

to maintain a given air column in oscillation), the player can

trade off blowing pressure for embouchure tension in many

combinations.

9. The fact that the flow-control characteristic curve is not

straight (or, equivalently, the fact that the slope varies from

point to point along the curve) is an indication that

heterodyne effects can take place. It is this nonlinear

feature of the flow-control behavior that leads to the

existence of regimes of oscillation, in which oscillation is

maintained by excitations taking place simultaneously at

several frequencies.

10. Due to resonance phenomena, the flow-control

sensitivity of the reed itself becomes large in the frequency



region just below its own natural frequency. If the reed is

insufficiently damped (e.g., by the player’s lips), high-

pitched squeaks may take place at the frequency of the

reed even though the air column itself may be above cutoff

and so lack a resonance peak in this region.

The double reeds used on oboes and bassoons act in a

fashion very similar to what has been outlined here for the

flow-control properties of a clarinetlike reed. However, the

fact that the two halves of a double reed run close to one

another for a considerable distance near their tips means

that peculiarities arising from the presence of Bernoulli

forces become particularly important in understanding the

detailed properties of double reeds.

21.3. Woodwind Regimes

of Oscillation; Worman’s

Results

For various reasons, scientists tend to begin their studies of

woodwind-instrument acoustics with an examination of the

ways in which the reed collaborates with resonances of a

cylindrical air column; in other words, they begin by looking

at the prototypical clarinet. In this book, however, there are

advantages in starting our explorations with a single-reed

instrument having a conical air-column shape, since the

acoustics of such an instrument can be related more directly

to what we learned about brass instruments in chapter 20.

The saxophone is the most familiar example of such an

instrument, but some experiments done on another



woodwind, the Hungarian tarogato, will give an even clearer

initial picture of the behavior of single-reed conical

instruments.

One can think of the tarogato as being a wooden Bb soprano

saxophone except that the tone is clearer, with generally

more stable regimes of oscillation. Ernest Varosi, a member

of Cleveland’s large Hungarian community, served his

apprenticeship as an instrument maker and repairman in

Budapest under Janos Stowasser (1865—1923), whose

tarogatos are much admired. Varosi tells me that one of the

five Stowasser brothers invented the instrument late in the

nineteenth century as a reaction to the then-new

saxophone, whose metal body and large tone holes

offended him. It is certainly true that the tarogato has very

much the shape and key mechanism that one might expect

from the hands of a thoroughly competent maker of

German-style woodwinds, although it incorporates several

ingenious acoustical innovations that I have seen nowhere

else.
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Fig. 21.5. Input Impedance Curve and Internal Spectra for

G4 on a Tarogato

The left side of figure 21.5 shows the measured input

impedance curve for the air column of a tarogato when the

fingers are placed to play the written low-register note G4, a

note for which the tone holes on the lower half of the

instrument are open and those on the top half are closed.

The first thing we should notice about the resonance curve

is that the cutoff frequency for the open-hole sequence is

somewhere near 1000 Hz. Below this frequency we find two

tall resonance peaks (corresponding to modes 1 and 2),

whereas above cutoff there are only small, random-



appearing squiggles associated with the heavily damped

resonances of the complete air column (compare with the

lower part of figure 21.3).

When one plays the tarogato’s low-register G4, the

fundamental component of the tone is fed by the first

resonance peak, while the second harmonic is fed by peak

number 2. Little downward-pointing arrows on the diagram

show the frequencies of the first three harmonics of this

tone; it is easy to see that the regime of oscillation is

dominated by the first two resonances, whose frequencies

are in an accurate 2-to-1 relationship.

On the right-hand side of figure 21.5 is a diagram for the

same tarogato note G4 showing the amplitudes, at various

dynamic levels, of the first six harmonics of the internal

pressure spectrum measured inside the mouthpiece by

means of a probe microphone. At the pianissimo level, only

the fundamental component has appreciable strength, a

small amount of second harmonic being almost its only

accompaniment. When the tarogato is played more loudly,

so as to double the amplitude of the fundamental

component, we find that the second harmonic has grown

about fourfold, and the third harmonic has evolved to an

easily observed magnitude. Notice that at this mezzo-forte

playing level the envelope of the internal sound spectrum is

very similar in shape to that of the air-column input

impedance curve itself. The two tall resonance peaks below

cutoff give rise to two strong components in the tone. Above

cutoff, the small impedance of the air column means only a

small production of higher harmonics in the tone, and most

of what is present arises by heterodyne action at the reed

between the main components of the tone. At fortissimo

playing levels, the spectrum envelope again has a shape

reminiscent of the resonance curve envelope, except that

the strength of the second harmonic has begun to “catch



up” with that of the fundamental. Furthermore, the

heterodyne-produced harmonics that lie well above the

cutoff frequency all have attained roughly equal

amplitudes. Study of the reed motion under such very loud

playing conditions shows that the air from the player’s lungs

is shut off for a considerable fraction of each cycle of the

playing frequency; only a brief puff of air is admitted at the

peak of each oscillatory swing of the pressure p within the

mouthpiece.

In 1971, Walter Worman completed a very detailed study of

the way in which regimes of oscillation set themselves up in

wind instruments.7 Although he gave most of his attention

to clarinetlike systems played at low and medium

amplitude, his results give us a mathematical basis for the

unification of the earlier work by Weber and Helmholtz with

a quantitative understanding of Bouasse’s observation of

intermode cooperations as they take place in all kinds of

instruments. He found that it is possible to calculate the

sound spectrum produced within the mouthpiece of an

instrument. This calculation is done in terms of the

measured input impedance curve of the air column, the

flow-control properties of the reed, and the blowing

pressure. If we combine our exploration in this chapter of

the playing behavior of the note G4 on a tarogato and our

knowledge of the behavior of brass instruments, we will

have a good background for understanding the implications

of the work in which Worman and I have collaborated and of

the more recent developments based on them. Once again

it is convenient to make a set of numbered statements:

1. At low-to-medium levels, with a pressure-controlled reed-

valve (with negligible Bernoulli forces present at the reed



tip), the strength of the second harmonic of the internally

measured pressure spectrum is proportional to the square of

the amplitude of the fundamental component. The third

harmonic component has an amplitude proportional to the

cube of the fundamental pressure amplitude, and so on.

That is, the amplitude pn of the nth harmonic component of

a tone is related to the amplitude p, of the fundamental

component by the formula:

Pn = p1
n × (a constant)

The above relationship means, for example, that starting

from pianissimo playing levels there are virtually no

harmonics present in the tone beyond the fundamental;

then, for every doubling in the amplitude of the

fundamental component, harmonic 2 increases from its

initial tiny value by a factor of 22 = 4; similarly, harmonic 3

will grow by a factor of 23 = 8 for each doubling of the

fundamental component. (We have already noticed an

example of this behavior in connection with the tarogato.)

Another way to state the mathematical relationship between

the partials of the internally measured pressure spectrum is

to say that, for every decibel change in the sound pressure

level (SPL) of the fundamental component, the SPLs of

partials 2, 3, 4, etc., change by 2, 3, 4, etc., decibels. The

three parts of figure 21.6 make use of this decibel

relationship to display the accuracy (and limitations) of

statement 1. Figure 21.6-A shows the variation (expressed

in decibels) of the strengths of the harmonic components in

the C4 trumpet crescendo described in chapter 20. The

sloping dotted lines show the trends predicted for partials 1,

2, 3, and 4 by Worman’s theory. Notice how closely the

experimental points follow the theoretical lines at playing

levels below the line marked “change of feel.” Above this



playing level the theory breaks down, and all the partials

grow, decibel for decibel, in a manner that parallels the

growth of the fundamental component. Figure 21.6-B shows

in similar fashion the trends of variation observed for the

odd-numbered partials in the note C4 played on a fine

clarinet using an excellent reed. Once more we observe

good agreement with statement 1 below a certain level at

which the player notices a change of feel. Figure 21.6-C

shows the radically different behavior observed within an

oboe reed cavity. We will return to a discussion of this

diagram at the end of this section.

The departures of the observed trend of pressures from that

predicted by statement 1 prepare us to understand the next

one of our numbered statements:

2. The simple relationship described in statement 1 between

the partials of a tone is only observed when the motion of

the reed-valve parts themselves is of small enough

amplitude that the variable, pulsating airflow through them

is never entirely shut off. Once the blowing pressure is

raised to the point where the reed is blown entirely closed

for a portion of each cycle of its oscillation, the player

notices a change of feel, the listener notices a change of

tone, and the higher partials tend to grow in a way that

parallels the growth of the fundamental.

In figure 21.5 we noticed that the strengths of the partials

were related to the heights of the corresponding air-column



resonances. This observation introduces us to the third

member of our set of statements:

3. In an instrument that uses a pressure-controlled reed, the

amplitude of each sound-pressure component within the

mouthpiece is proportional to the height of the air-column

input impedance curve measured at the frequency of the

component.

Let us continue our study of woodwind tone production with

the help of figure 21.7. On the left we find the input

impedance curve measured for the air column used in the

playing of the written note D4 on the tarogato, and on the

right is the internal sound-pressure spectrum measured

when this note is played at various dynamic levels. To begin

with, we notice from the resonance curve that the cutoff

frequency for this new set of open tone holes (a set which

begins farther down the air column) is near 1000 Hz, just as

it was for G4. Because we are dealing now with an

effectively longer air column having lower resonance

frequencies, there is “room” for three modes below cutoff

rather than two. The first two of these are tall, and they are

in accurately harmonic frequency relationship, while the

peak for mode 3 is found at a somewhat lower frequency

than a truly harmonic relationship would require. This shift

downward is a consequence of the enlarged length

correction produced near cutoff. The tallness of the mode-3

peak is also reduced for a related reason, which is the

increased leakage from the set of open tone holes. Notice

also that peak 2 is taller than peak 1.
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Fig. 21.6. Relation between the Amplitudes of the Higher

Partials and Their Fundamental. A, trumpet; B, clarinet; C,

oboe.
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Fig. 21.7. Input Impedance Curve and Internal Spectra for

D4 on a Tarogato

Digression on Conditions Leading to a Reduced Height of

the First Resonance Peak in a Woodwind.

Normally we expect the first-mode resonance peak of a

woodwind to be the tallest, since the damping caused by

the escape of sound energy into the room and by its

absorption by the pipe walls acts least strongly on this

mode. There are two ways in which the first peak can have

its tallness reduced. (1) Reduction of the tallness of the first-

mode resonance peak is a characteristic feature of long,

conical woodwind air columns in which the missing part of

the cone at the apex is relatively short compared to the

length of the body of the instrument. Progressively

shortening the cone by cutting segments off its large-

diameter end leads toward a shortened air column that does

not have this property. (2) The influence of friction in the

flow of air in and out of a small hole in the upper part of an

air column can also reduce the tallness of all the resonance

peaks; if the friction effect is combined with that of flow

inertia in the hole, the first peak is influenced the most.

Figure 21.5 shows that when the tarogato plays G4, the cone

has been shortened enough for cause (1) not to apply. The

air column used in playing D4, on the other hand, is

sufficiently long that the first peak is reduced through cause



(1) to a height that is roughly equal to that of peak 2, as

indicated by a small dot over peak 1 in the diagram. The

further reduction in tallness of this peak comes about in our

present example from the presence of a slight leak through

one of the pads closing off a tone hole near the top of the air

column.

When one plays D4 loudly on this tarogato (which has a

slightly leaky pad), an internal sound spectrum is produced

that differs very little in its nature from that belonging to G4

(compare the top curves on the right-hand sides of figures

21.5 and 21.7). If one then plays D4 at a mezzo-forte level,

the first partial will drop to about 55 percent of its

amplitude at loud playing, and partial 2 will have an

amplitude that is 50 percent of its original value. A

calculation of the sort described in statement 1 would lead

us to expect partial 2 to be down to 30 percent, since (0.55)

2 = 0.30; such a change from prediction suggests that some

new phenomenon is calling itself to our attention.

Continuing the diminuendo to the pianissimo level leads us

to a spectrum in which the fundamental component has

fallen to an amplitude lets than that of partial 2, as shown

by the lowest curve on the right-hand side of figure 21.7.

Careful listening to the sound of a D4 diminuendo and

analysis of its spectrum as the tone dies all the way to

nothing reveals that the second harmonic disappears very

slowly, whereas the first partial (along with the third one)

falls away entirely to zero. In other words, the pitch of the

tone “sneaks” up an octave just before the sound

disappears! The tendency of the low notes of conical



instruments to change octaves in this way during a

diminuendo is a familiar and troublesome one, particularly

for saxophonists.

The explanations of the octave “sneak” and of the

anomalous behavior of the sound spectrum just before it

takes place can easily be understood: as the player reduces

his blowing pressure, the reed’s operating point moves

upward and toward the left along a curve (resembling the

curves shown in fig. 21.4) into a region where the slope is

less steep. This slowly reduces the pressure sensitivity of the

reed in its function as a valve, and allows the amplitude of

oscillation to fall. Harmonic generation by the reed

nonlinearity becomes less, thus weakening the cooperative

hold of the various resonances on the regime of oscillation,

until the tall second peak acting by itself at its own

frequency is able to take over from a progressively

enfeebled cooperative regime using harmonics of the mode-

1 frequency. When the tarogato we have been discussing

has its leak repaired, it is able to play a stable diminuendo

on D4 all the way to complete silence. However, the lower

notes, down to B3♭, give increasing evidence of instability.

Let us use these remarks as the background for three more

statements about oscillation theory:

4. The pressure amplitude measured within the mouthpiece

for any given component of a tone is somewhat increased if

the height of the air-column resonance curve at the

frequency of this component is related to the steepness of

the reed’s flow-control curve in a way that would permit this

oscillation component to sustain itself if it could be studied

in the absence of the other resonances (i.e., in the sense of

Helmholtz’s theory).



5. Spectrum components lying near the reed’s own natural

frequency will be enhanced very similarly, this time because

the resonantly increased steepness of the control curve

itself may permit the reed to sustain oscillations in the

absence of an air-column resonance.

6. Alterations of pressure amplitude of the sort referred to in

statement 4 are not particularly large at ordinary playing

levels in the low register, because the interlocking nature of

the regime of oscillation distributes any oscillatory

contributions by this component across the entire spectrum.

The alterations can however lead to profound changes near

the threshold of playing and also in the second register

where the reed resonance effect may be called upon as a

means for setting up a regime of oscillation in the absence

of air-column peaks at harmonics of the playing frequency.

Before we consider some of the ways in which certain

instruments depart from the behavior described so far, we

should broaden our understanding of the musical

implications of this behavior.

Anything that works against the maintenance of oscillation

(such as the reduction of the heights of air-column

resonance peaks by frictional or radiation damping, or the

misalignment of these resonances so that they fail to set up

strongly cooperative oscillatory regimes) requires the player

to operate the reed on the more steeply falling portion of its

flow-control curve. In order to produce this increased

steepness, the musician is required to exert more effort in

his playing, so as to provide a combination of increased

blowing pressure and greater embouchure tension (see fig.

21.4 and the numbered statements in sec. 21.2). This



explains why instruments having either heavily damped or

grossly misaligned resonances are usually described as

“hard-blowing,” and why the player is likely to find them

physically tiring to play.

It is a common observation that a really fine instrument with

accurately aligned resonances can be played comfortably

with a reed that is considerably stiffer than can be used on a

less well-aligned instrument, even if the heights of the

various resonance peaks are the same in both cases. When

several air-column modes “gang up” on a reed as members

of an oscillatory regime, they can satisfactorily push a much

stiffer reed open and closed at the blowing pressure and

embouchure tension preferred by a particular player.

It is a matter of a musician’s taste whether he chooses to

make use of a stiff reed and an open facing on the

mouthpiece or the opposite extreme—a soft reed and a

close facing (an open facing is one that curves considerably

away from the reed so as to produce a large aperture at the

tip in the absence of embouchure tension). In the first case

he can play a large part of his total dynamic range in such a

way that the reed tip never completely closes the aperture

at its end, so that there is a considerable change in tone

color as he changes the vigor of his blowing (see statements

1 and 2 above). In the other extreme style, the reed

aperture goes shut for a considerable portion of each cycle

of its oscillation during normal playing. Here the shape of

the internal sound pressure spectrum envelope changes

relatively little as the dynamic level is altered, since

everything takes place in the region to the right of the

vertical line marked “change of feel” in figure 21.6-B. An

extreme form of the German style of symphonic clarinet

playing belongs to the first of these categories, while the

French prefer the second. Most players today make an

intermediate choice in which they cover the entire range of



musical possibility, and the reed tip closes at each swing

only when one is playing above a mezzo-forte level. Figure

21.6-B was made using a clarinet in which the reed, the

mouthpiece facing, and the instrument make an excellent

combination for this sort of performance, although many

players and listeners prefer the instrument when small

changes are made to the mouthpiece to increase minutely

the amount of Bernoulli force that is exerted on the reed tip.

The higher notes of a trumpet, the bottom half-octave of the

range of a bassoon, and all of the notes of an oboe fail to

show an unfolding of the spectrum during a crescendo of

the sort implied by statements 1 and 2 in this section. These

peculiarities are themselves understandable on the basis of

what we have learned so far. The higher notes of the

trumpet are produced by the cooperation of only one air-

column resonance with the player’s lip-valve. Generally

speaking this resonance peak is not very tall, and so cannot

dominate the lips of the player in the way in which an air

column normally dominates a clarinet reed (a brass-player’s

lips are massive when compared to a reed, or in view of the

forces within the mouthpiece that help to control the lips).

As a result, the player arranges things in a manner which

sustains the oscillation by increasingly large amounts of the

oscillatory Bernoulli force (see sec. 19.2). The resulting

oscillatory regime is no longer of the completely pressure-

controlled sort that we have been assuming, since the

Bernoulli force depends on the flow velocity itself.

The low notes of a bassoon are played using a very nearly

complete conical air column, so that the first and sometimes

even the second resonance peaks are less tall than the

higher-numbered ones. Only when the player blows quite

hard, so that his reed slaps shut during part of each

vibrational cycle, can the cooperative efforts of modes 1, 2,

3, etc., set up a low-register regime of oscillation strong



enough to overcome the influence of the single tallest peak

(see the explanation of the tarogato note D4 earlier in this

section). In the bassoon the “change of feel” takes place

only a little above the threshold of pianissimo playing.

Figure 21.6-C shows the internally measured sound

spectrum curves of a note on the Vienna oboe. The

drastically different behavior seen here is associated with a

very large amount of Bernoulli force exerted at the reed tip

over an appreciable fraction of the cycle. The mathematical

physics of oscillatory regimes dominated by a Bernoulli-type

reed-control force has hardly been studied. It is possible to

show, however, that this sort of influence on a pressure-

controlled reed has several consequences for the player

beyond those implied already. The reed tends to snap shut

at the end of its swing rather than closing smoothly, as

would be expected in the absence of Bernoulli forces. This

means that a relatively low blowing pressure will take one

into the loud-playing part of the playing range, in which the

reed remains closed over an appreciable fraction of each

cycle. This results in considerable production of high

harmonics even at the pianissimo level. In particular, the

Bernoulli force tends to make a great increase in the second

harmonic component of any tone that may be produced.

(This effect is clearly shown by the relation between the

saxophone spectra discussed in sec. 13.7.) In figure 21.6-C

you will notice that at ordinary and loud playing levels, the

amplitude of the second component p2 is 2 or 3 dB greater

than the fundamental component p1. At the pianissimo

playing levels this excess is exaggerated, despite the fact

that on a Vienna oboe the first and second resonance peaks

of the air column used to play D4 are equally tall. A

diminuendo on this oboe will therefore not produce the

octave “sneaking” we observed for this note on the tarogato

(produced by the tarogato’s tall second peak).



21.4. Acoustical

Properties of a Set of

Closed or Open Tone Holes

It has been pointed out earlier that the acoustical behavior

of a woodwind is very strongly influenced by the design of

its system of tone holes. The existence of a cutoff frequency

associated with the set of open holes has been our first

example of their influence. Another important influence is

the effect of the row of closed tone holes that lies along the

upper part of a woodwind air column. We will begin our

study of tone-hole properties with an account of the action

of these closed holes.8

A. The Closed Tone Holes. Figure 21.8 shows how we can

look at a lattice of tone holes as being made up of a

sequence of T-shaped sections, each consisting of a piece of

the main bore having radius a (i.e., diameter 2a) and length

2s. Each of these segments is provided at its center with a

side branch, which is made by drilling a hole of diameter 2b

through the pipe wall, whose thickness is t. Notice that the

length 2s of each segment is also equal to the spacing

between successive tone holes. In a real woodwind the tube

diameter 2a is not generally the same as we go from one

part of the instrument to another, nor do the tone-hole sizes

or spacings form a uniform progression. This need not

concern us for the moment; it will be sufficient for us tthink

first about the properties of a duct made up of a set of

identical segments, and then about a long row of segments

whose properties vary in a smooth progression from one end

to the other. Eventually we will learn how to deal with the

very irregular hole diameters and spacings that are found on

real woodwinds.



When all of the tone holes are closed at their outer ends,

which converts the air column into a duct provided with a

series of small cavities, thecompressibility of the air in each

T-shaped segment is slightly increased because of the

increased volume provided by the tone-hole cavity. The fact

that the air in the cavity is restrained from moving back and

forth along the duct means that this additional air does not

in addition change the net inertia of the moving air. Taken

together, these two remarks imply for us that the values of

both the wave velocity and the wave impedance of the

modified duct are smaller than the corresponding values for

the original smooth-walled duct (see sec. 17.1). We met a

cousin to these remarks in section 20.5 when we looked at

the effect of sharp bends in a duct.
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Fig. 21.8. Top, representation of woodwind tone holes on

their air column as a series of T-shaped sections; bottom,

closed tone holes effectively enlarge and lengthen the air

column.

For practical purposes, we can translate the effect of the

closed tone holes into a simpler shape in the manner

sketched in the lower parts of figure 21.8. A pipe provided

with closed tone holes can be replaced acoustically by a

pipe whose length and cross-sectional area have both been

enlarged by a numerical factor which we shall call Ec:
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For most woodwinds, the change implied by this formula

ranges from 2 to 5 percent. From our study of brass

instruments we already know that uncompensated changes

of this magnitude can have serious consequences.



B. The Open-Hole Lattice Cutoff Frequency.9 Let us return

now to the first and most important property of a lattice of

open tone holes: their influence on the cutoff frequency.

When these holes are proportioned in the manner normally

found on clarinets, oboes, and bassoons, the cutoff

frequency fc is given quite accurately by the following

simplified formula:
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Here v is the speed of sound (345 m/sec) in free space, and

te is the length of a cylindrical plug of air whose inertia is

identical with that of the air which flows in and out through

an actual tone hole drilled through a wall of thickness t. We

find that te is greater than t, because there is always a small

amount of moving air immediately beyond the inner and

outer ends of the hole. The relation between t and te for

various kinds of tone holes is complicated, but for present

purposes we can use the sum of the physical wall thickness

and 3/4 of the tone-hole diameter 2b; that is, te ≃ (t +

1.5b).10

We can see from the formula that enlarging the ratio (b/a) of

tone-hole size to bore size will raise the cutoff frequency,

while an increase in effective thickness te or interhole

spacing 2s will lower it. If the lattice is irregular, theory

shows that: (1) if the first and second open-hole segments of

the lattice (taken by themselves) have widely different

cutoff frequencies, the observed value of fc for the

composite system has an intermediate value for its cutoff

frequency; and (2) at the lower frequencies, the properties

of the first segment still dominate the implications of fc.

Considerations of this kind show that it is technically

possible to take care of the irregularities arising in the



spacing or proportions of the first two open holes. The effect

of an anomalously large spacing (whole-tone instead of half-

tone), for example, can be hidden almost entirely by the use

of an enlarged first tone hole. Similarly, if the second hole

should be anomalously small, its effect on fc, etc., can be

compensated by reducing its own te, or by increasing the

size of the first hole, and so on. We can realize from these

observations that one has considerable latitude in the

design of a woodwind since one can trade an alteration of

hole size for a change in wall thickness and still preserve

some desired cutoff frequency and its acoustical relatives.

C. The Open-Holes Length Correction .11 Now that we have

an expression for the cutoff frequency, we are in a position

to set down a pair of simplified but very instructive formulas

that allow us to think about the length correction associated

with the junction of an open tone holes lattice with the

upper body of a woodwind. This length correction, for which

we will use the symbol C, is the distance between the points

marked M and N in figure 21.1. As we have already learned

in section 21.1, C increases somewhat with frequency up to

fc, above which it loses any sensible meaning, since the air

column simply extends itself all the way to the lower end of

the instrument.

For frequencies well below cutoff, the length correction C

varies only slowly. At very low frequencies it is accurately

given in terms of the tone-hole dimensions and spacing by

the formula:
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For ordinary woodwind tone-hole lattices, we find that Clow

has values running between about 1.5s and 4s, which is a

way of saying that the effective length (the distance XN of



fig. 21.1) extends down into the open-hole lattice a distance

varying from somewhat less than the interhole spacing 2s to

about twice this spacing.

We find that the length correction C grows slowly at first (far

below cutoff) and then more rapidly (just below cutoff). On

most woodwinds, C increases on the order of 12% or less at

three-quarters of the cutoff frequency.

Inspection of both formulas for C shows that making the

interhole spacing larger will increase the magnitude of the

correction, as will an increase in the effective wall thickness

te. We also notice that decreasing the hole size relative to

that of the bore increases the magnitude of C, and so

flattens the played note.

Our simplified formula for the open-hole length correction C

has useful accuracy for serous woodwind design as long as

there are at least two open holes in the lattice, and as long

as the hole diameters do not differ by more than fifty

percent. In the formula, one uses the radius b of the

uppermost of these holes, and the radius a of the bore at the

position of this hole. One also takes s to be one-half the

interhole spacing of the top two open holes, and evaluates

the equivalent wall thickness te at the position of the top

hole.

If more exact results are needed or if the lattice is very

irregular, meaningful calculations can be carried out, but

they become extremely tedious and fairly subtle. A detailed

discussion of the mathematical design of woodwind tone

holes regardless of the irregularity of their proportions is to

be found in Nederveen’s book. He limits himself to

frequencies such that f/fc is negligibly small, so that cutoff

phenomena are ignored.



Let us interrupt our description of standing waves in a pipe

with tone holes to notice some of the practical implications

of what we have learned so far. We can now glimpse the

reasons why closing a tone hole at some distance down the

bore following a series of open holes has very little effect on

the tuning of the first natural mode of vibration. At low

frequencies the main standing wave does not “visit” the

region in which we have introduced an anomaly, and so is

not perturbed by it. The higher-frequency modes (that still

lie below cutoff) are progressively more influenced by such

a closure, and the effect on them is always to lower the

natural frequency. On the other hand, above cutoff the

influence of a distant closed hole in the lower bore can be

considerable, because the strength of the standing wave

here is large. One can obtain either a raising or a lowering of

the frequency, depending on the complexities of the

situation. This is a phenomenon which is sometimes baffling,

particularly to players of baroque instruments.

D. Irregular Lattices and Fork-Fingerings . In our discussion

of air columns provided with a complete set of open tone

holes, we found the open holes length correction C to be

associated with a sequence of open holes; this sequence is

dominated by the dimensions of the highest open hole in

the series, and by the spacing between this hole and the

next one. At first sight, this simplification of what is

otherwise an exceedingly complicated problem appears to

be valid only as long as the series of holes has a reasonably

smooth progression of sizes and spacings. However, closer

examination of the physics shows (in agreement with

practice) that the lattice of holes need not be physically

regular in its dimensions as long as sufficient Acoustical

regularity can be obtained for the system. Under these

conditions the general conclusions remain valid. Because

fork-fingering introduces a geometrical irregularity into the

lattice of open holes while preserving a certain amount of



acoustical regularity in the system, this is a good time to

consider the effects of this useful technique.

A fork-fingering is one in which the regularity of the open-

hole lattice is interrupted by closing one or more of its holes.

A typical fork-fingering occurs when one attempts to flatten

a note a semitone by closing the second hole down in what

had originally been a series of open holes. Such a situation

is diagrammed in the middle part of figure 21.9. The figure

shows both the original, normally fingered note with its

complete set of open tone holes, and the lattice modified by

closing either one or two extra tone holes. It is at once

apparent that the spacing between the first two open holes

is drastically increased by the fork-fingering shown in the

middle part of figure 21.9. It is a fact long familiar to

musicians that closing yet another hole (in this case the one

marked Q) will produce very little change in the tuning of

the fork-fingered note, even though it supplies the

instrument with two (rather than one) of the new lattice

segments having extended interhole spacing. This

observation drawn from experience serves as a beautiful

example of the self-regularizing powers of lattice acoustics,

and so helps us to understand the theory.

In the preceding part of this section we set down a pair of

formulas for C to which we should return our attention. It is

at once obvious that an increase of interhole spacing 2s

produced by fork-fingering will increase C (and so flatten

the note) simply because s multiplies everything else in the

formula. However, C does not increase quite in simple

proportion to s; the diluting effect of the factor (1/s) under

the square root sign somewhat lessens the change in C,

while the concomitant lowering of the cutoff frequency fc

also works on C to make it slightly larger at mid-frequencies.

In any event, we find that closing the hole always increases

C somewhat. and so flattens the note. Furthermore, we can



deduce that when one plays in the instrument’s second

register instead of the first (so that the playing frequency is

increased), the amount of flattening caused by the fork-

fingering increases, in general accord with experience.
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Fig. 21.9. Normal and Fork-Fingerings

If we look more closely at the problem of fork-fingering, it

turns out that, if the cutoff frequency fc is about four times

the playing frequency, there is a mathematical possibility of

arranging holes to give a perfect semitone fork. However,

upon further calculation we find that such a state of affairs

can be attained in the smaller (treble-clef) woodwinds only

when the pipe walls are very thin and the tone holes very

small. For example, on an ordinary thin-walled flute of 19-

mm diameter, the tone holes would be only 3 mm in

diameter! Mathematics and experiment agree that the

frictional loss of energy in such small holes gives hopelessly

large damping, making such an instrument all but

unplayable. For bass instruments, however, it turns out that

the required tone-hole proportions are perfectly practicable,

and indeed simple fork-fingerings of this sort were standard

practice for the baroque bassoonist. On smaller woodwinds

having tone holes of practicable size, many low-register

semitones may be fork-fingered by closing two adjacent

holes down the bore instead of only one (as shown in the

lowest part of figure 21.9). On the other hand, the simpler

kind of fork-fingering will work in many cases in the second

register because of the nearness of fc to the playing

frequency.

The knowledgeable musician may have noticed certain

apparent discrepancies between his experience and the

assertions about fork-fingerings that were made in the



preceding paragraphs. In particular he will be aware of

inconsistencies in the fork-fingering behavior of flutes,

oboes, and clarinets, which might (at first examination) be

expected to behave similarly to each other. Most of these

apparent discrepancies arise as a result of the differences in

the cooperative effects that occur in the various instruments

between the first and second vibrational modes of the air

column when one is playing in the low register; this means

that we should not expect to predict the intonation behavior

of a fork-fingered note from the length corrections for the

first and second modes considered separately.

As preparation for a discussion of register holes in the next

section, we turn our attention now to standing waves in air

columns that are provided with but a single tone hole.

Consider first the case of a single tone hole drilled through

the wall of a conical air column three-quarters of the

distance from the apex of the cone to its large open end.

The size of the hole and the wall thickness are such that

when the hole is open, the first-mode frequency of the air

column is increased by 25 percent above the value obtained

with the unpierced bore (cutting the cone off bodily at

three-quarters length would raise the frequency by 33

percent).

The top part of figure 21.10 shows the air column and its

single tone hole in diagrammatic fashion. The second part of

the figure shows the first-mode standing waves for the air

column when the hole is opened, and again when it is

closed. The most salient feature of the open-hole standing

wave is the presence of a “kink” located at the position of

the hole (marked M). It is worth pointing out that the portion

of the standing wave lying to the left of M is exactly the

same as one belonging to the complete, unperforated cone

if it were to be shortened enough to raise its natural

frequency by 25 percent. The point marked N on the



diagram shows where this shortened cone would have its

open end, and the dotted line indicates the manner in which

the standing wave would continue beyond M in this cone. If

we like, we can call the distance MN the length correction

belonging to the tone hole and the lower bore, in a manner

analogous to the way in which C was defined for a lattice of

many open tone holes. Methods for calculating such a

length correction have been known to acousticians for well

over a century. They underlie the tone-hole design

procedures worked out by Nederveen.

The bottom part of figure 21.10 shows the first- and second-

mode standing pressure waves for our cone with its open

tone hole. Once again we notice the break or kink in the

curve that occurs at the location of the hole; one finds,

however, that the second mode’s length correction

(analogous to the distance MN in the middle diagram) is

larger than the first-mode correction. This increase makes

the overall equivalent length of the cone 1.42 percent

longer when it is vibrating in its second mode than when the

oscillation takes place in the first mode. Let us say this in

another way: we learned in chapter 20 that the ratio

between the frequencies of the second and first vibrational

modes of an ideal complete cone is exactly 2-to-1 (i.e.,

musically speaking there is an octave interval between

them). When a single hole is drilled in a cone as shown in

figure 21.10, the musical interval between the frequencies

of the second and first modes of the altered air column is

reduced to one that is 24 cents narrower than an octave.

Once again the analogy is apparent between the qualitative

behavior of a tube provided with one tone hole and that of

one supplied with a whole series of them. There is however

no cutoff frequency to be recognized in the one-hole case.
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Fig. 21.10. Standing Wave Patterns for a Conical Tube

Having One Open Hole near Its Lower End

21.5. The Higher Registers

of Woodwinds; The

Function of Register Holes

and Cross-Fingerings

When one plays at a mezzo-forte level on any reed

woodwind, the production of low-register notes is normally

favored over tones in the second and higher registers, if

only because several air-column resonances are able to

collaborate in setting up a regime of oscillation. On the

clarinet and in those parts of a cone-woodwind scale where

the air column is relatively short, the low register is

additionally favored even at pianissimo playing levels

because the first resonance peak is the tallest. We have

already noted, however, the problem faced by players who

wish to play the bottom notes of a conical instrument softly,

since these notes may want to make an octave transition to

a regime dominated by the tall second peak. The above

observations suggest some of the acoustical changes a

player must make whenever he wishes to sound notes in the

second register of his instrument. These required changes

can be summed up in generalized form in two statements.12

1. For a register change in pianissimo playing, some means

of selective damping must be provided that reduces the

tallness of the air column’s first-mode resonance peak to



something less than the height of the second resonance

peak.

For playing at louder dynamic levels, the above requirement

is not sufficient, since two or three weakened resonance

peaks may join together to produce a low-register regime

that is favored over a second-register regime involving only

the tall second-mode peak, or the second-mode peak plus

the peak belonging to mode 4 (if mode 4 has not been

obliterated by lying above fc).

2. For a register change at greater dynamic levels, it is

necessary to shift the frequency of the first resonance peak

in such a way as to destroy the possibility of its joining a

regime of oscillation supported in part by some of the other

air-column resonances.

The player can accomplish these needed acoustical changes

in a number of ways: he may open a specially proportioned

register hole in the upper part of the air column, or he may

use various combinations of open and closed tone holes to

produce the desired changes by means of what is called

cross-fingering.

The proper placement of a register hole designed to

influence mode 1 without changing mode 2 is not

particularly hard to find for either a cylindrical pipe or a

cone. Examination of figure 21.2, which shows the first- and



second-mode standing pressure waves for a cylindrical pipe,

might suggest to us that a hole located one-third of the way

from the reed end of a clarinet will have no influence

whatever on mode 2, since this is a nodal point, and at such

a point there is no pressure variation to drive air in and out

through the aperture. However, mode 1 is affected by a hole

at this point, which is the effect we are looking for.

Let us look at the behavior of a clarinet which I provided

with an interchangeable pair of specially designed register

holes, one of which is arranged to meet only the pianissimo

playing requirements, while the other meets only the

requirements for loud playing. These register holes were

designed to apply particularly to the low-register note A3

and its second-register counterpart E5 a twelfth higher. Both

holes are located the required one-third distance from the

reed end, and only one is used at a time.

Let us first consider the register hole designed to be used

exclusively for soft playing. This hole is supplied with a wad

of porous material, so that the oscillatory flow of air through

the hole is controlled primarily by the friction of its passage

through the porous material rather than by the inertia of the

air in the opening. This causes a considerable increase in

the damping of mode 1, so that the height of its resonance

peak is reduced, but with only a tiny change (5 or 10 cents)

in the natural frequency of the mode. A porous aperture of

this sort is what an engineer would call a resistive aperture.

When the resistive register hole is opened on my

experimental clarinet, the tallness of peak 1 is reduced to

about one-third of its original value, and peaks 3 and 4 are

also made somewhat less tall, whereas peaks 2 and 5 are

left unchanged (because the hole lies at a pressure node for

each of these modes).



If one plays the low-register note A3 loudly without opening

a register hole, harmonics 1, 3, 5, and 7 of the tone are

supported in a regime of oscillation dominated by the first

four resonance peaks. When the resistive register hole

(designed for soft playing) is opened while the instrument is

playing loudly, the note becomes a little harder-blowing for

the player and the tone color is altered somewhat, but there

is no change in playing pitch. If one then plays a

diminuendo, the influence of the higher resonances

disappears as the higher partials of the note diminish (see

statements 1 and 2 in sec. 21.3) until a point is reached

where the tall second peak takes over, whereupon the pitch

rises by the interval of a twelfth to the clarinet’s second-

register note. If one starts the note softly, one

unambiguously gets either the high- or the low-register note

depending on whether the hole is open or closed.

The other register hole on my special clarinet can be called

a reactive register hole, i.e., an aperture in which the flow

depends mainly on the inertia of the air moving through it

(as is the case also for tone holes used to produce notes of

the scale). When the reactive register hole is used, the first-

mode standing wave is modified in a manner reminiscent of

that shown in figure 21.10, giving it a higher frequency,

whereas mode 2 is not changed at all because the opening

is at a nodal point for this mode. There is a small and

unavoidable loss in the height of peak 1 due to friction in

the hole, but it is possible to keep peak 1 considerably taller

than peak 2, so that the instrument will still play pianissimo

in the low register (though the frequency of the low-register

note is raised because of the open hole).

When the clarinet is being played softly in its low register,

opening the reactive register hole (designed for loud

playing) shifts the pitch of the tone from A3 up to the



neighborhood of C4# as the oscillation follows the

frequency of the altered first resonance. An attempt to make

a crescendo from a soft beginning with the reactive register

hole open will either cause the reed to choke up as the

higher harmonics of the tone C4# discover that they have to

cope with dips rather than peaks in the resonance curves, or

cause the instrument to make a “break” across into the

undisturbed second-register mode of oscillation. However, a

loudly played note will always start in the high register

when the reactive hole is open.

The register holes described above are extremes that would

be useless on a real musical instrument. For a register hole

to be practical, it must of course serve for playing at all

dynamic levels; this means that it must be proportioned so

as to exert suitable amounts of both resistive and reactive

influence. In other words, the first resonance peak must be

made less tall than the second one, and also its frequency

must be shifted so that it cannot collaborate with the other

peaks in forming a regime of oscillation.

On the conical instruments the choice of the register hole’s

position and its optimum proportions is simple. Figure 21.11

shows us that the correct position for the hole is exactly at

the midpoint be-tween the apex of the cone (marked X) and

its effective open end at N (see also figs. 21.1 and 21.2).

The resistive properties of the register hole will take care of

themselves, provided the thickness t of material through

which the hole is drilled is made as small as possible (one

cannot improve on the 1/2-mm thickness that is customary

on oboes; the same thickness would be ideal for the other

woodwinds, large and small). The reactive (inertia-related)

properties of the hole must be chosen to raise the mode-1

frequency by very nearly 25 percent, so that its second

harmonic lies at the dip between peaks 2 and 3. Notice in

figure 21.11 how slight a change the register hole produces



in the shape of the mode-1 standing wave when its

frequency is raised by the requisite amount.
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Fig. 21.11. Standing Wave Patterns for a Conical Tube

Having One Open Hole at Its Mid-point

A rather simple formula relates optimum register hole

placement, size, and wall thickness for cones. If the length

of the complete cone for the note of interest is L, then the

size of the hole and the thickness of the wall through which

it is drilled must have proportions that are related to the

local radius of the cone and to its length by the following

formula:

(b/a)2(L/te) = 3.253

This formula is easy to use, since te (i.e., t + 1.5b) is already

chosen for us by the resistive part of the design.

A closely related formula applies for cylindrical pipes. If the

register hole of the clarinet (which is basically cylindrical) is

to work properly, it must be located one-third of the way

down the tube from the reed end, as we have already seen.

The clarinet’s register hole must move the mode-1

resonance upward by 20 percent in order that its second

and third harmonics nicely straddle peak 2. An error either

way slightly spoils the effectiveness of the hole. Once again

te should be very small, so that the resistive part of the

register hole’s duties can be properly taken care of. The

other proportions are calculated from the formula:

(b/a)2(L/te) = 0.7570



This expression is almost identical with the one for conical

instruments, except for a numerical factor that calls for a

considerably smaller hole size than would be appropriate for

a conical tube whose diameter (at the register hole) is the

same.

The second register of every woodwind encompasses a

dozen semitones or more, so we are faced with the apparent

need for an equally large number of register holes. As a

practical matter, the oboe (whose empirically developed

register holes almost always satisfy our acoustical

requirements to perfection) gets along very well with three

register holes. The saxophone is generally supplied with two

and the clarinet with one; register-hole design can be a

problem in both these instruments.

One occasionally sees a saxophone on which the register

holes are proportioned in approximate agreement with the

prescription outlined above, and I have installed such on

other instruments. (Even with a well-proportioned

saxophone register hole, it may be necessary to compromise

the resistive requirement by enlarging both te and b.)

However, it is far more common to find saxophone register

holes consisting of a tube whose length can be 10 or even

15 millimeters, and of equally unsuitable diameter. The

instrument tends at best to ignore these holes. Such register

holes also cause serious tuning problems which are an

irregular version of those which we shall meet next in

connection with the clarinet.

The ordinary-sized clarinet almost never has more than one

register hole, and to make matters worse, this hole is forced

to serve as a tone hole as well. Its length and its diameter

are both too big for it to function as a good register hole and

too small for it to work as a good tone hole. The hole is

typically proportioned so that the right-hand side of our



formula comes out close to 1.28 instead of the desired value

of 0.757. It would take us too far afield to consider here the

reasons why clarinetists have chosen to do without

additional register holes and the reasons why their choice is

at all possible acoustically. We should, however, learn some

of the consequences of having a misplaced register hole on

any instrument—that is, a hole which is not placed exactly

halfway between the apex and the effective open end of a

conical woodwind, or exactly one-third of the way down from

the reed end of a clarinet. Because misplaced holes have

almost no practical implication for oboes, and need have

very little for saxophones and bassoons (whose many

register holes have various degrees of appropriateness), we

shall devote most of our attention to the clarinet, where the

problem is particularly serious.

We can easily deduce from figures 21.10 and 21.11 that

opening a hole anywhere along an air column will raise the

frequencies of all the modes except those which happen to

have a pressure node at the position of the hole. This tells

us that if the register hole is misplaced, mode 2 will have its

frequency raised somewhat (along with the desired raising

of the mode-1 frequency). We can also see that this upward

change in the mode-2 frequency grows as the register hole

is displaced farther away from the nodal position on either

side of the node.

For musical convenience, it is appropriate to give the pitch

shift S (expressed in cents) produced when one fingers a

second-register clarinet note whose second-mode resonance

frequency is supposed to be r times as great as that of the

note for which the register hole is ideally designed and

located.

S = (132/r)(r — 1)2(b/a)2(L/te) cents



This formula is a simplified but accurate summary of

computer calculations which were first done for me in 1958

by James Gibson and greatly refined and extended by

Robert Steiglitz in 1964. It can be applied without

modification to a cylindrical pipe having a row of open tone

holes at its lower end, although the presence of a bell or an

over-soft reed can alter the behavior somewhat.

Let us see how this formula can be applied to a typical

clarinet whose register hole is located to work ideally for the

transition between the low-register A3 and the second-

register E5. For such a clarinet, opening and closing the

register hole has no effect whatever on the frequency of

mode 2 belonging to the A3 /E5 fingering. A musical fifth

higher, at the fingering intended to produce the second-

register note B5, opening the register hole will, on a clarinet

with normal register-hole proportions, pull the second mode

sharp by about 28 cents (since r = 3/2 for the interval of a

fifth). A minor third (r = 6/5) above the perfectly

proportioned fingering we find the note G5. Here the second

resonance is shifted upward by only about 6 cents. The

bottom note of the second register is B4, an interval of a

fourth below the reference E5, making r=3/4. According to

our formula, the register hole would pull mode 2 up by 14

cents for this fingering. The presence of an open register

hole means that it is impossible to build a clarinet shaped in

such a way as to give good low-register cooperations and at

the same time play both registers accurately in tune (except

for the note A3!). In chapter 22 we will look into some of the

practical implications of this remark.

There is yet another way of destroying a regime of

oscillation based on the first resonance peak of an air

column, so as to force the instrument to play in its second

register. We have the option, known as cross-fingering, of



closing certain combinations of lower tone holes to produce

an air column terminated by a lattice having a low cutoff

frequency that suitably rearranges the resonances. The

technique of cross-fingering was used by baroque oboists to

play above B5b, and it remained a part of the classical

oboist’s routine technique well into the nineteenth century.

Players of today’s Vienna oboe enjoy several advantages

over their colleagues elsewhere because their instruments

are particularly well-suited to the use of cross-fingerings.

Exactly similar fingerings were used by players of the

baroque flute and the recorder, while the bassoonist has

never given up the routine use of such fingerings for notes

above E4b.
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Fig. 21.12. Register Change on a Vienna Oboe. Top, using

conventional register hole; bottom, using a cross-fingering.

A particularly clear-cut example of the acoustical manner in

which cross-fingerings work is provided by the way in which

the player of the present-day Vienna oboe prefers to play

the second-register note B5. The upper half of figure 21.12

compares the input impedance curves for the low-register

and second-register fingerings when the player makes use

of the normal register hole which is available to him as an

alternate fingering for this note. The lower part of the figure

shows what the input impedance curve looks like when the

player fingers the note in the preferred manner—a cross-

fingering that leaves open the middle-finger tone hole on

each hand. This fingering may be thought of as producing

an air column having two different open-hole lattices. The

upper lattice belongs to the cross-fingering itself, and it has

a very large (about 120-mm) interhole spacing, so as to give

a cutoff frequency in the neighborhood of 650 Hz. The

lattice at the lower end of the instrument is the one



belonging to the more closely spaced sequence of tone

holes left open below the fingers when one closes the

middle-finger holes to play D4. The cutoff frequency for this

second lattice is in the neighborhood of 1150 Hz. The

stepped line drawn over the resonance curve in this figure

serves to call your attention clearly to the two cutoff

frequencies. Mode 1 of this complex air column has a

frequency that lies below the 650-Hz cutoff, so that the

standing wave is restricted very much to the same short

region of upper cone that is normally used in playing the

low-register note B4. Resonance peaks 2 and 3 have

frequencies which show that the corresponding air-column

modes lie between the two cutoff frequencies. The standing

waves for these two modes have 3 and 5 half humps

respectively, and the primary, quasi-sinusoidal portion of

their shape extends down to the region below the player’s

fingers in a manner reminiscent of mode 4 sketched at the

bottom of figure 21.1. These two resonance peaks are less

tall than peak 1 because there is a certain small escape of

sound from the two holes of the long lattice; however, there

is still sufficient wave amplitude reflected back from the

closely spaced lattice at the bottom end to assure

reasonably strong resonances. The small resonances beyond

1150 Hz are the characteristic squiggles that an air column

provided with many tone holes produces when it is excited

above cutoff.

Let us now examine the possibilities for the reed to set up a

regime of oscillation with this sort of air column. The solid

black dots located at peak 1 and at whole-number multiples

of its frequency show that the air column actively works

against the production of harmonics 2, 3, and 4 of a low-

register note based on peak 1. Because of its large

Bernoulli-force sensitivity, an oboe reed cannot normally be

played at low enough levels for peak 1 to be able to function



independently of what goes on at higher frequencies, so a

low-register regime is impossible for this air column. The

points marked X on the resonance curve show similarly that

resonance peak 2 is also unable to find a collaborative

helper at high frequencies that can set up a successful

oscillatory regime.

The third resonance peak is the one that produces the

desired B5 tone. At first glance this seems mysterious,

because this peak is no taller than peak 2, and yet on a

properly arranged instrument the note leaps forth solidly

and with stability at any dynamic level the player may

choose for it. The explanation lies in the reed. When the

reed is correctly made, one of its attributes is a natural

frequency for the cane itself that can comfortably be varied

by the subtle motions of the player’s lips and blowing

pressure over a range extending upward from about 1500

Hz. Our B5 is played in such a manner that the reed is tuned

to match the second harmonic component of the tone to

become a part of the regime of oscillation. In other words,

this second-harmonic component enters the regime via the

sensitivity of the reed, enhanced by its properly chosen

resonance frequency, rather than via an air-column

resonance peak located to cooperate in the familiar way

(see statement 10 in sec. 21.2). The cross-fingering is a

good way to play B5 and C5 because it makes use of nearly

the whole air column instead of only the top third of it.

Because a much larger volume of vibrating air is able to

exert its influence on the reed, the tone and response are

stabilized at all playing levels.

It is worth remarking here that the second-register notes of

most woodwinds are given much of their stability and

fullness of tone by the proper adjustment of the reed’s

natural frequency to match the second harmonic of the tone



being played. This is a practical possibility over the musical

scale because even a wide-ranging alteration by the player

of the reed resonance frequency produces relatively small

changes in the frequencies of the air-column resonances

themselves (see statements 2 and 3 in sec. 21.2).

21.6. Examples,

Experiments, and

Questions

1. If you finger the low-register clarinet note E4 and then

open the highest tone hole on the instrument, an air column

will be produced having a strong first-resonance peak that is

not harmonically related to anything else. Playing the low-

register note using this fingering (its pitch will be a little

above A4) will give you a feeling for the peculiar behavior of

a reed which oscillates under the helpful influence of only

one air-column resonance. There is relatively little of the

second and third harmonic components in the vibration

recipe. If you play a crescendo, the tone hole will begin to

hiss from the turbulent oscillatory flow of air through it, and,

as the attempted crescendo continues, the reed will choke

up and shut off the flow of air. See if you can figure out why

this choking-up takes place, given the information that as

the turbulent damping grows, the air-column resonance

peak rapidly becomes less and less tall.

2. Suppose you are playing mezzo forte a low-register note

on some woodwind, and you find that “shading” the first or

second open tone hole with your finger makes the note

sound steadier and fuller, while also making it feel easier to

play. From the way in which the open-holes length



correction varies with tone-hole size and with frequency, see

if you can understand why it is correct to deduce that mode

2 for this air column was originally too high in frequency

relative to mode 1, and that shading the hole brings it into a

better relationship within the regime of oscillation.

3. Consider a typical clarinet which, in the hands of an

inexperienced player, sounds its low-register notes

accurately in tune only when it is blown at a forte level, and

runs sharp during a diminuendo. Taking into account the

changing influence of the second resonance peak on the

regime of oscillation for a low-register note during the

playing of a diminuendo, figure out whether it is the first or

the second peak that is mislocated relative to the correct

tuning.

4. In section 21.4, part A, a formula is given for the effective

enlargement and elongation Ec of a tube produced by a

sequence of closed tone holes. You will find it worthwhile to

make rough estimates of Ec at various points along the bore

of a clarinet, oboe, saxophone, flute, or bassoon. It may be

helpful to recognize that the algebraic combination (1/2)

(b/a)2(t/2s) corresponds to half the ratio of the tone-hole

volume (πb2t) to the volume (πa2) (2s) of its segment of the

main air column.

5. As an adjunct to the other special register holes which I

have made for an experimental clarinet, there is one whose

reactive properties are such that the mode-1 resonance

frequency is raised 50 percent above its normal value. Why

does this hole make the low register of the clarinet sound

very much like a saxophone? Does this sort of register hole

favor playing in the second register at any particular

dynamic level? What sort of musical properties would a

saxophone show if it were provided with reactive register



holes that raise the first-mode frequency by 50 percent over

the whole low-register scale?

6. While playing in the second register of an ordinary

clarinet, observe the drop of a few cents in pitch which takes

place when the register hole is momentarily closed (see sec.

21.5). With a little practice you may be able to learn how to

keep any of these second-register tones playing mezzo forte

even with the register hole closed. (Many clarinetists

practice doing this as a way to develop embouchure

control.) What adjustments to the reed acoustics do you

think must be made for the second register to be so

maintained? Note: the second-register tone C6 has its

fundamental component supported by the upper one of only

two air-column resonances that exist below the tone-hole

cutoff; the note G5 similarly rests upon the middle one of

three resonances whose frequency ratios are very nearly in

the sequence 1:3:5.

7. Notes above the ordinary woodwind second register are

usually played by various types of cross-fingerings.

However, certain of the upper notes of a clarinet (i.e., C6#

through F6) are played with the help of the third vibrational

mode of the air column, whose frequency is nominally five-

thirds that of the second register (a major sixth above).

Verify that this is so. Figures 21.1 and 21.2 will help you to

figure out where a pair of register holes should be placed to

facilitate the production of these notes.

8. The topmost finger hole of almost every oboe from the

baroque era on is located almost precisely at the midpoint

of the long cone used to play D4 and D5. A register-hole

action is produced when the player rolls his finger a little bit

off this hole. Due to its placement, completely closing or

fully opening this hole once the second-register D5 tone is



established produces no change in pitch. On the baroque

oboe, the C4 key near the bottom of the instrument is used

to produce the second-register note C5# with the help of

this same top tone hole, this time opened fully. The

semitone sharpening from the expected C5 is due to the top

hole’s acting as a large and displaced register hole.
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The Woodwinds: II

In chapter 21 we built up a fairly detailed picture of the

ways in which a reed and an air column can collaborate to

produce the various notes of a woodwind instrument. In this

chapter we will look into the ways air columns must be

modified from prototypical cylinders and cones to give them

the actual shapes that can collaborate with a reed to

produce stable regimes of oscillation. We will also examine

the relationships between the internal spectrum (whose

properties we have studied in some detail) and the external

spectrum of the sounds we hear in the concert hall. We will

consider next the similarities and differences between

instruments of the flute family and those of the reed

woodwind tribe, closing with a brief examination of the

manner in which the playing behavior of all woodwinds (and

brasses, for that matter) is influenced by the material from

which they are constructed.

22.1. The Reed Cavity and Neck

Proportions in Conical Instruments

As we have already learned, the reed of any woodwind has

two roles to play: it serves as a pressure-controlled valve

between the player’s lungs and the air column, and it also

functions as an elastic boundary to the air column at its

blowing end. In section 20.7 we learned that at low

frequencies the so-called equivalent length of a trumpet

mouthpiece mounted on a piece of cylindrical pipe is equal

to the length of this pipe which has the same total volume



as the mouthpiece. While the reasons for this relationship

are easily understood by acousticians thinking about the

properties of a hard-walled cavity, such as a trumpet

mouthpiece, it is not at all obvious that the same idea

should be applicable to the cavity contained between the

two flexible halves of an oboe or bassoon reed. It is hardly

more obvious that it should be appropriate for the

description of a clarinet or saxophone mouthpiece, which

has after all an elastic reed as one of its boundaries.

We have already learned that Weber showed how the

yielding air-column termination provided by a reed acts to

lower the natural frequencies of the air column, and it will

not surprise us that Helmholtz, as usual, added to our

understanding: he showed that the flow-control action of the

reed produces an additional reduction of playing frequency

below the corresponding natural frequency of the air

column. In the light of these facts, we can hope to represent

a reed and its mouthpiece cavity in terms of an “equivalent”

hard-walled cavity whose shape is chosen to make its

acoustical effect on the natural frequencies of an air column

identical with the composite effect of the actual reed-plus-

cavity on the playing frequencies of the air column. It turns

out that this can be done, as long as we deal only with

frequencies well below the reed’s own natural frequency.



Fig. 22.1. The Equivalent Volume of a Soprano Saxophone

Mouthpiece at Various Frequencies

Figure 22.1 shows the results of a series of measurements

which James Gebler and I carried out as a part of a broad

investigation of mouthpiece acoustics. 1 We measured the

playing frequencies produced by a soprano saxophone

mouthpiece and reed attached to various lengths of metal

tubing. By comparing the lengths of tubing for each tone

with the calculated lengths of simple tubes (closed at one

end) having a natural frequency matching the played one,

we were able to calculate the “equivalent” volume of the

mouthpiece under playing conditions for a wide range of

frequencies. Over most of the experimental frequency



range, data were obtained using the second or even third

modes of a long tube, interlaced with measurements using

the first mode of a short pipe. The following three numbered

statements summarize the results of such observations on

woodwind reed systems:

1. The measured equivalent volume for a single-reed

mouthpiece under constant playing conditions is quite

constant over a considerable fraction of an instrument’s

playing range (as long as we remain well below the natural

frequency of the reed itself).

2. The equivalent volume measured under playing

conditions is considerably larger than the geometrical

volume of the hard-walled mouthpiece cavity itself.

3. Double reeds of the sort used in oboes and bassoons

show exactly similar behavior (if the measurement excludes

the reed tube or bocal). In all cases softening or thinning the

cane walls of the reed cavity enlarges its equivalent volume.

Closely related experiments carried out by Nederveen and

by Backus show that the equivalent volume determined by

resonance frequency measurements using laboratory

excitation devices is somewhat smaller than the value we

got under playing conditions.2 However, there is no real

discrepancy between their results and ours, since they

measured under circumstances where the reed effect

studied by Weber is the only one present, whereas we

sought figures for the contributions due to the oscillatory

effect discovered by Helmholtz as well as the contributions

due directly to the elasticity of the reed, as studied by

Weber. In any event, by many experiments similar to the

ones described above, Gebler and I confirmed in the

laboratory what is implied by customary methods of



instrument construction: we can in fact think of the cavity

within an active reed as being equivalent to a fixed volume

whose size is controllable to some extent by the player as he

makes changes in blowing pressure and embouchure

tension. I wish to make it explicit that these remarks apply

only to the frequency region below the natural frequency of

the reed cane itself. In the immediate neighborhood of the

reed resonance the idea of an equivalent volume fails, and

we have to use a more elaborate representation.

Let us look now at another, more complicated, example of

the reed cavity studies which we carried out. An oboe reed

mounted on its little brass tube (called a staple) may be

thought of as a tiny woodwind in its own right, with a

playing frequency that is extremely sensitive to the forces

exerted on the reed by the player’s embouchure and by his

blowing pressure. (This tone is not the familiar rattling

“crow” that is used by oboists to test their reeds.) If a player

first uses the reed to sound a specified note on his

instrument and then plays with the same embouchure and

blowing pressure on the reed alone, the resulting frequency

Frs of the reed-plus-staple turns out to be well defined upon

test and retest. On certain types of instrument, the player’s

customary embouchure shifts progressively as he goes along

the musical scale; for example, on the conservatory-system

oboe that is almost universally used today, the bottom four

or five notes (from D4 on down to B3b) call for a

progressively slackened embouchure and so also a falling

Frs. Individual notes in the scale of an instrument sometimes

also call for specially chosen values of Frs as the player

seeks out an adjustment that best serves to compensate for

discrepancies in the air-column and tone-hole design.

The oboe used in Vienna today provides us with a

particularly clear picture of what requirements must be met

by an oboe reed and its staple (or, for that matter, by the



bassoon reed and bocal, or by the saxophone reed,

mouthpiece, and neck). The fact that Frs for Vienna oboes is

very nearly constant over the main playing range makes

analysis of its behavior particularly straightforward.

Surprisingly enough, we also find this simple behavior for

the reed-plus-staple frequency belonging to various notes in

the scale of a baroque oboe.

Figure 22.2 shows the results of measurements on the two

kinds of oboe. The diagram gives the playing frequencies Frs

of the reed and staple alone that are produced when the

player has first set his embouchure by normal playing of the

notes whose frequencies appear on the horizontal axis. We

see in the lower part of the figure that there is a smooth

progression of black dots belonging to the Paulhahn baroque

oboe played by Jürg Schaeftlein, who uses the instrument in

performances of the Vienna Concentus Musicus. Notice that

these points closely follow a horizontal dashed line whose

meaning we will learn later in this section. In the upper part

of the figure, we find a set of open circles, again running

along a fairly horizontal line. These data points too were

deduced from notes played by Schaeftlein, this time on the

instrument he uses in his position as principal oboist of the

Vienna Symphony. Note that these open circles lie very close

indeed to a second horizontal dashed line.

We see also a few black triangles, all lying slightly above

the higher of the two dashed lines. These correspond to

sounds produced by Schaeftlein playing on my own Vienna

oboe. The circles with crosses represent measurements

which I myself made two years later on the same instrument.

Notice that my crossed circles and Schaeftlein’s black

triangles are mutually consistent and systematically lie

above the dashed line. Let us add to our numbered

collection of observations by summarizing a part of the

information contained in figure 22.2:



Fig. 22.2. Measured Frs for Three Oboes

4. On these three oboes, there is a well-established

embouchure that is used over the entire playing range. The

reed and staple taken together are well-characterized by

their sounding frequency Frs.

5. The constancy of Frs shows that the equivalent volume

contained within the reed cavity under playing conditions is

constant, since it is this volume which joins with the

properties of the fixed miniature air column provided by the

staple to determine Frs.

6. For the baroque oboe the reed on its long staple plays

at a considerably lower frequency than does its more

modern descendant. (The modern Vienna oboe reed cane

itself has very nearly the same proportions as those which

best suit the baroque instrument.)



Digression on Experimental Techniques Used in

Musical Acoustics.

Schaeftlein and I made many observations while trading our

instruments back and forth, with both of us playing

alternately. Analysis of the tape-recorded data permits a

check on the relative influence of the player on the

acoustical behavior of a good instrument. It also permits the

expert performer to criticize or comment upon the way in

which I play individual notes on his instrument. Just as in the

case of my experiments with Schlueter on the trumpet, we

find that the expert player chooses for artistic reasons to

play his instrument in a manner that agrees closely with the

far less fluent adjustments made by a scientist who, though

he may have only a serious amateur player’s fluency on an

instrument, has taken pains to become thoroughly

acquainted with its musical behavior, and has sought out

means for recognizing clearly the acoustical conditions for

setting up the strongest possible cooperations within each

oscillatory regime. If this parallelism of behavior did not

exist between two very differently motivated players, each

having his own area of expertise, we would not be justified

in drawing scientific conclusions from these experiments on

the behavior of wind instruments.

Let us now see why the playing frequency Frs of the reed

and its staple is constant for so many notes on the

instrument, despite the fact that the player can easily vary

this frequency by 50 percent or so by simple changes in lip

pressure.



In chapter 21 we generally acted as though the air column

of a conical instrument were a straightsided cone complete

all the way to its apex. On an oboe this assumption seems

hardly to be justified, since the distance from reed socket to

apex (about 160 mm on a conservatory oboe if we make a

crude average of the taper of the not-quite-conical bore) is

roughly half the length of the complete cone needed to play

C5 at the top end of the low-register scale, and one-fourth of

the length of the cone needed for C4 at the lower end of this

scale. We find similar discrepancies between actual air-

column lengths used in the bassoon and saxophone and the

cone lengths one would expect to use on the basis of simple

air-column acoustics. What then is the resolution to the

conflict? If the total air column is to have properly placed

resonances for setting up good regimes of oscillation, it must

have at least the overall behavior of a conical air column.

The reed cavity plus the constricted passageway through

the staple (or the reed plus bocal in the bassoon, or the

mouthpiece plus neck in the saxophone) must therefore be

arranged to imitate the acoustical properties of the missing

part of the cone.

In chapter 20 we met the idea that at low frequencies the

mouthpiece as seen by its trumpet appears simply as a

cavity whose shape has no significance. So also we find in

the present connection that a reed and its staple must have

an equivalent total volume equal to that of the missing part

of the cone. Let us add this observation to our collection of

numbered statements:

7. For a conical woodwind instrument to work properly, the

equivalent volume of the reed cavity added to the

mechanical volume of its staple (or bocal or neck) must

closely match the volume of the missing part of the cone.



We can continue our search for a useful imitation of the

missing part of the cone by trying the effect of matching Frs

for the reed system to the first-mode natural frequency of

the cone apex itself. In the general frequency neighborhood

of Frs the oboe will then “see” an object at its upper end

whose acoustical behavior is quite similar to that of the

missing apical cone. In particular, there will be a pressure

node in the neighborhood of the junction of the main bore

with the reed staple, lying a little inside the staple at

frequencies somewhat above Frs and moving down below

the junction at oboe playing frequencies below Frs—behavior

that is identical with that found in an ideal cone. In section

20.5 we met a formula for the natural frequencies of a Bessel

horn of given length L and flare parameter m. Applying this

to our piece of missing cone whose length we shall call x0

(and whose flare parameter m is zero), we find it possible to

calculate the value of Frs needed for a reed and staple that is

to suit an oboe having a given x0. Let us describe and

explain the simple formula for this calculation in our next

two numbered statements.

8. The correct playing frequency Frs of an oboe reed on its

staple (or the analogous frequency for a bassoon reed on its

bocal, or a saxophone reed on its mouthpiece and neck) can

be calculated from a knowledge of the length x0 of the

missing part of the cone, by means of the formula:

Frs = v/2x0



Here v is the wave velocity of sound (347 m/sec is a good

value to use for the warm, damp air at the upper end of a

woodwind).

9. For most instruments, the actual air column is not quite

conical in its physical shape, since account must be taken of

both the closed and the open tone holes. However, many

instruments behave like nearly perfect cones, and it is often

possible to calculate the value of x0 belonging to this

“behavioral” cone for use in the formula given above.

Let us turn our attention back now to figure 22.2, noticing

in particular the pair of horizontal dashed lines referred to

earlier. The lower one of these shows the value of Frs

calculated from measurements of the Paulhahn baroque

oboe that were supplied to me along with those of many

other instruments by Paul Hailperin (who not only makes

fine baroque oboes but also plays one along with Schaeftlein

in the Vienna Concentus Musicus). Notice how well the

calculated value of Frs agrees with the values measured with

the help of an expert performer.

The upper dashed line in figure 22.2 was similarly

calculated from mechanical measurements which James

Gebler made of the bore and tone holes of Schaeftlein’s

Vienna oboe (serial number 1094). The calculated Frs

indicated by this line matches quite well with the open

circles representing the reed playing frequencies produced

by Schaeftlein himself on this oboe. Notice that the

frequencies shown by triangular points all lie above the

dashed line. The points were measured from reed sounds

produced when Schaeftlein set his embouchure by playing

on my Vienna oboe (serial number 1037). The fact that

these reed frequencies are indeed determined by the oboe



itself and not simply by the caprice of the player or his reeds

is shown by the fact that not only at the time, but also two

years later, I got an entirely consistent set of values for the

played Frs on my instrument, as shown by the crossed

circles. These frequency measurements on my oboe imply

that its air column differs somewhat from that of

Schaeftlein’s instrument. Comparison of the dimensions of

the two shows that the calculated values of x0 differ from

one another in such a way as to explain the different

measured values for Frs.

One more property of the reed cavity itself is of great

practical importance to everyone who deals with

woodwinds:

10. On a conical air column with only a small missing

apical part, an alteration of the reed cavity effective volume

which changes the mode-1 resonance frequency by a small

percentage will produce four times as much change in the

mode-2 frequency, and nine times as much in the mode-3.

Thus a reduction in the reed cavity volume produces a

widening of the resonance frequency ratios, while an

increase in the cavity volume narrows these ratios. On less

complete cones, the effect on the frequency ratios is less.

We are now in a good position to understand why it is that

oboists and bassoonists must be so careful to get the right

combination of reed dimensions and cane stiffness. Not only

must these variables suit the average requirements of the

instrument throughout its playing range, they must also be

such that the player’s own embouchure control is sufficient

to allow the final trimming-up of the resonances as he goes

from note to note. For all this to become possible one must

simultaneously meet two requirements: (1) a low-frequency



requirement on the total equivalent volume of the reed

cavity and the constricted tube (e.g., the staple, bocal, or

neck) associated with it, and (2) a higher-frequency

requirement that the joint playing frequency Frs of these two

objects be properly related to the proportions of the air

column. At a considerably more subtle level, small changes

in the shape of the reed cavity and of the connecting tube

can be expected to improve the accuracy with which the

reed and its tube succeed in their job of imitating the

missing apical part of the air column at all acoustically

relevant frequencies.

I have carried out experiments on oboes constructed at

various times in the eighteenth, nineteenth, and twentieth

centuries, as well as on old and new bassoons, English

horns, and saxophones. Gebler and I have also constructed

an experimental saxophone. All these experiments confirm

that the principles outlined so far in this section can be used

not only to help us understand the construction of certain

instruments, but also as an efficient guide in devising

suitable reeds, bocals, and mouthpieces for instruments

whose original parts are missing or damaged. It is important

to realize that when these methods are used for

reconstruction purposes, they are applicable only on

instruments that were properly proportioned in the first

place. A badly built instrument appears to call for a

discordant variety of reed and staple proportions, or a wildly

varying style of blowing as the player struggles from one

note to the next in its scale.

Saxophone players would lead much easier lives if the

mouthpiece cavities used on their instruments were fitted as

meticulously to their instruments as are the double reeds

used by their colleagues. Mouthpieces with long narrow

cavities or with dual cavities are particular troublemakers;

such mouthpieces require considerable acrobatics from any

player who hopes to play in tune, and they prevent him from



enjoying a responsive instrument. The useful attributes of

such mouthpieces can often be attained by other means

without spoiling the instrument’s tuning, stability, or

response.

22.2. Reed Cavity Acoustics for

Cylindrical Instruments

In section 22. 1 we learned that each conical woodwind can

be made to play properly with its own carefully adjusted

reed cavity when this cavity is connected to the air column

via a suitably proportioned constriction (variously known as

the oboe reed staple, the bassoon bocal, or the saxophone

neck). Clarinetlike instruments, being basically cylindrical,

have a vastly simpler situation: there is no need to adapt the

mouthpiece to its air column by means of a constricted

neck, and even further simplification comes from the fact

that changing the equivalent volume of the mouthpiece

cavity by reaming it out or filling it in with wax alters each

pipe mode by almost equal percentages, so that the ratios

between the resonance frequencies are very little changed.

Experiments similar to those described in connection with

figure 22.1 demonstrate that a typical clarinet mouthpiece

and reed combination, when measured below about 700 Hz,

shows an equivalent volume of 13.25 cm3. It is rare to find a

workable mouthpiece and reed which together have an

equivalent volume that differs by more than 3 percent, from

this value. The length Le of cylindrical tube to which this

mouthpiece is equivalent depends of course on the diameter

of the tube. For example, on a tube having a 15-mm

diameter, Le for our mouthpiece turns out to be close to 75

mm. Enlarging the diameter of the tube by only 0.2 mm

reduces Le by 2.1 mm, while a smaller size tube has a

proportionally enlarged value for Le.



As we continue our experiments to higher frequencies, the

effects of the mouthpiece-cavity shape and the progressive

approach to the reed’s own natural frequency cause Le to

grow slowly at first and then more quickly. At 930 Hz, Le has

grown by 3.6 mm above its value at 310 Hz, which means

that the second resonance peak of the air column that

cooperates in playing the written note F4 is lowered in

frequency by about 22 cents relative to mode 1. This is

enough to weaken noticeably the cooperations in the low-

register regime of oscillation if suitable corrections are not

made by changing other parts of the air column. We find

similarly that resonance peak 3 of the air column used to

play the low-register note C4 is pulled down by the

mouthpiece by about 37 cents from its properly

collaborative 1175-Hz position, because of an 8-mm growth

in Le at this frequency. Note: this third peak for the C4

fingering is also used to play the top-register note E6 (see

sec. 21.6, question 7). About half of the stretching of Le at

high frequencies comes from the reed itself, as its own

natural frequency is approached. (The natural frequency of

the reed can be varied at the discretion of the player from a

little below 2000 Hz on up to about twice that as he shifts

his embouchure. In normal playing of the low and second

registers this frequency tends to stay at the lower end of this

range, and it is sometimes set at or near a harmonic of the

note being played; see sec. 21.2, statement 10.)

For many practical purposes in the low and second

registers, a clarinetist or instrument maker can think of the

mouthpiece simply as a small length of tubing. If he wishes

to substitute a small-volume mouthpiece for a larger one, it

is simply a matter of pairing it with a suitably longer barrel

joint between the mouthpiece and the rest of the instrument

in order to keep the instrument in tune with itself. This is a

far simpler procedure than one would meet on the



saxophone, for instance, in which a smaller mouthpiece

cavity would have to be teamed with a differently designed

neck having a slightly larger volume and a shape such that

the new neck and mouthpiece still play at the same Frs, as is

required by the instrument. In the somewhat brutal world of

practical music, however, the instrumentalist cannot carry a

different neck for each mouthpiece cavity setting. If he

reduces the mouthpiece cavity volume in an effort to raise

his instrument’s pitch, he should also pull the neck out a

little bit. The two complementary adjustments will usually

permit the saxophonist to do a reasonably satisfactory job of

tuning his instrument to the required pitch, retaining at the

same time a useful degree of cooperation among the modes.

Wherever it is necessary to worry about the high-

frequency aspects of clarinet mouthpiece behavior, as when

one strives for best tone and response in the upper part of

the second register and in the top register, it is not sufficient

to trade mouthpiece volume for barrel-joint length. The two

are not quite interchangeable. However, it is sometimes

possible to arrange small changes in the size and taper of

the barrel-joint bore that will successfully adapt the

instrument to a different mouthpiece. These changes are

much subtler than those referred to in the preceding

paragraph on the saxophone neck, although both sorts of

adjustment can be made with the help of principles which

are discussed in the next section.

22.3. Adjustment of Natural Frequencies

by Means of Small Changes of Air-

Column Shape

Throughout chapters 19, 20, and 21 we have met situations

in which the natural frequencies were to be adjusted by

making changes in the shape of the air column itself. Aside

from some brief explanations of how this may be done in the



adjustment of brass instrument mouthpieces and in the

proportioning of reed cavities and neck constrictions of

conical woodwinds, we have not so far given much of a hint

as to what actually must be done.

Back in chapter 9 we had an introduction to the basic

physics of the problem when we examined the ways in

which one might scrape away or add to the thickness of a

plate in order to modify selectively the frequencies of its

modes of vibration. At that time we learned that knowledge

of the standing-wave patterns on the plate was an essential

guide to the adjustment problem, and we also noted that a

change made near a vibrational node produces smaller

effects than does a change made in the middle of some

hump. We found as well that it was necessary to keep track

not only of changes in frequency produced by altering the

amount of moving mass in a system, but also of changes

associated with modifications of its stiffness coefficients.

This double concern is necessary because a local increase of

mass in a vibrating system always lowers its frequencies,

whereas an increase in stiffness always raises them.

In an air column we have a similar need to keep track of

two aspects of the vibration: the variations in pressure and

those in flow. It is by now a familiar idea to us that there are

points of maximum pressure variation at various places

along a vibrating air column; in between these points of

maximum pressure amplitude there are pressure nodes

where there is maximum longitudinal flow of air (see sec.

6.6, example 3, on the identical behavior of water in a

channel). If we contract the diameter of an air column at a

point of large pressure amplitude and continue to send the

same flow of air into this segment of the air column, the

airflow will be opposed by a larger rise in the local acoustic

pressure than would be present without the constriction. In

other words, the reduction in cross section will produce a

local increase in the springiness coefficient of the air within



it. On the general grounds that increasing the springiness of

a system raises its frequencies, we can recognize that such a

contraction will produce an increase in the vibration

frequency of the mode in question. If on the other hand the

contraction is applied at the location of a pressure node, it

goes almost without saying that it will cause no alteration in

the natural frequency.

Let us now look at the consequences of contracting the air

column at a point where there is a large oscillatory flow. As

air enters the narrow channel it requires an increased

pressure difference to speed it up, meaning that a given pre-

existing driving pressure difference across a segment of air

in the channel will produce slightly less flow if the channel is

constricted somewhat; we could produce the same effect by

locally increasing the density of the air (and thus its inertia),

whence we deduce that constrictions at a point of large

oscillatory flow lower the natural frequency of vibration.

Notice that if the constriction is located at a velocity node, it

will have no effect on the inertia properties of the enclosed

air and so cannot change the vibrational frequency.

The interlacing of pressure nodes and velocity nodes

allows us to deduce the following general principle, which

was first enunciated a century ago by Lord Rayleigh:

1. A localized enlargement of the cross section of an air

column (a) lowers the natural frequency of any mode having

a large pressure amplitude (and therefore small flow) at the

position of the enlargement, and (b) raises the natural

frequency of any mode having a pressure node (and

therefore large flow) at the position of the enlargement.



It is possible to calculate curves giving the effect of a

small, localized enlargement or contraction on the

frequencies of each vibrational mode of an air column. We

will call such curves perturbation weight function curves, or

W curves for short. The mathematical techniques for

working out such curves and for putting them to use are a

highly developed part of mathematical physics. These

techniques are known collectively as perturbation theory

because they are all based on the idea of taking the exact

analysis of some simplified or familiar system and then

working out the changes or perturbations produced in its

behavior by various small changes in its structure.3



Fig. 22.3. The Use of Perturbation Weight Functions for a

Clarinetlike Air Column

The top three lines of figure 22.3 show the perturbation

weight functions W1, W2, and W3 calculated for the first

three modes of oscillation of air within a cylindrical pipe that

is closed at the left-hand end. At the bottom of the figure is

a picture of a slightly modified pipe whose properties we can

estimate with the help of these curves. Any point along the

air column where a given weight function curve is drawn

above its axis is a point where enlarging the bore lowers the

mode frequency. Conversely, a raised natural frequency

results if the pipe is enlarged at a point where the weight

function curve lies below the axis. For example, the top

curve (W1 for mode 1) shows that an enlargement located

anywhere in the left-hand (closed-end) half of the pipe

lowers the mode-1 natural frequency, while enlargement of

any place in the right-hand (open-end) half of the tube

raises it. Enlargement of the pipe at the point marked R,

located about one-third of the way along the pipe from the

closed end, lowers the first-mode frequency, raises that of

mode 2, and makes only a slight decrease in the frequency

of mode 3. It is to be emphasized that the W curves are not

the same as the standing wave patterns (the W curves have

more humps), so that a point where the perturbation has

zero influence is to be construed as lying neither at a

pressure node nor at a velocity node, but rather at some

intermediate point.

Let us turn our attention now to the effect of a bulging

enlargement located at a point Q fairly near to the closed

end of the pipe. Mode 1 is lowered considerably, mode 2 is

lowered only somewhat, while mode 3 is hardly altered at

all, since the leftward and rightward halves of our

perturbation straddle a zero of the W3 curve, and so act



oppositely on this mode’s standing wave. Similar

examination of the enlargement located at the point S near

the open end shows that it raises the frequency of mode 1

considerably, raising mode 2 somewhat as well, while

leaving mode 3 almost unchanged.

We are now in a position to extend our collection of

statements about the effect of pipe size on perturbations.

2. In any air column, the natural frequency of a given

mode can be raised or lowered by a given perturbation,

depending on where it is applied. In a cylindrical air column,

the maximum percentage change in the frequency (up or

down) is equal to the percentage change in the total air

volume that is produced by the perturbation, whether it is

an enlargement or a contraction. Conical instruments are

more sensitive to the effect of small perturbations.

3. The maximum frequency changes described in

statement 2 come about when the perturbation extends

over a very short segment of the air column located at the

center of an upward or downward hump of the weight

function. An example of such a perturbation is the short

cavity produced when two sections of a woodwind are pulled

apart slightly at the joint between them. A compact

perturbation can have very irregular consequences over the

playing scale of an instrument.

4. A more broadly distributed perturbation acts on the

lower modes very much more than on the higher ones,

whose weight functions W may oscillate appreciably across

the span of the perturbation and so tend to average out. The

action of wide and narrow perturbations applied at various

points along a weight function is in exact analogy to the

excitory effect of narrow or broad hammers acting at various

points on a string.



A. Perturbations of the Clarinet Air Column . Let us apply

our new knowledge of the effect of enlargements and

constrictions to an examination of the effect of the tapered

enlargement and bell that is found at the lower end of every

normal clarinet. Let us first consider the air column

produced by closing all the holes. Here we find that the

lower quarter of the air column has been given a tapering

enlargement that opens out eventually into the bell. We will

temporarily ignore the complications of the mouthpiece and

closed tone holes in the upper part of the bore, treating it as

an ideal (nontapered) cylindrical pipe. If you make some

sketches analogous to those in figure 22.3, it should not be

difficult for you to deduce that the tapered perturbation at

the lower end of the pipe raises mode 1, raises mode 2

slightly, and has almost no effect on mode 3. The

consequences of these changes for the playing of the

clarinet’s bottom note are the following: the frequency ratio

between resonance peaks 1 and 2 is less than the 3-to-1

value belonging to a straight pipe (the discrepancy typically

amounts to 30 or 40 cents); peak 3 lies a roughly similar

amount below the otherwise expected ratio of five times the

frequency of mode 1. Because the perturbation spoils the

whole-number relationship among the resonance

frequencies, only very poor cooperation is possible in the

low-register regime of oscillation, and the pitch of notes in

the low register will depend strongly on the loudness with

which they are played (see sec. 21.6, example 3).

Suppose that we now open one or two tone holes at the

lower end of our clarinet, so that the standing waves reach

down only a little way into the tapered part of the tube.

There is thus only a small enlargement in the lowest fraction

of the tube that is “visited” by the various weight functions.

We find now that mode 1 is raised slightly because of the



short perturbation at its lower end. Mode 2 is raised by a

nearly equal amount, because the perturbation extends

appreciably only over the last half hump of W2. Mode 3 is

raised in this case, but only slightly. The musical

consequences for this note are as follows: since the

frequency of peak 2 is raised nearly as much as that of peak

1, the frequency ratio between them is left very nearly in the

3-to-1 ratio preferred for good tone production (the

discrepancy may be as small as 10 or 15 cents on a clarinet

that has a good low register).

For our third example we will consider a fingering such as

that used to play the low-register note C4, where enough

tone holes are left open for the lower part of the active air

column not to reach down into the expanded part of the

instrument. Here there is no perturbation, so that the

cooperations can be essentially perfect. While many

clarinets have a frequency ratio between modes 1 and 2 that

is 20 or 30 cents narrower than the value desired for best

cooperation, it is perfectly possible to achieve an instrument

in which the error in cooperation is no more than 5 cents for

this part of the scale. Such instruments can be recognized

instantly and are much admired by good players.

The design of the upper end of a clarinet calls for some

rather subtle maneuvering, which is made very difficult by

the use of only a single register hole. The instrument maker

is presented with a dilemma—either he aligns the peaks to

get a. good clear low-register note, or he leaves them

unaligned (too close together) in order to get an accurate

twelfth between notes in the low and second registers.

Because the cooperative effects have not in the past been

well understood and because tuning is very important to the

musician, instruments are normally built to sacrifice low-

register tone. However, everyone complains about the

problem. An instrument in which an intermediate



compromise is made usually proves very satisfactory in the

hands of a good player, who generally notices the virtues of

the unfamiliar arrangement rather than the problems caused

by it. He is not likely to be particularly aware of the tuning

changes, since he has already learned to make pitch

corrections of an equal magnitude routinely elsewhere in the

scale. He does not have to learn new habits of pitch

correction: rather he adapts his old ones to the new

circumstances.

The preceding paragraphs help us understand why it is

that the bottom end of a clarinet is flared and the slight

enlargement at the top end is smaller than what one might

use to compensate for open tone-hole effects, closed-hole

perturbations, and mouthpiece corrections. The most

important function of the clarinet’s conventional shape is to

correct the tuning errors caused by the misplaced single

register hole, which pulls mode 2 upward in frequency at

both ends of the second-register scale. This shape has

evolved through the past two centuries to give a fairly

accurate played twelfth between the registers, but it does

this at the expense of pitch stability, promptness of speech,

and clarity of tone in the low register. Once again, I should

emphasize that it is possible to make a musically successful

compromise that is approved by practical musicians,

although it is an unhappy business to temporize thus with a

problem that could be done away with almost completely if

the instrument were to be supplied with two properly

proportioned register holes.

B. Perturbations of a Conical Air Column: The Bassoon. The

perturbation weight function curves calculated for a conical

air column have a rather different appearance from the

sinusoidal W curves shown in figure 22.3 for the clarinet’s

cylindrical air column. However, a quick inspection of figure

22.4 indicates that we can deal with the perturbations of a

conical instrument bore in exactly the same way we did in



cylindrical air columns. At the top of this figure we see a

schematic diagram of a bassoon air column. Immediately

below this are the W1 and W2 curves drawn in approximately

correct proportion for the fingering which produces the low-

register note F3. Notice that these curves are mostly

crowded up into the bocal, where they retain only a

qualitative significance. Because the first open tone holes

must always occur at a point above the “bottom” end of a

standing wave, the weight function curves are shown to

extend into the region of open tone holes. However, be

warned that the curves lose their validity in this region;

perturbations at this end must instead be dealt with using

the theory of open tone holes.

Immediately below the weight function curves for F3 in

figure 22.4 we find those for C3, which extend farther down

the instrument. The bottom part of the figure is devoted to

the weight function curves W1 and W2 as they apply to the

first two modes used in playing the low-register note F2.

The way in which one uses the W curves as a guide in

adjusting a woodwind can easily be illustrated with the help

of a simplified description of some of the things I did while

improving a certain bassoon. Playing experiments and

laboratory measurements agreed in showing that, under this

instrument’s playing conditions, the air column used to play

F3 was such as to make the frequency of resonance peak 2

more than double the peak-1 frequency, thus spoiling not

only the tone and response of this note but also its tuning. In

the middle of the low-register scale at the note C3, the

opposite error was observed: the frequency ratio between

air-column modes 1 and 2 was less than two. Lower down in

the scale, at F2, the overall effect of the original air column

was to provide an excellent alignment of peaks 1 and 2. This



note played beautifully, so much so that it stood out among

the rest of the notes of the low-register scale.

Since the upper part of the air column is common to all of

the notes while the lower part affects only the lower ones, it

was necessary to start the correction process at F3 and work

progressively down. For convenience in explaining the

adjustments, various parts of the bassoon air column are

given labels in figure 22.4: region (a), region (b), etc. A

glance at the W1 and W2 curves for F3 shows that

sandpapering or reaming in the middle of region (b), which

is near the top end of the bassoon’s tenor joint, will raise the

frequency of resonance peak 1 and slightly lower that

belonging to peak 2. The alternation of reaming and testing

soon led to a successful correction of the mode alignment

errors of F3. Inspection of the W curves for the note C3 shows

that the enlargement just described in region (b) had almost

no effect on the resonances of this note, and in fact no

change was noted in its playing properties after the first

reaming. However, the originally beautiful F2 was spoiled

because enlargement of region (b) lowers mode 1 and raises

mode 2 away from their original and desirable 2-to-1

frequency ratio. The correction of this new error was

postponed, however, until C3 was taken care of.



Fig. 22.4. The Use of Conical-Instrument W Curves for the

Alignment of Various Notes on the Bassoon

The air column for C3 could not be trimmed up by working

in region (b), because of its previous commitment to the

correction of F3. However, lacquering the bore along the

upper two-thirds of region (c) to reduce its diameter lowered

the frequency of peak 1 and raised that of peak 2. This



process was carried on step by step until playing

experiments showed that the intermode cooperation in the

C3 regime of oscillation was maximized. It was also

confirmed that the adjustment of F3 done earlier was not

disturbed. Checking the F2 fingering now showed (in

agreement with the predictions of the W curves for this

note) that reduction of bore diameter in region (c) somewhat

offset the damage done to F2 by our earlier reaming in

region (b).

The next step in the alignment procedure was to correct

the remaining wideness error in the frequency ratio between

peaks 1 and 2 of the note F2 by a slight reaming in region

(d). The lower part of the bassoon air column was aligned in

very similar fashion by correcting the behavior at C2, and

finally the bell segment of the instrument was adjusted

during the testing of the bottom note, A1♯.

As a practical matter one must, when adjusting the

cooperations in an instrument, keep running track of the

pitches of the various notes of the instrument’s low-register

scale as well as of the quality of the regimes that produce

them. It is also necessary (but not quite so important

initially) to keep tabs on the behavior of the second and

higher playing registers. The planning of the whole

adjustment procedure requires a thorough understanding of

the instrument and of the implications of various changes

throughout the scale. Careful preliminary planning is

essential if there is to be any hope of success in a game that

is very similar to a diagramless crossword puzzle in three

dimensions. One of the things that makes it possible to win

such a game is the fact that air-column perturbations have

their predominant influence on the lowest mode, whereas

perturbations in the proportions of tone holes are most

active at high frequencies. One makes sure the tone holes

are plausible, corrects the bore, and then trims up the hole



sizes. It may be worthwhile to go through the whole process

again if the quality of the instrument and the skill of its

player warrant the extra effort.

22.4. The Radiation of Sound from a

Woodwind; Some Problems Faced by

Recording Engineers

So far in chapters 21 and 22 we have confined our attention

to the ways in which sounds are produced and controlled

within the air column of a woodwind, and only at the

beginning of chapter 21 was any mention made of the way

internally generated sound makes its way out into the

surrounding air. Let us recapitulate briefly what we have

already learned about the sound-production process, and

then consider the spectrum transformation function which

relates the sound pressure spectrum measured within the

reed cavity of a woodwind to the external spectrum that we

obtain by a suitable averaging process within the listening

room (see fig. 20.14 for the analogous transformation

function for brass instruments).

Two of the things we learned in chapter 21 are (1) the

strengths of various partials measured within the

mouthpiece cavity tend to match the heights of the

corresponding resonance peaks (see statement 3 in sec.

21.3) and (2) because of the leakage of high-frequency

sound through the open tone holes, the tallness of the

resonance peaks near (or especially above) cutoff are

reduced from the heights they would have on a simple pipe

without open tone holes. Taken together, these pieces of

information imply that the existence of a cutoff frequency

leads to an internal spectrum having progressively weaker

upper partials, with only a small amount of sound production

taking place above fc (chiefly by heterodyne action).



The spectrum measured outside an instrument does not

show this weakening in the strengths of the upper partials to

any great extent, because the instrument’s greater

efficiency for high-frequency radiation will “treble-boost” the

weakened internal sounds as they make their way out of the

instrument. Figure 22.5 shows the calculated variation of the

spectrum transformation function T as it applies to all of the

harmonics of a tone produced by a conical instrument that is

provided at its open end with a very long sequence of open

holes, all arranged to give the same cutoff frequency. The

diagram also applies to the odd-numbered partials produced

by a cylindrical (clarinet-type) instrument. Notice the

peculiarly simple shape of the T curve: it is a sloping,

straight line from zero frequency to cutoff, and a horizontal

line thereafter. The effect of this transformation function can

be summarized in two equations that show the relationship

of the internally measured pressure amplitudes p1, p2, p3, ...

and the amplitudes of the same partials measured

externally.4 The two equations apply to all the partials of

conical instruments and to the odd-numbered ones of a

clarinet (the change in behavior at fc explains the necessity

for two equations):

pn(external) = npn(internal) X K 

(for components below cutoff) 

Pn(external) = (fc/f1)Kpn(internal) 

(for components above cutoff)



Fig. 22.5. Spectrum Transformation Function for All

Components of Conical Woodwind Tones and Odd-Numbered

Components of Clarinet Tones

Here K is a small numerical constant of no particular

significance to us at present, fc is the cutoff frequency, and

f1 is the frequency of the fundamental component of the

tone being played. The above could be restated in hi-fi

terms by saying that the filtering action of a set of open tone

holes starts out with a treble boost at the rate of 6 dB/octave

up to fc, above which the transmission is flat.

The even-numbered partials of a clarinet tone are radiated

much more strongly than are the odd-numbered ones. It is

only a slight oversimplification to borrow the second one of

the above formulas (which applies to odd-numbered

components above cutoff) and use it for all the even partials

of a clarinet tone, whether they are above or below cutoff.

Just as in the case of the trumpet, the transformation

function for woodwinds has narrow dips located at the



resonance frequencies of the air column (see sec. 20.8). The

anomalous behavior of the even partials of a clarinet is

associated with the fact that these fall between the

resonance peaks.

We learned earlier that the lower-frequency partials of

brass instruments spread around the bell uniformly in all

directions in the room, whereas the higher partials form a

progressively more directed beam out along the axis of the

horn. Woodwinds show a similar but somewhat more

complicated behavior. It is possible to show mathematically

and verify experimentally that an air column provided with a

long row of open tone holes (all proportioned to give roughly

the same cutoff-frequency) radiates each one of the below-

cutoff partials equally in all directions, as measured by a

distant microphone. Sound components lying only a little

above cutoff are radiated in such a way that the signal

produced by the combined contributions of all the tone

holes is sent predominantly out and down along a sort of

conical surface whose axis coincides with that of the

instrument, while the partials whose frequencies are high

(e.g., more than 50 percent greater than fc) leave the tone

holes and combine to form a fairly narrow beam that is

aligned with the axis of the instrument, so that they appear

to come directly from its bell.

It is easy to see from such details that a single distant

microphone used in an anechoic chamber can give quite a

misleading impression of the external spectrum of a

woodwind, even more so than is the case with the brass

instruments. The problem is compounded for woodwinds by

the fact that a microphone placed only a meter or two away

from the instrument may totally miss some one or another of

the partials, or else pick up a grossly exaggerated amount of

it (in either an anechoic chamber or a normal room). Small

motions of the microphone or the player can completely

rearrange the amplitude relationships among the partials.



While it is best to use a studio-sized room for spectrum

measurements and to make numerous independent

measurements for eventual averaging, there is a microphone

placement available that can give a reasonable imitation of

the external spectrum for certain kinds of tones from a

woodwind. Placing a tiny microphone within a few

millimeters of the highest open tone hole of a normally

fingered note will give a plausible spectrum, but the method

fails for fork-fingered or cross-fingered notes. It is also

useless of course for the recording of musical passages,

because each note requires its own microphone placement.

The thoughtful reader will by now be asking himself

whether the cutoff frequency is as musically important to

the perceived sound of woodwinds as it is to an

understanding of the behavior of these instruments. For

instance, will changing the cutoff frequency of a tone-hole

lattice produce an audible change in the emitted sound?

Stated another way, since a reduction of fc will result in a

reduction in the amplitudes of the internally generated

partials, might not this reduction be exactly offset in the

room by the increased efficiency with which these partials

are radiated? Some of the answers to such questions will be

given in the next section, but it is appropriate here to deal

at least briefly with the subject.

In 1969, John Patterson, who is professor of bassoon and

saxophone at the Louisiana State University School of Music,

spent some months in Cleveland as a visitor in my

laboratory; among the many experiments we carried out was

one in which we recorded musical passages by means of a

probe microphone carefully inserted into the bassoon reed

cavity in such a manner as not to disturb its normal

functioning. Such recordings are of course representative of

the internal spectra produced by the instrument. When they

are played back through an ordinary sound system one

hears curiously muted tones that sound vaguely



woodwindlike, but are not (to many listener’s ears)

recognizable as originating from a bassoon. However, when

this recording is transmitted to a loudspeaker via an

electronic filter arranged to simulate the transformation

function, the result is at once recognizable as a bassoon

sound. Experiments of this sort done with other conical

instruments confirm the following conclusions:

1. Our ears process the low-register sounds coming to

them from all directions in a room in such a way as to

reconstruct the internal spectrum of a woodwind as it is

modified by the spectrum transformation function. This is

true despite the fact that no single sample of the direct or

reverberant sound coming to the listener’s ears has a

spectrum of exactly this nature.

2. The importance of the cutoff frequency in controlling

the perceived sound also extends into the second register of

a woodwind (unless the notes are cross-fingered), despite

the fact that often only the first partial of the tone is directly

supported by a strong resonance peak.

3. When internally recorded tones are passed through an

electronic imitation of the transformation function, the result

is a good imitation of normal sounds as long as the filter’s

cutoff frequency is approximately equal to that of the

original instrument’s tone holes. The instrument remains

reasonably recognizable even in parts of its scale where the

tone holes have a somewhat different cutoff frequency from

that set on the filter.

4. The cross-fingered notes of the second and third

registers are controlled by their own pair of cutoff



frequencies, which parallel the normal ones since they are

determined by new combinations of the same tone holes.

Clarinet experiments similar to the bassoon ones using a

probe microphone are not so easy to carry out or interpret.

The odd-numbered partials give no trouble, since they can

all have their strengths compensated by a single electronic

filter which will take care of all notes, just as in the case of

the conical instruments. The even-numbered partials of the

clarinet tone cannot be given such simple treatment,

though, since they can only be compensated properly by

means of special filter settings for these partials in each

individual note.

Many of us who have the opportunity to listen closely to

musicians in a variety of settings (in large and small concert

halls, in the laboratory, or in our living rooms) are struck by

the similarity of the sounds we hear them make in person in

these varied surroundings, and struck even more by how

different from this the recorded music produced by these

same artists can be, even when it is recorded in the same

concert hall in which we have heard them perform in person.

Many a student has struggled to exhaustion to produce the

tone which he hears in recordings by an admired performer,

and an avid record listener may find himself disappointed

when he goes to hear a favorite artist in person. There are

two aspects of these discrepancies between live and

recorded performances that are worth our comment here.

Microphone placement for musical recording is a difficult

art. If the microphone is distant from the player in a large

hall, the listener will be bothered by too much reverberant

sound which his processor cannot cope with via the

precedence effect; on the other hand, close microphone



placement picks up predominantly those components of the

direct sound that happen to be radiated in the direction of

the microphone, so that the overall tone is altered because

the listener is deprived of reverberant cues that let him

deduce the complete spectrum. This sort of close miking

may give the listener the sense of being “right there,” but in

many musical contexts it robs the performance of the

wholeness conceived by a composer who originally planned

his music for performance in a concert hall.

Superimposed on the tonal differences produced by

microphone placement is the tendency for the engineer to

“equalize” the recording by manipulation of various tone

controls before transferring the music to its final form. It is of

course impossible for him to deal accurately with the

complexity of the radiation process, so he simply does the

best he can. All too often the equalization is done by a man

who listens to very little live music, and who may have

altered his hearing by many hours of listening to monitor

loudspeakers (or, worse, headphones) at sound levels that

make anyone not inured to them cringe in pain. These are

some of the reasons why so many records sold today have

excessive treble and bass, to the annoyance of many

performers and those listeners who are familiar with music

played “live.”

22.5. Characterization of a Woodwind by

Its Cutoff Frequency

We have had many occasions to notice the important role

played by the open holes cutoff frequency in determining

the behavior of a woodwind instrument as it generates one

note or another. We have also just learned of the important

role it plays in the way we perceive woodwind sounds in the

concert hall. As it turns out, we can go so far as to use the

cutoff frequency as a number that implies a great deal about

the entire musical personality of the instrument, a number



which can be followed through the course of the past two

centuries of woodwind development. Let us see how this

brought itself to my attention and then investigate some of

its implications.5

In 1971, Michel Chotteau completed a project in my

laboratory which called for the design and construction of a

special clarinet in which the tone-hole cutoff frequency for

each fingering was placed at exactly six times the

corresponding low-register playing frequency.6 To put it

another way, Chotteau’s clarinet was arranged to provide

each tone in the low-register chromatic scale with three

resonance peaks to collaborate with the reed. Figure 22.6

shows in condensed form the resonance curves that he

measured on his instrument. The top line shows the input

impedance curve obtained when only three holes are

opened at the bottom end of the instrument. The other

curves belong to configurations having 5, 7, 9, ... 17 holes

open. In every case there are three well-marked peaks

displayed below the cutoff frequency, the design value of

which is indicated by a dashed line cutting downward and

across the right-hand part of the diagram. Chotteau took

pains to arrange the specified cutoff frequency and a

carefully tuned chromatic scale on an air column whose

peaks were quite accurate in their harmonic relationships. I

helped him make the final adjustment (using a small scraper

and a bottle of lacquer) in the alignment of the peaks for

best cooperation with the reed for all notes in the low

register.



Fig. 22.6. Resonance Curves for Various Notes on Chotteau’s

Clarinet

This experimental instrument makes musically satisfying

sounds that have great clarity, but we noticed at once

something curious about it: the tone color at the lower end

of its low-register scale is unusually dark (as a musician

would describe it), and at the top end it is unusually bright.

In the middle of the scale (near C4) the sound is very similar

to that of a clarinet of normal construction. While writing a

description of his work, Chotteau commented that, despite

the considerable irregularity in the geometrical proportions

of the tone holes of a normal clarinet, the observed cutoff

frequency for notes over the entire scale of most clarinets is

roughly constant, lying near 1500 Hz. In other words, the

Acoustical proportions of the ordinary tone-hole layout are

very uniform along the scale. On Chotteau’s experimental

clarinet, only the region near C4 has a cutoff frequency that



matches that for normal clarinets. This fact accounts in a

general way for the similarity of the sounds from the two

instruments at this part of the scale. The observation that

the bright tone was associated with the high-fc end of

Chotteau’s scale and the dark tone with low fc eventually

gave me a hint as to the relationship between tone-hole

design and overall tone color.

In recent years I have measured the cutoff frequencies of

clarinets, oboes, and bassoons constructed over a

considerable range of history, using only instruments in

good condition which were or are now played by leading

musicians, and which were made by some of the best

craftsmen of their time. Three major conclusions can be

drawn from these measurements:

1. On most of the standard woodwinds, the cutoff

frequency remains roughly the same as tone holes are

progressively opened to finger the notes of the low-register

scale.

2. It proves possible to correlate the tone-color adjectives

used by musicians to describe the overall tone of an

instrument (dark or bright, for instance) with the value of its

average cutoff frequency.

3. Trends in fe on a given instrument run parallel to trends

in the described tone color; furthermore, anomalies of

certain notes on a given instrument can be related directly

to local anomalies in fc.

Figure 22.7 shows the cutoff frequencies measured for

various oboes, plotted against the low-register note names



that specify the various tone-hole arrangements. Number 2

in this family of curves is drawn with a heavy line to serve as

a reference for the eye. This curve, which is quite typical of

all modern conservatory-system oboes, was obtained from

an instrument used in the Cleveland Orchestra. Notice how

flat this curve is (i.e., how constant the cutoff frequently is)

over the whole scale, except for the jog upward to the 1900-

Hz value found for C5 at the top end of the low-register

scale.

Fig. 22.7. Cutoff Frequencies Measured for Various Oboes

Curve 5 at the bottom of the figure shows similarly the

range of cutoff frequencies for the baroque oboe that we

met earlier in section 22.1. The instrument was made in

1720 and is quite typical of several instruments of its era



that I have measured. We notice that the fc is close to 1100

Hz almost all the way across the scale, and that there is a

slight dip in the neighborhood of F4# through E4. I will not

discuss the other curves except to remark that the top one

(number 1) was obtained from a beautifully constructed

oboe whose acoustical design was worked out by the

developer of today’s flute, Theobald Boehm, in collaboration

with the instrument’s builder, Frederic Triébert, who

developed the conservatory-system oboe which is almost

universally used today. Notice the exceedingly high cutoff

frequencies measured for this instrument, which was never

considered musically successful chiefly because of an

exceedingly bright tone that borders on harshness. It is

otherwise a masterpiece of tuning and of workmanship, such

as one might expect from its originators.

Let us turn our attention now to figure 22.8, which shows

the variation of fc for a selection of bassoons. Curve 4, which

is again shown by a heavy line, is typical of a first-quality

Heckel bassoon. This particular instrument is one normally

used by the well-known British bassoonist William

Waterhouse. Curve 1 shows the behavior of a modified

Heckel-type instrument which has a relatively high cutoff

frequency. It has a pleasant and full sound, although

musicians typically remark that the sound is “somewhat too

open.”



Fig. 22.8. Cutoff Frequencies Measured for Various Bassoons

Figure 22.9 shows the variation of cutoff frequency across

the low-register scales of several clarinets. For reference

purposes, the curves for both A and Bb Boehm-system

clarinets are drawn with heavy lines. One can see clearly the

close correlation between the darker tone color and lowered

fc of the A clarinet relative to its Bb brother. Clarinet number

4, a C clarinet from the time of Beethoven, is particularly

interesting in this connection since it has a lower cutoff

frequency than any of the other instruments. Cutoff

frequencies on today’s Boehm-system C clarinet normally lie

in the region of 1700 Hz, making the instrument bright for

playing orchestral parts written in the early 1800s.

I have taken a pair of brand new Bb clarinets (part of a gift

made in support of my research activities by Vito Pascucci

and the Leblanc Corporation) and carefully reworked them



so that one has its fc raised by about 3 percent while the

other has its fc lowered an equal amount. Both instruments

are well tuned and have excellent response. Players of

classical music are very much attracted by the low-fc

instrument, while they consider the other clarinet to have

been ruined; serious jazz clarinetists are equally positive in

holding the opposite opinion! Both instruments have been

borrowed from time to time for public performance. We have

here a beautiful example of the way in which good

musicians select their instruments to fit their musical

requirements.

Fig. 22.9. Cutoff Frequencies Measured for Various Clarinets

22.6. The Flute Family of Instruments

The flow-control mechanism that is used to maintain the

oscillation of flutes, recorders, and organ flue-pipes is of an

entirely different sort from the one used by the reed



woodwinds and brasses. In all of the instruments of the flute

tribe, one directs a small jet of air across an opening located

at one end of the instrument, rather than blowing directly

into the mouthpiece through a reed. Even people who do not

play the flute are likely to have had personal experience

with this sort of sound production, since almost everyone

has at some time made hooting sounds by blowing across

the mouth of a bottle.

A. Helmholtz’s View of Flow-Controlled Oscillation. The

following is an adaptation (in terms of blowing across a

bottle top) of Helmholtz’s explanation of how flute-type

oscillations are maintained.7 A stream of air is directed

across the opening of a bottle by the player. If he has chosen

a proper angle and blowing pressure, an oscillatory flow of

air will be set in motion in the neck of the bottle. As shown

in the top of figure 22.10, when the oscillating air in the

neck is flowing inward, the stream of air from the player’s

mouth is deflected so that a part of it also flows into the

bottle. During the later phase of the oscillation, when the air

in the neck is moving outwards, the stream of air from the

player is also deflected out and away from the neck. The

excitory flow of air is thus steered alternately into and out of

the neck of the bottle by the acoustic flow variations of the

oscillation. The player’s air is directed into and out of the

bottle exactly in step with the governing oscillatory flow, so

that we are assured that an oscillation will be maintained.

This picture of the way in which a jet of air is steered in

and out of the blowing end of a flute or organ pipe is, as we

shall see, somewhat simplifed, but it provides us with a good

introduction to the notion of a flow-controlled valve, which

may be contrasted with the pressure-controlled valves we

have studied so far.



Fig. 22.10. Flow-Control Action for Air Blowing Across a

Bottle or a Flute Embouchure Hole

B. Implications of Putting a Flute Head joint onto a

Clarinet. A favorite lecture demonstration of mine, the

purpose of which is to display the varying behavior of an air

column when it is coupled first to one and then to the other

of the two types of air controller, makes use of a special flute

head joint made to fit on a clarinet as a replacement for its

normal mouthpiece and barrel joint. When the instrument is

played with this special head joint in place, the listeners are

astonished to hear the characteristic sounds of a flute.

Closer attention to what is going on shows that the low-



register notes of this flute make up a well-tuned scale that is

pitched an octave above the low-register clarinet sounds

belonging to the same fingerings. When the instrument is

played as a flute the second-register notes are an octave

above the low-register notes, while in its clarinet aspect the

second register plays a twelfth above its low register. The

high-register notes of this flute will not play, which is not

hard to understand since they would lie above the tone hole

cutoff frequency, and so are obliterated by the lack of

whatever resonances are making the system work.

The acoustical implications of using a single cylindrical air

column to produce both clarinet and flute sounds can be

clarified if we imagine the experiments to be carried out

with the help of a pipe whose length is such as to give

resonance peaks at 100, 300, 500, 700, ... Hz. When this

pipe is coupled with a reed, the low-register regime of

oscillation runs at the frequency of the first (100-Hz) peak

with the help of the higher resonance peaks. The second

register is dominated by the second peak, and so runs at

300 Hz, a musical twelfth higher in pitch.

When this pipe is played as a flute, the low-register tone is

an octave higher in pitch than the clarinet tone. In other

words, it has a fundamental frequency of 200 Hz, exactly

halfway between the first and second resonance peaks of

the air column. The flute’s second register plays at 400 Hz,

halfway between resonance peaks 2 and 3 of the pipe.

Inspection of the resonance curve of a cylindrical pipe shows

us that the dips in this curve lie at frequencies that are

exactly halfway between the frequencies of the peaks. This

observation introduces us to the first of a set of statements

on the oscillation physics of the flute family.



1. A flow-controlled valve system collaborates with an air

column at frequencies at which the air column has minimum

input impedance, i.e., at the dips of our measured response

curves. This is in contrast with the pressure-controlled valve,

which works at the input impedance maxima, i.e., at the

peaks.

2. The frequencies of minimum input impedance of an air

column are identifiable as the characteristic frequencies

belonging to this air column when the mouthpiece end is

open to the air. It is therefore permissible to talk about these

resonance dips in exactly the same way that we have

heretofore talked about resonance peaks. (Recall that the

impedance at a dip is the wave impedance divided by Q0,

whereas one multiplies by Q0 to get the heights of the

peaks.)

3. Regimes of oscillation are set up when an air column

collaborates with a flow-controlled valve (we will sometimes

refer to the latter as an air reed). The joint influence of

various air resonance dips on these regimes shows much but

not all of the behavior familiar to us from the reed

woodwinds.

C. The Player’s Control of the Air Reed. While in its barest

essentials Helmholtz’s model of an air reed is correct, it fails

to take into account the inertia of the player’s airstream; this

inertia makes the airstream’s deflections lag considerably

behind the aerodynamic forces that are exerted on it by the

oscillatory flow in and out of the flute’s embouchure hole

(which is the part of a flute that is analogous to the neck of

the bottle). It also neglects the much subtler influence that

one part of the stream exerts on its neighboring parts. Very

careful measurements reported in 1968 by John Coltman on

the sounding mechanism of the flute have formed the basis



for further measurements and calculations presented in

1974 by the Australian physicist Neville Fletcher.8 These

reports, which greatly clarify and extend the meaning of

much that was known earlier, give us much useful

information on tone production by air-reed devices that form

part of a musical instrument.

Digression on Flute Tones and the Edge Tones

Produced by Free Air Jets.

Until recently there has been a tendency (evident in the

literature) to confuse the sounds produced by blowing a

narrow air jet against a sharp edge when the edge forms

part of a flute or an organ pipe (air-reed behavior) with

those produced when the system is run in isolation (edge-

tone behavior), In the latter case a type of repetitive

eddying called vortex shedding takes place on alternate

sides of the air jet, and a sound is produced if a sharp edge

is used to separate the two sets of vortices. Vortex

phenomena have only a secondary influence on flute-type

sound production; moreover, at ordinary musical blowing

pressures the edge-tone frequencies are so high as to be

nearly inaudible. Bouasse was one of several acousticians

who performed definitive experiments to show the

distinction between the two types of sound production.

The lower part of figure 22.10 shows in cross section the

way in which a flute player places his lips next to the

embouchure hole to direct a stream of air across it and down



against its far side. The symbol ts will denote the thickness

of the excitory airstream, ws its width, and ds the distance it

travels across the embouchure hole to the opposite side. The

letter H denotes the height of what is called the riser or the

chimney of the embouchure hole; this dimension is of course

strictly analogous to the thickness t of pipe wall through

which an ordinary tone hole is drilled.

Depending on whether the blowing pressure in the

player’s mouth is large or small, the airstream (and any

transverse disturbances which may be set up in it) travels

the distance ds in a shorter or longer time. It should be fairly

obvious that there must be a suitable relationship between

this transit time and the timing of the inward and outward

parts of the oscillatory flow that deflects the stream. Let us

elaborate on this idea in some additional numbered

statements:

4. Everything in the flow-control mechanism of a flute

depends on the relation between the transit time (the time it

takes disturbances in the stream to travel a distance ds from

the player’s lips to the far side of the embouchure hole) and

the repetition time (the period of oscillation) of each of the

sound components present in the tone.

5. The type of oscillatory support most like that depicted

in figure 22.10 takes place most strongly if the transit time

has a duration equal to half the time of oscillation of a given

partial. Oscillations can also be maintained by this sort of

influence when the transit time is shorter or longer than this

value by less than about 50 percent. This simplest type of

excitation is used in every playing register to sustain the

fundamental component of the flute tone.



6. Certain relations between transit time and the

repetition time of the higher partials of the tone allow the

higher partials to enter actively into the regime of

oscillation.

7. Certain other partials have repetition times whose

relation to the transit time causes the air reed to work

against the maintenance of oscillation.

The flute player has great flexibility in tone production

because there is a range of transit times that will suit the

maintenance of each note of the scale. Furthermore, he has

many optional ways in which he can attain the desired

transit time, because he is free to trade off a larger or

smaller stream distance ds against a smaller or larger flow

velocity. He can control the thickness ts and the width ws of

the airstream by altering the spacing between his lips as

well as the angle at which he blows. All of these things

permit the skilled player to elicit musically useful sounds

from practically any sort of flute, whether it is properly made

or not; on a well-made instrument, they give him an

enormous (but seldom fully exploited) range of tonal

possibilities. We learned for example in chapter 5 that the

odd-numbered partials of the flute tone can be smoothly

weakened while the even ones grow to the point of

producing an imperceptible transition from the low to the

second playing register. This can be done at any playing

level above pianissimo. Another example of the control of

the variables shows up in certain recorders that are voiced

(i.e., given values of ds, ts, and ws) in such a way as to

weaken partials 2 and 4 greatly, while leaving the odd-

numbered ones, 1, 3, and particularly 5, strongly present in

the low-register tone. Flute players also have this as an

option.



D. Suitable Shapes for a Flute-Type Air Column. We

already have a preliminary idea about the air-column shapes

that will give whole-number frequency ratios between their

resonance dips: since a cylindrical pipe has its peaks

arranged in a 1, 3, 5 ... frequency relationship, it is not

surprising to find that the same pipe is able to play as a flute

on the dips located at the interlaced frequencies 2, 4, 6, etc.

Further inquiry into the properties of air columns shows that

any straight-sided air column, cylindrical or conical, will

have its input impedance dips arranged in the desired way

(although in a cone the peaks are no longer symmetrically

placed between the dips). The top part of figure 22.11 shows

the three prototype flute possibilities: a cone that grows, a

cylinder of constant diameter, and a cone whose diameter

shrinks as we go away from the blowing end.

For reasons that will become apparent in part E of this

section, good cooperation among the members of each low-

register regime of oscillation requires that the head-joint end

of any flute be contracted relative to the main trend of its

body. This shrinking of the head joint (the need for which

was discovered late in the seventeenth century) is

illustrated in the lower part of figure 22.11.

The standing-wave patterns for the various modes in these

three air columns are very similar to one another, so that it

will suffice for us to look at only one. Figure 22.12 shows the

basic structure of a cylindrical flute, together with the

standing pressure-wave patterns belonging to its three

lowest modes. At the right-hand end of the flute, where the

tone holes are open, the standing waves have a character

that is identical with that seen in the lower part of a reed

woodwind. The behavior in the neighborhood of the

embouchure hole, however, is quite different. There is a kink

or break in the pattern at the embouchure hole position E, of

the sort that we have seen before in connection with a single

register hole or tone hole. To the left of this kink, the



pressure amplitude rises to a local maximum at the position

of the head-joint cork. The main tendency of the left end of

each mode’s standing wave is to head toward a pressure

node (whose position is marked X in the diagram for each

mode). We shall speak of the distance from E to X as the

embouchure hole length correction Cemb, and think of it in

exactly the same way as we did the open holes lattice

correction C that represents the analogous distance MN at

the right-hand end of each standing wave (see fig. 21.1).

Fig. 22.11. Suitable Shapes for a Flute-Type Air Column. Top,

basic shapes; bottom, basic shapes modified by required

contraction at blowing end.



Fig. 22.12. First Three Pressure Standing Wave Patterns for a

Flute

As indicated by the changing position of X in the different

parts of figure 22.12, the magnitude of the embouchure hole

correction Cemb varies with frequency. While the diagram

only shows it growing, different relationships between the

cork-to-embouchure hole distance R and the embouchure-

hole dimensions (width W, breadth D, and riser height H)

can make Cemb either grow or shrink. In 1965 James French

and I published an article on flute head-joint acoustics. 9 We

showed among other things that, no matter how it varies at

high frequencies, Cemb always starts out with a low-

frequency value given by the formula:



Cemb =(4a2/DW)He

Here a is the radius of the air column, while He is the

effective height of the chimney as it is increased by the

nearness of the player’s lips (see also the explanation in sec.

21.4, part B, of the analogous quantity te that applies to

tone holes). The most important function of the head-joint

cork is to provide, in conjunction with the player’s lip

position, a suitably varying value for Cemb; this serves to

clean up the last subtle details of the air column

perturbations that are needed for good alignment of the

modes. On most flutes Cemb is in the neighborhood of 50

mm.

E. Perturbation Curves for the Flute and the Need for a

Reduced Head-Joint Diameter. Inspection of a flute’s

perturbation curves can show us why a flute needs to have

the diameter of its air column shrunken slightly in the

neighborhood of the embouchure hole, and can illustrate

some of the tricks that are available to any instrument

maker. Figure 22.13 shows the first- and second-mode

perturbation curves for the notes D4, G4, B4, and C5#.

Sketched at the top of the figure is an air column that is

similar to those used before the development in 1847 of the

familiar cylindrical Boehm flute; this air-column shape is

based in particular on an extremely successful flute that I

designed and built in 1973, which combines the modern

Boehm mechanism with a tone-hole size giving a cutoff

frequency (and resultant tone color) characteristic of the

older flutes. Most of the examination of the nature of (and

reasons for) the various jogs and irregularities will be

postponed to the final section of this chapter.



Notice in figure 22.13 that the right-hand ends of all the W

curves (near the tone holes) look very much like those for

the reed woodwinds, whereas at the blowing end the effect

of a perturbation on flutes is the opposite of that produced

on other instruments. In particular, the contraction which

has been noticed at the top end of every flute has the effect

of widening the frequency ratio between mode 1 and mode

2 beyond the 2-to-1 value that goes with the simplest flute

tubes. On a good flute we find that the perturbation of the

measured mode-2 resonance frequency puts it 25 to 35

cents more than an octave above the measured first-mode

frequency. On such a flute, this widening must be arranged

to be uniform over the whole low-register scale.

The need for a contraction in the head joint of a flute may

seem a little paradoxical to those of you who have come to

understand the benefits conferred by accurate harmonicity

in the resonances of a wind-instrument air column. Let us

see what the explanation is for the apparent exception in

flutes. John Coltman has shown that when a stream of air is

used to excite the oscillation of an air-column mode, the

presence of the stream lowers the natural frequency of the

mode itself when the system is gently blown, and raises it

under hard-blowing conditions. This alteration explains why

the sounding pitch of a whistle can vary (by as much as a

semitone) when one tries to play a crescendo or

diminuendo. It also explains in part why the playing

frequency of a flute seldom matches the unblown resonance

frequency as normally measured in the laboratory. In 1967

Walter Worman and I succeeded in measuring the resonance

curves of various air columns while an air reed was acting on

them to produce a tone.10 Our observations of the behavior

of the resonance that supports the fundamental component

of the tone agree exactly with those of Coltman (although

we did not obtain the detailed numerical information that he

was able to get). We obtained an additional important piece



of information: the air-column mode that lies near the

second harmonic of the tone being sounded does not have

its frequency shifted by the excitatory airstream. The

musical significance of this result is that at pianissimo

playing levels in the low register, the second air-column

mode has little influence on the regime of oscillation, so that

there is no limitation on its placement relative to the

frequency of the first mode. As one plays harder, the

oscillatory regime picks up the influence of the second-

harmonic component of the tone as it “talks” to the second

air-column resonance. At the same time, the first-mode

frequency is rising under the influence of the harder

blowing. If the unblown second air-column resonance is not

placed (by suitable perturbations of the air column) at a

frequency that is more than twice that of the unblown first-

mode resonance, it will lie too low for good cooperation

when the instrument is played loudly, since it does not move

up as the blowing is strengthened.



Fig. 22.13. The Use of W Curves for the Alignment of Various

Notes of Any Flute

It is possible to arrange flute-type instruments to play

particularly well at any desired wind pressure (even with

fixed arrangements of the airstream, as in a recorder); this

can be done simply by perturbing the air-column shape to

locate the second resonance exactly an octave above the

shifted first resonance produced at the specified blowing

pressure. But the problem is to find a relationship that will



work well at all dynamic levels. This can be accomplished by

carefully shrinking the top of the head joint (and sometimes

also perturbing other parts of the instrument). The resulting

widening of the octave relationship counterbalances the

narrowing of the octave that happens in loud playing, as the

low register moves up in pitch relative to the second

register. Sensitive playing experiments based on this

phenomenon can be used to guide the adjustment of flute-

type instruments for good musical usefulness. The

adjustments themselves are of course carried out in a

manner reminiscent of that described earlier for the

bassoon. There is clear evidence that many of the leading

makers of flutes and recorders in the past knew a good deal

about such techniques (though of course not in scientific

terms). Curiously enough, the makers of artist-quality flutes

today (with one or two individual exceptions) show very

little knowledge of such methods, as is evidenced by the

variable quality of the instruments many of them produce.

F. Limitations on the Highest Playable Note of a Flute. In

the course of adjusting any flute for best playing in its

lowest two registers, one observes that a difference of a

tenth of a millimeter in the position of the cork relative to

the embouchure hole has a recognizable influence on the

playing behavior of the instrument. To a practiced ear, the

change in response and clarity can sometimes be heard

across the room. One notices also that some flutes become

very difficult indeed to play in the higher register if their

head-joint corks are adjusted to make them play best in the

lower two registers. This is invariably associated with an

unusually large cork distance. For example, on baroque

flutes, which have a cylindrical head and a tapered bore, the

typical cork-to-embouchure distance is about 25 mm as

against the 17 mm that is typical of the Boehm design. On

such a baroque flute one can hardly force notes above G6.

Furthermore, notes that can be played near this top note



become very stuffy, as though the resonances were heavily

damped. Let us seek the acoustical reason for the difficulty

with high notes.11 We should recall that the flute’s flow-

control mechanism favors oscillation at frequencies near the

impedance dips as measured at the embouchure hole.

Acoustical engineers sometimes find it convenient in their

work to speak of the input admittance of an air column

rather than the input impedance.12 Since the admittance is

defined simply as the reciprocal of the impedance, a dip in

the impedance curve corresponds exactly with an

admittance peak, and vice versa. As a result we can say that

flutes run themselves with the help of the admittance peaks

of an air column, whereas clarinets, etc., run on the

impedance peaks.

Fig. 22.14. Influence of Cork Position on the Input

Admittance Curves of a Flute



The top resonance curve shown in figure 22.14 shows the

input admittance measured at what might be called the

embouchure hole of a T-shaped piece of copper tubing

having a cork-to-hole distance R of 30 mm. Notice that the

peaks start out with a 2, 4, 6 sequence of frequency ratios of

the sort we expect for a cylindrical tube. There also seems to

be some kind of cutoff frequency near 2000 Hz despite the

fact that there are no tone holes! It is this phenomenon that

we will need to study more closely.

The second, third, etc., curves in figure 22.14 show the

effect of increasing the cork-to-hole distance R, with the

length of the main tube being adjusted in each case to keep

the first-mode resonance frequency the same. When we look

at all the curves together, it is plain that there is a sort

of‘dead’ spot in each one of them where there are no

resonances at all, even though there are strongly marked

peaks on both sides of it at higher and lower frequencies.

You may by now have formed the correct suspicion about

the reason the top notes of a flute are so sensitive to the

position of the cork. If R is increased, the dead spot in the

resonance curve moves to lower frequencies, and so kills off

the top notes of the instrument. On either side of this dead

spot, the admittance peaks are less tall than normal, and so

make the instrument difficult to play. The head joint of a

baroque flute can be made to play at notes above C7, using

resonances above the dead spot, even though this spot kills

off the possibility of playing in the region just above G6. It is

possible to follow trends of this sort by moving the cork on

any flute.

If we refer back to figure 22.12, we can see the acoustical

origin of the dead spot. We have already noticed that the

left-hand node of each standing wave lies beyond the cork

position. As we go to higher and higher modes, the position

of the embochure hole itself lies ever closer to the first



pressure maximum of the standing wave. The dead region

we have been talking about is located in a frequency region

which puts the embouchure hole near a pressure maximum

of the standing wave. Mode 3 in figure 22.12 is drawn to

illustrate this state of affairs.

22.7. The Effect of Wall Material on the

Playing Properties of Wind Instruments

The question of whether or not the playing properties of a

wind instrument are influenced by the material from which it

is made has been the subject of curiously bitter controversy

for at least 150 years. We at once recognize the influence of

dimensional changes that may be forced on an instrument

maker when, for example, he makes a wooden rather than a

silver flute, or those inadvertent ones which come about

from the different ways in which a bore reamer cuts wood

and plastic. At a subtler level, many kinds of things can lead

to questions concerning the influence of materials: when

identical woodwind air columns are made using wall

materials of different porosity or rigidity, the resulting

sounding pitch of the instrument may vary by as much as

twenty cents; thin-walled instruments on which one can feel

vibrations are often improved (but sometimes spoiled) by

putting layers of adhesive tape on the outer surface at an

empirically chosen spot; repairmen and players alike are

aware of the quite noticeable changes in the playing

properties of an instrument when pads of differing material

are installed for use in covering the tone holes, or when the

bore is oiled.

Theory also poses questions, some of which are not hard to

answer. For instance, it has been known for many decades

that the walls of a perfectly round pipe cannot vibrate

enough to radiate audible sounds into the room. When such

a pipe is slightly out-of-round (elliptical), it can be excited

much more strongly by internal pressure variations, but



even so it cannot radiate sound into the room with sufficient

amplitude to be heard in the presence of the other sources

of excitation. Because of this, changes in the material or the

thickness of the walls cannot detectably alter the sound of

an instrument insofar as it depends on radiation by the

walls.13

The vibration of wind-instrument walls can sometimes

influence the playing behavior significantly for a different

reason. Just as vibrations of the piano soundboard can alter

the natural frequencies of the string modes, so also wall

vibrations can alter the frequencies of the air column. The

air column “looks” oversize at points of large wall vibration if

the natural frequency of the wall lies above that of the air

mode which drives it, and undersize when this frequency

relationship is reversed. I have seen instruments (thin-

walled metal flutes in particular) whose behavior seems

perfectly insane unless the complex influence of wall

vibrations on regimes of oscillation throughout the scale is

suitably damped out.

In wind instruments, the vibrational damping provided at

the walls by air friction, oscillatory temperature effects,

porosity, etc., far outweighs the damping produced by the

escape of sound through the tone holes into the room.

Because the player and his reed are in the business of

maintaining an oscillation in the air column, it is clear that

the major portion of his physical effort is devoted to the

feeding of acoustic energy directly to the walls of his

instrument. Since different materials provide varying

amounts of damping, it is logical to wonder about the

magnitude of this effect.

Since 1958 I have made several studies of the possible

differences in damping that can be made by using copper,

silver, brass, nickel silver, or various kinds of wood as the air-

column wall material. If the walls are thick enough not to



vibrate and if they are smooth and nonporous, experiment

and theory agree that switching materials will make changes

in the damping that are generally less than the two-percent

change that most musicians are able to detect.

Turbulence in the vibrating air is another phenomenon

that can be influenced by the nature of the wall material,

though the relation is indirect, since it comes from the

ability of the material to take and keep a sharp edge. The

presence of sharp edges brings about airstream turbulence

at blowing pressures lower than those that would elicit it in

the absence of such edges. As one plays louder than mezzo

forte on a flute, oboe, or clarinet, the sound level becomes

high enough for new phenomena to appear. At mezzo forte,

the oscillatory flow through the first one or two open tone

holes is no longer of the simple, smooth-flowing type found

in soft-playing, but neither is it quite of the fully developed

turbulent type that causes the rushing and roaring noises

from a strong wind. Two undesirable things happen in the

tone holes when turbulence starts: (a) the damping rises

greatly, even before the tone holes begin to hiss in a manner

that is familiar to many players, and (b) the nature of the

flow through the holes is such as to make them act as

though their sizes had been changed, thus spoiling the

careful voicing adjustments of the instrument. From this

point it is only a short path to the realization that rounding

the corners of the tone holes and of any other projections or

angles in the air column (e.g., at the junctions of its various

parts) will postpone and regularize the onset of turbulence

and so make the instrument play well over an extended

dynamic range, provided that these corner roundings are

carried out in a way that preserves the acoustical alignment

of the instrument. In 1972 John Cuddeback worked with me

to measure the damping of a clarinet air column over a wide

range of excitations, before and after its corners were

carefully rounded. The results confirmed these conclusions



and resolved certain discrepancies in some earlier

experiments. 14

The connection between sharp edges on the corners of an

instrument and the material from which it is made is not

difficult to find: instruments normally come out with their

corners sharper when plastic or metal is used than when

wood is the material of choice. It is the instinctive tendency

of a skilled craftsman to show his competence by producing

crisp clean edges for all his tone holes and joints, and the

degree of sharpness of these corners depends very much on

the nature of the materials with which he works and the sort

of tools he uses. I have found historical and contemporary

examples of instruments made by the best workmen in

which the corners were deliberately rounded, as well as

those (much more common today) which are left with sharp

corners. In every case players prefer the ones with rounded

corners. In the normal course of traditional instrument-

making, rounded corners are most often produced on

wooden instruments. A number of metal and plastic

instruments which I have reworked have prompted

musicians to remark in public that they play just like good

wooden ones; players have also remarked that instruments I

have worked on have good “personalities” which are

independent of the materials from which they are made.

One must of course be sure that the mouthpiece, the air

column, and the tone holes are properly adjusted to one

another, since mere postponement of turbulent damping

does not by itself give an attractive instrument.

It is interesting to consider the history of woodwind-

making in the light of the turbulence phenomena. In the old

days when undercutting of tone holes was prevalent, the

general sharpness of corners in all handmade woodwinds

was slight enough that turbulence effects were usually not

very noticeable. By the mid-nineteenth century, woodwinds

were beginning to be made with accurate jigs for drilling



precisely sized holes in their exact position along the

instrument. Corners became sharp and neat as harder

materials came into use and also as an indication of fine

workmanship—all of which provided the perfect conditions

for nurturing turbulence troubles! Instrument makers found

that the more “scientific” they became in their mechanical

methods, the more unsatisfactory the older designs became

and the more sensitive the instruments became to the

material from which they were made. Essentially all of

today’s mass-produced woodwinds would benefit from a

careful rounding of tone-hole corners. Our growing

understanding of these things suggests simple solutions to

many problems that have heretofore seemed to require an

alteration in the tone-hole design and the key mechanism.

(Note: the embouchure hole of a flute cannot be tinkered

with in simple application of these suggestions.)

22.8. Examples, Experiments, and

Questions

1. On a bassoonlike instrument played mezzo forte with a

certain embouchure pressure on the reed, the first three

resonance peaks lie at 100, 198, and 291 Hz, and they work

together to produce a tone whose fundamental frequency is

a little below 100 Hz. A very slight increase in the player’s

lip pressure reduces the reed cavity volume enough to raise

the resonance frequencies to 101, 205, and 320 Hz. While

the change is being made, it is found that the playing pitch

jumps abruptly by nearly a semitone, so that the

fundamental frequency now lies near 104 Hz. See section

22.1, statement 10, for the reason why the percentage

change in frequency is so much larger for the higher modes

than for the lowest mode. This abrupt jump in pitch is a

phenomenon that is familiar to players of many baroque

instruments and certain of today’s bassoons. Can you figure



out the reason for it? How would you alter the air-column

shape to prevent this behavior.

2. Reaming to make a slight enlargement in the top end of

a clarinet barrel joint and the bottom end of the mouthpiece

causes, as its most significant result, a rise in the pitch of

the note E6, which is played with dominant support by mode

3 of the air column used in playing C4. See if you can figure

out where this enlargement falls on the perturbation curves

shown in figure 22.3. Hint: mode 2 is left almost unchanged,

while mode 1 is slightly lowered, so this reaming may help

somewhat in the playing of the low-register note.

3. The curves giving the cutoff frequencies for various

notes in the scale of oboes, bassoons, and clarinets (see figs.

22.7, 22.8, and 22.9) can be used for estimating the number

of cooperating peaks that are available to support each note

in the low-register scale. For instance, on a conical

instrument having fc at 1300 Hz, the note G4 (392 Hz) is

played with the help of three resonance peaks; the third

peak lies below cutoff near 1176 Hz, whereas a fourth peak,

near 1570 Hz, cannot exist. On a tarogato, fc is very nearly

constant over its scale. What does this imply about the

“feel” and tone of the instrument when it plays C5 and C6?

(Recall that the tarogato is a transposing instrument pitched

in Bb.)

4. The responsible recording engineer at a classical music

recording session will try to keep a reasonable distance

between the player and the microphone. If he places the

microphone above the head of a clarinetist or oboist, the

direct sound will be very deficient in the downward-aimed

higher partials, which are only recorded by way of reflections

off the floor and scattering by nearby musicians. The

resulting sound is typically judged to be a little dull. If the

microphone is placed out in front or a little to the side, about



waist-high for the player, a stronger share of the medium-

frequency partials just near fc will be recorded directly, and

the partials well above cutoff will also be reflected strongly

into the microphone. The resulting sound will be much more

realistic, but a little on the bright side. Why is it impossible

to equalize a recording made in either of these ways to

match what one would hear in a live concert?

5. On a flute, lengthening the cork-to-embouchure-hole

distance R, raising the chimney height H, reducing the hole

size WD, and covering more of the hole with the lips are

interchangeable ways of increasing Cemb for the lower few

modes. Notice that changes in any of these can be offset by

changes in the others, to permit reconciling the many

requirements that must be met. One effect of an increase in

Cemb is to slide all the perturbation (W) curves to the left in

figure 22.13. Verify that this change lowers the ratio

between the frequencies of modes 1 and 2 in all parts of the

scale. This effect is the basis of the final trimming-up of a

good flute.

6. On the flute shown in figure 22.13, the cylindrical head

joint was given a slightly larger diameter than the top end of

the main cone. Perhaps you can figure out why the

difference in the mode tuning caused by this slight oversize

joins with the cavity deliberately left in the joint in offsetting

the ratio-narrowing produced by a low cutoff frequency near

C5. Why must the bottom end of such a flute flare out in the

region below the tone holes?

7. Our recognition of the importance of turbulence in the

air columns of loudly played instruments puts us in a good

position to understand why “poor venting” and fork-

fingerings have traditionally been a bugbear to the

instrument maker. Not only must he try to preserve the

intermode cooperations in order to get a good solid mezzo-

piano tone, he must also cope with the fact that the



tendency toward turbulent dissipation rises in direct

proportion to the magnitude of the open holes length

correction C. Increasing the hole size will partially

accomplish the desired effect, but thinning the wall by

counterboring to get fe right (as one might also propose) can

easily make the turbulence worse. Holes that are ill-vented

(in the traditional sense) need to have their sizes chosen

and their corners rounded with particular skill if they are not

to be troublesome. This is almost a lost art today, and most

of the possessors of it do not seem to be consciously aware

of what they are doing—they seem simply to be following a

magnificent instinct.
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23

The Oscillations of a Bowed

String

Bowed string instruments such as the violin, viola, cello, and

bass viol are like the wind instruments in their ability to

produce steady tones. The wind player uses a control device

to convert the steady air supply from his lungs into the

longitudinal oscillations of his instrument’s air column; in

place of the wind player’s air supply, the violinist uses a bow

that he pulls steadily across a string. The periodically

varying frictional force between the string and the bow

maintains the transverse oscillations of the string. The

nature of the interaction between bow hair and string can be

compared to that between reed and air column, since the

end result of both systems is the setting-up of regimes of

oscillation. Cooperation among the various string

resonances is mediated in familiar fashion by the production

of heterodyne components that transfer oscillatory energy

generated at the frequencies of some pair of sinusoidal

components to oscillations taking place at other frequencies

in the total vibration recipe.

23.1. The Excitation Mechanism of a

Bowed String

Let us begin our investigation of the bowed-string excitation

mechanism by looking, as is our usual custom, at the

behavior of a simple mechanical device. The top part of

figure 23.1 shows a mass M mounted between a pair of



springs S to form an oscillatory system having its own

characteristic natural frequency. The presence of some

cotton stuffed into the springs provides the frictional

damping D that is an inevitable part of any real oscillatory

system. This damped spring-and-mass system represents

any one of the characteristic vibrational modes of the violin

string in which we are interested (compare this with figure

22.10, which uses a bottle within which air oscillates to

represent any mode of a flute). The oscillating mass in figure

23.1 rests on a moving motor-driven belt B; the belt runs

steadily toward the right with velocity V, which represents

the speed at which a musician might drive his bow across

the strings of his instrument. The oscillating block M

represents the string, and the belt B represents the bow

hair; the friction between them is the focus of our attention

at this time.

If the block shown in figure 23.1 is oscillating horizontally

with a varying velocity v while the belt is moving steadily,

the velocity of the block relative to the belt will be less

during the time that the block is itself moving in the

direction of belt movement (to the right in the figure) than it

is during the half of the oscillation in which the block moves

in the opposite direction (leftward in the figure). Some

friction always exists between the belt and the block; in the

system shown in figure 23.1 this friction is at all times

directed toward the right. During the block’s rightward

travel (when the sliding velocity is smaller than V), the

frictional force is exerted in a direction that is helpful for the

maintenance of oscillation, whereas the frictional force tends

to kill off the oscillation during the return half of the cycle

(when the sliding velocity is large). Sustained oscillation is

of course only possible if the helpful frictional force has an

overall contribution that is larger than the negative effect of

the force during the return.



Fig. 23.1. Spring-Mass System on a Moving Belt for the

Measurement of Frictional Force between Sliding Surfaces.

The velocity V of the moving belt B represents the velocity

of a violin bow; the velocity v of the mass M corresponds to

the velocity of the string’s own motion at the bowing point.

The lower part of figure 23.1 shows curves that relate the

block’s frictional sliding force to the belt speed V, assuming

that enough cotton is packed into the springs to prevent any



oscillation (v = 0). The upper member of the beaded curves

(labeled “bow pressed hard”) shows the behavior of the

sliding force for a block pressing firmly against the moving

belt, which is analogous to a player exerting considerable

pressure on the string with his bow. The other beaded curve

(marked “bow pressed lightly”) shows the very similar

variation of sliding friction produced when the rosined

surfaces are not pressed so firmly together. These curves

slope downward from left to right, which tells us that the

frictional force is largest when the sliding velocity (V — v) is

smallest; this is exactly the condition required for the

maintenance of oscillation. Notice that the interpretation of

the bow-friction curves in figure 23.1 is exactly analogous to

the interpretation of the flow-control curves for woodwind

reeds shown in figure 21.4.

The lightly dotted curve that rises from left to right in

figure 23.1 shows how the sliding friction would vary if the

belt or violin bow were to be treated with wax or grease

instead of with rosin. Such a treatment will not permit the

maintenance of oscillation, since under these conditions the

frictional force is largest rather than smallest when the

sliding velocity is high. The slight leveling-off of the dotted

curve at the right-hand side of the diagram calls our

attention to the fact that when the sliding speed is very

large the wax begins to melt, which reduces the friction.

The important features of the bowed-string excitation

mechanism are outlined below in numbered statements,

many of which are closely analogous to those given for reeds

in section 21.2.

1. The sliding-friction behavior of a bow acting on a string

can only sustain oscillations when the surface treatment

(i.e., rosin) is such as to give a downward slope to the force-

versus-bowing-speed curve. (See the analogous statement

for woodwind reeds in sec. 21.2.)



2. The steeply sloping portions of this curve correspond to

operating conditions in which the excitatory force is

sensitively controlled by oscillatory variations in the string

velocity v at the bowing point.

3. The shapes of the excitatory friction curves are such

that the player can move the operating point for the

oscillation toward a region of greater steepness either by

pressing harder or by bowing more slowly.

4. The fact that the excitatory-friction characteristic curve

is not straight (i.e., the slope varies from point to point along

it) is an indication that heterodyne effects can occur, giving

rise to regimes in which oscillation is maintained by

excitations taking place at several frequencies

simultaneously. The bowing conditions which increase the

steepness of the curve also increase its curvature.

23.2 The Resonance Curves and Regimes

of Oscillation of a Bowed String

In the case of wind instruments, we found it convenient to

study the response of an air column to an excitation

produced by pumping a constant-amplitude sinusoidal flow

of air in and out of the mouthpiece, measuring the resulting

pressure variations inside the mouthpiece by means of a

tiny microphone. A response curve measured in this way has

peaks at certain frequencies, and these peaks represent

frequencies at which the air column can exert maximum

influence on the reed, thereby setting up a regime of

oscillation. In figure 20.3 we saw one of the ways to measure

the response curve for a reed-instrument air column.

To help our understanding of violin-family instruments, we

can similarly imagine measuring the response of a string to

an excitatory force applied at the spot where a bow will

eventually be placed, making use of a (slightly impractical)

machine of the sort sketched in figure 23.2. Here a long, thin



spring connects the rotating crank to the driving point on

the string. This spring plays a role analogous to that of the

capillary tube shown in figure 20.3, transmitting excitation

from the crank to the string while at the same time leaving

the string able to respond without any direct constraint

coming from the position of the crank pin. The oscillatory

response of the string to its sinusoidal force excitation can

be measured by means of some sort of motion detector

placed near the string at the driving point. A pickup similar

to those used on electric guitars is particularly suitable for

this purpose, since it responds to the velocity v with which

the string vibrates (see also experiment 5 in sec. 7.4). A

response curve plotted with the help of such a machine

contains information on the frequencies at which an applied

sinusoidal force gives the maximum oscillatory velocity; the

peaks on the response curve tell which frequencies best

communicate with the bow friction in setting up regimes of

oscillation.

Fig. 23.2. Excitation Mechanism for the Study of the Velocity

Response of a String at the Bowing Point



We already know that the string will respond strongly to

the driving force at the frequency of each one of its

characteristic modes. The frequencies of these modes are of

course in very nearly harmonic relationship. We also have

met and repeatedly applied the idea that an excitation

applied near the middle of a vibratory hump will produce

much more of a response than will a driving force applied

near a node (see secs. 7.3 and 10.7). All these ideas are

apparent in figure 23.3. The uppermost resonance curve

shown here is what one calculates for a hypothetical string

in which the damping of all the modes is the same. The

length of the string is L, and it is driven (and measured) at a

distance B = L/16 from one end. Notice that the resonance

peaks corresponding to modes 1 through 8 are progressively

taller as the excitation point finds itself lying ever closer to

the middle of a hump of the corresponding standing wave.

The higher modes beyond mode 8 are more and more

weakly excited, until at mode 16 there is essentially no

reponse, because the driving point lies at a node for that

oscillation.



Fig. 23.3. Bowing-Point Resonance Response Curves for a

Hypothetical String All of Whose Modes Have Equal

Damping



The middle diagram of figure 23.3 shows how our

hypothetical string would respond if it were excited at a

point one-eighth of the way from one end, so that the

distance B = L/8. Here we see that modes 4 and 12 have

particularly tall peaks, since the driver acts on them at mid-

hump, whereas modes 8, 16, etc., are hardly excited at all,

because the driving force is applied at a node for each of

them. The bottom diagram of figure 23.3 shows in exactly

similar fashion the driving-point resonance curve expected

when B = L/4.

If the bowed string behaves like reed instruments (which,

as the dynamic level increases, progress from using a single

resonance to using many), then we would expect from these

curves that a lightly pressed bow, moving quickly over the

string at a distance B = L/16 from the end, would

preferentially excite mode 8 (since this mode has the tallest

peak in the top curve of figure 23.3). Increasing the bow

pressure might be expected to set up cooperative regimes

involving two resonance peaks (e.g., 6 and 12, or 5 and 10),

and then three peaks (e.g., 4, 8, and 12), etc., leading

ultimately to a fully developed oscillation in which all the

peaks collaborate to give a strongly controlled regime whose

fundamental frequency is equal to that of the mode-1

resonance, in exact analogy to the low-register regime of a

woodwind instrument.

Actual experimentation on a violin shows that none of

these theoretically based expectations are borne out in

practice, nor are the analogous expectations based on

bowing points at B = L/8 or L/4. It turns out that the

resolution of our difficulty lies in correcting the assumption

that the damping of all the string modes is the same. It is

extremely difficult to make a direct measurement of the

string’s resonance curve, because the narrowness of the

resonance peaks and the associated long duration of any

transient behavior would require the complete measurement



to be spread over an hour or so, during which time tiny

temperature and humidity changes could easily destroy the

validity of the experiment. It proves possible, however, to

calculate the needed resonance curve on the basis of

measurements of the characteristic frequencies and ringing

times of the various string modes when the string is plucked

or struck. Painstaking measurements made in 1967 by

Walter Reinicke at Lothar Cremer’s laboratory at the

Technical University in Berlin, West Germany, provide us

with an example of this sort of information.1 His

measurements show that the half-amplitude time for the

decay of mode 1 of the A-string on a particular violin is

about 0.5 seconds, about five times longer than the decay

times for modes 2 and 3, and about fourteen times longer

than the decay times of modes 4 through 10. The damping

rises very rapidly for the higher modes beyond mode 10.

Since the heights of the resonance-curve peaks are closely

related to the decay times of the corresponding string

modes, the heights of the response peaks for any modes

that are heavily damped will be reduced.

Figure 23.4 shows the response curve calculated (using

Reinicke’s data) for a real violin string driven at a point

located at B = L/8. Notice that (in contrast to the

corresponding curve in figure 23.3) resonance peak 1 is the

tallest. The next two or three peaks are also quite tall, so

that light bowing can be expected to give a tone whose

fundamental component has a frequency of 440 Hz, in

agreement with the mode-1 natural frequency. Pressing

harder on the bow simply adds cooperative contributions

from the other string modes, and the system plays in a

regime of oscillation dominated by half a dozen peaks. This

behavior is in accord with experiments one can carry out on

the open (i.e., full-length) A-string of an actual violin. When

the string is shortened by pressing it against the fingerboard

with the tip of a finger, the string-mode frequencies will of



course be raised because of the shortened string, but at the

same time the damping of the modes will be increased by

frictional effects at the fingertip. The small open circles

drawn part way up each resonance peak in figure 23.4 show

the height of each peak when a typical amount of finger

damping is added to everything else. Notice that when one

bows at B = L/8 using finger damping, peak 3 (rather than

peak 1) is the tallest, which explains why the lightest

possible bowing now produces a sound whose fundamental

frequency is 3 x 440 = 1320 Hz (at a pitch of E6, a twelfth

above A4). Heavier bowing causes the pitch to drop down to

the normal A4 as the main, low-register regime takes over.

Fig. 23.4. Bowing-Point Resonance Response Curve Based on

Measured Dampings of the Various Modes of a Violin A-

String



The above example will be recognized as a type of what

violinists call a harmonic. Harmonics are almost exact

counterparts of second- and third-register tones on a

woodwind, in that the normal, low-register regime of

oscillation involving all of the modes is somehow disrupted

so as to favor regimes based on peaks 2, 4, 6, etc. (an octave

higher), or on peaks 3, 6, 9, etc. (giving a tone whose pitch

is a twelfth higher). When a violinist wishes to play an

octave harmonic, he fingers the string very lightly at its

midpoint, which has the selective effect of damping the odd-

numbered modes; this lowers the corresponding resonance

peaks without altering the heights of the even-numbered

ones. As long as the bow is lightly wielded, it is only

necessary to lower the tallnesses of peaks 1, 3, 5, etc., below

those of peaks 2, 4, 6, etc., in order to permit the second-

register tone to come forth. With heavier bowing, the pitch

drops back to the normal position. Notice that there is a

complete parallelism between this behavior and what we

met in woodwinds in connection with the pianissimo-type

(resistive) register hole. The violin player ordinarily lacks a

cognate to the fortissimo-type (reactive) register hole, which

functions by displacing the frequencies of certain modes

rather than by increasing their damping.

23.3 The Effect of Inharmonicity and

Damping on the Setting-Up of Regimes

In the course of our earlier studies of wind instruments, we

learned of the advantages that come with the proper

alignment of air-column resonances into a harmonic

relationship. We also came to recognize that a given

resonance can participate to some extent in a regime of

oscillation even when it is not perfectly aligned, provided

that some harmonic of the generated tone lies reasonably

well up on the resonance peak. Let us formulate this remark



with some care and outline its implications in a set of three

numbered statements:

1. In any multi-resonance oscillating system, a given

resonance peak can take part in the regime only if its own

natural frequency differs from that of the nearest harmonic

of the tone by an amount that is less than the half-amplitude

bandwidth W1/2 of the peak (see sec. 10.3).

2. Increasing the damping of a given mode of oscillation

has two effects on the nature of the resonance curve: (a) the

height of the peak is reduced, and (b) the width is increased

by the same factor. These in turn have two opposing effects

on the ability of the resonance to participate in a regime of

oscillation: (1) a reduction in the height of the peak means

that the influence of this resonance is reduced, and (2) for a

given small amount of detuning, an increase of the width

means that the peak is given additional influence over the

regime.

3. In wind instruments it has been unambiguously verified

that for reasonably small misalignments the benefits of

increased resonance width usually offset the disadvantages

of reduced peak height. This means that if a peak cannot be

aligned quite perfectly, it is worthwhile to make sure that

there is enough damping to give reasonable overlap of the

peak with the closest sound component. A similar behavior

appears to manifest itself among the bowed strings.

Let us see what implications these statements have for the

violin family of instruments. John Schelleng, a retired Bell

Laboratories engineer whose skillful experimentation and

imaginative use of mathematics have made him a

recognized leader in violin physics research, has measured

the coefficients for stiffness-produced inharmonicity for

many kinds of violin and cello strings (see sec. 16.5).2 Using

his data for a typical unfingered violin A-string, we can work

out the amount by which the frequencies of successive



string modes are raised by stiffness effects (this assumes the

string to be mounted on a solid metal frame rather than on

an actual violin, where resonances of the front plate and of

the bridge can alter the inharmonicity; see sec. 16.5 once

again). These upward shifts of frequency away from

harmonicity are tabulated below for modes 1, 4, 8, and 12,

along with the resonance widths calculated from data

obtained by Reinicke for such a string:

We can see at once that the upper resonances of a rigidly

mounted violin string are not at all well aligned: above mode

4 the various harmonics of a 440-Hz tone lie considerably

more than the half-amplitude bandwidth W1/2 away from the

resonances which might contribute to their support. In other

words, we are led to expect that only the first few

resonances participate directly in the regime of oscillation,

and any higher partials that may be present in the tone arise

only as the result of heterodyne action via the lower

components. That is, the upper partials are produced in very

much the same way as are those partials of a woodwind tone

that lie above the tone-hole lattice cutoff frequency. The

essential correctness of these deductions relating string

inharmonicity to the nature of the spectrum has been

verified by Schelleng.



Let us now turn our attention to the behavior of strings

mounted on a violin. We already know that the

measurements made by Reinicke show that the string is

more heavily damped when it is in its normal surroundings

than when clamped on a rigid frame. The numbered

statements earlier in this section should then lead us to

expect the string mounted on a violin to be more forgiving

of any inharmonicities that may be present. We also recall

that the inharmonicity itself will be altered when the string

is mounted on a violin. In the following tabulation you will

find the frequency shifts that I have measured for an A-

string on a violin of good quality; also listed are the

resonance widths appropriate for a string so mounted (once

again calculated from Reinicke’s data): This tabulation

shows that the resonance frequencies of a violin string in its

normal environment are considerably closer to being

harmonic than they are when the string is mounted on a

rigid frame. We also notice that the resonance widths are

sufficiently broad (even for the open string) that the peaks

all find it easy to join in a regime of oscillation according to

the requirements outlined in the numbered statements

given at the beginning of this section.3

On the violin that I measured, a mezzo-forte bowed A4

sounds at a pitch that is about 5 cents higher than A-440

when the string is tuned in such a way as to place its

plucked first-mode frequency at 440 Hz. Let us examine

some of the reasons why the bowed playing pitch of the tone

does not exactly match the pitch of its plucked first-mode

frequency taken alone. The pressure of the bow upon the

string and the sideways drag that it also exerts raise the

average string tension somewhat (and so also its natural

frequencies). However, the effect is very small, particularly

when the bow is applied in normal fashion near the bridge

end of the string. We must therefore look elsewhere for

further contributions to the observed difference in pitch, and



to do this it will help if we find out something of the

behavior of the various modes of a plucked string.

When an unbowed string is plucked or otherwise

vigorously excited, a measurement of mode 1 shows that the

initial, large-amplitude vibration takes place at a frequency

of oscillation that is noticeably higher than what is observed

later on as the vibration dies away. The explanation of this

phenomenon at first appears simple: the large-amplitude

vibration requires a slight stretching of the string to permit

the existence of the vibrational hump. This stretching

produces an increased average tension in the string, and the

frequency-raising effect of the increased tension is only

partially offset by the contrary influence exerted by the

thinning of the string that is another consequence of the

stretching. As the vigorous initial vibration dies away, the

frequency shift due to the tension change dies away even

more rapidly (the frequency shift falls by a factor of four in

the time the amplitude falls by a factor of two), so that we

quickly arrive at the steady frequency that is characteristic

of the small-amplitude vibration of the string’s first mode. It

was this small-amplitude frequency that I set to 440 Hz for

the experiments described above.

The frequency behavior of the higher modes of a plucked

string shows a much more complicated pattern. The initial

frequency changes observed for higher modes during the

decay are of the sort displayed by mode 1, but they do not

show a clear-cut pattern of decay; changing the vigor of the

plucking as well as the plucking point can produce changes

in the nature of the frequency fluctuations. These peculiar

fluctuations in the vibration frequencies of decaying string

modes have been noticed by many people during the past

century, and the explanation for them was provided in 1939

by my colleague Robert Shankland and his student John

Coltman (whose recent work on the flute we have already

met). Shankland and Coltman studied the departure from



harmonicity of the natural frequencies of a vibrating wire.4

In their experiments, any one of the modes of the wire could

be run as a self-sustaining oscillator by making use of an

ingenious electrically controlled driving mechanism. They

recognized that the presence of a standing wave on a wire

produces variations in the average string tension along its

length and that these variations act to perturb the mode

frequencies (much as do perturbations produced in wind

instruments by small changes in the diameter of the air

column). A small extension of their calculations shows that

the variation in tension along a plucked violin string

produced by the mode-1 vibration strongly influences the

frequency shift of the higher string modes. Depending on

the plucking point and the rate of decay of the various

modes, the overall effect of the tension variation is to narrow

the frequency ratios between the modes to an extent that

quadruples for every doubling of the vibratory amplitude of

the predominantly influential first mode.

We can now return to the difference between the playing

frequency of a bowed string and the frequency of its first

mode measured at low amplitude. When a violin string is

bowed in a way that maintains a fairly large-amplitude

oscillation, the resonance peak for mode 1 may shift upward

in frequency by a dozen cents due to the vibratory increase

in tension. The higher modes are not shifted upward so

much, however, because of the nonuniformity of this added

tension along the string. Since the playing frequency is

determined jointly by all of the resonance peaks that

participate in the regime of oscillation, the 5-cent pitch rise

associated with bowing is less than the 12-cent shift

belonging to the string’s first mode.

Our study so far of the bowed string has made heavy use

of the regime-of-oscillation point of view which grew out of

Bouasse’s observation that harmonically related air-column

resonances can cooperate with the reed in producing a



sustained tone. As we have seen, this approach to the study

of musical tone-producers proves to be an immensely

powerful tool for the qualitative understanding of what goes

on in a musical instrument on a steady-state basis, and it

serves also as a convenient guide for the adjustment of

instruments to make them play well. However, when one

tries to make accurate calculations of the vibration recipe

produced by a given air column and a given reed, my co-

workers and I find that the mathematical difficulties become

almost insuperable in many cases of practical interest. Our

formulation also cannot be used to predict how a tone

evolves at its beginning. The quantitative limitations of the

regime-of-oscillation calculations are particularly oppressive

when an attempt is made to apply them to the violin family

of instruments, where one has to deal with a high degree of

nonlinearity in the bow-friction characteristics and with a

very large number of narrowly resonant string modes.

During the past two or three years Robert Schumacher of

Carnegie Mellon University at Pittsburgh has gone on from

our analysis of the intermode cooperative effects to devise a

mathematical formalism that promises calculation of many

hitherto inaccessible features.5 The British mathematician

Michael McIntyre, of Cambridge University, is also working

along these lines. We can look forward to much progress as

these newer techniques are refined and their uses become

more widely understood.

23.4. A Description of the Bowing

Mechanism; Helmholtz and Raman

Hermann von Helmholtz in 1860 presented the first clear

account of how a violin string responds to bowing, providing

us with a mathematical description that has served as the

basis of practically all the work that has followed.6

Helmholtz’s whole approach to the problem is quite different

from the one we have used so far in this chapter, and we



should give it our careful attention since it is particularly

illuminating in those parts of the subject for which the

cooperating resonances formulation is least effective.

As an introduction to Helmholtz’s description of the

bowing mechanism, let us consider what happens when

someone causes a piece of chalk to screech across a

blackboard. Examination of the line drawn during such a

screech shows that it is made up of a series of fine dots or

dashes. If the piece of chalk is long and it is held lightly at

one end while the other end hops along the blackboard, one

can easily observe the chalk alternately sticking to the

board (making a mark) and then leaping forward to where it

re-catches during the return trip of its more or less

sinusoidal oscillation. This sort of oscillation can arise

whenever the frictional force between two bodies is less

when they are in relative motion than it is when they are

stationary.

The bowing of a violin string works in very similar fashion

to the screeching of chalk. When the bow is placed on the

string and drawn to one side, the string sticks to the bow,

which pulls it aside until the elastic restoring force produced

by the string tension becomes large enough to break the

string loose from the bow. It now swings back in much the

same way it would after slipping off the plectrum of a

harpsichord jack; there is, however, a small amount of

damping produced by the rapid (and therefore low-friction)

sliding of the string against the steadily moving bow hair. At

the end of its backward swing the string will come to rest

and then recommence its motion in the direction of the bow

velocity. At this time it is once again caught by the large

sticking friction of the bow and carried forward to begin a

new cycle of the oscillation, just as the chalk alternately

caught on the board and broke free of it.



Helmholtz studied the motion of the bowed string at the

bowing point and at other points along it by observing an

illuminated speck of starch attached to an otherwise

blackened string, using what he called a vibration

microscope (this device is an optical cousin of today’s

oscilloscope). The top part of figure 23.5 shows the sort of

vibratory pattern that one normally sees at the bowing point

of a string. The longer, more gently sloping part of the

oscilloscope trace shows the steady upward motion of the

string as it is carried along by the bow. The duration of this

part of the cycle is known as the sticking time. When the

string reaches the upper limit of its travel, it breaks away

from the bow and runs downward quickly to the opposite

extreme of its motion, where it is recaught by the bow for a

steady upward trip. The time during which the string is

sliding quickly back against the motion of the bow is called

the flyback time. Helmholtz was able to show that the theory

of undamped vibrating strings agrees quite well with

experiment in predicting that the ratio of the flyback time to

the total repetition time will be equal to the ratio of the

bowing point distance B to the total string length L. For

example, in figure 23.5 the diagram is drawn to show a

flyback time that lasts one-quarter of the time for a

complete cycle of oscillation, which means that we are

dealing with a string that is bowed one-quarter of the way

along the string from the bridge.

On the assumption of zero damping of the string,

Helmholtz was able to show that the vibration recipe

observed at the bowing point (corresponding to the motion

we have been discussing) is the same as the recipe for the

amplitudes of the modes of a plucked string (which we met

in section 7.2). He also pointed out that the expected effects

of large bow-hair width on a stiff string would be similar to

those of a broad plectrum exciting it (see secs. 8.1, 8.4, and

8.5). In particular, he noted that any frequency component



having a node at the bowing point is expected to be missing

unless the bow has appreciable width. If B = L/4, as in our

present example, we are led to expect that harmonic partials

4, 8, 12, etc., will be very nearly missing from the vibration

recipe. Helmholtz also described observations of the

unsteady oscillations produced by bowing a badly made

violin: the steady sawtooth motion is replaced by a spluttery

one in which extra kinks appear randomly from time to time.

Fig. 23.5. Simplified Representation of String Motion at Two

Points on a Bowed String

We must not forget that what we hear is not the vibration

recipe at the bowing point but rather the excitation

transmitted to the violin and thence to the room by means

of forces exerted by the end of the string where it passes

over the bridge. As a first step in working out the driving

forces at the bridge, we should turn our attention to the



lower part of figure 23.5; this shows the motion of the string,

driven as before at B = L/4, but now observed with the

vibration microscope focused on a point near the end of the

string (either bridge or nut end will do). Here we still see the

basically sawtooth waveform, but superposed on it are small

steplike wiggles (crumples is the name given to them in the

English translation of Helmholtz’s book). It turns out that 4

crumples are visible on a steadily maintained waveform if

one bows at L/4, 7 crumples if one bows at L/7, and so on.

You can perhaps deduce from the diagram that these

crumples are themselves made up of precisely those

harmonic partials that were missing from the recipe or too

weak to detect easily at the bowing point. Helmholtz

recognized the existence of a problem here. The essential

invisibility of these extra components at the bowing point is

not in itself surprising since one does not expect to see

evidence of their presence at a place where they all have

nodes. However, how the bow has managed to excite them

by means of forces exerted at the bowing point is not

instantly apparent. Helmholtz expressed a suspicion that the

phenomenon had something to do with damping of the

string modes; as we shall sec, his suspicion proved correct.

During the period from 1909 through 1921, the Indian

physicist C. V. Raman published a series of papers on the

properties of bowed strings, along with the first half of a

book on the same subject. Raman’s scientific reputation

today rests chiefly on his later work in optics (which earned

him the Nobel Prize in 1930), but his careful experiments

and thorough analysis of the properties of bowed strings

underlie or anticipate most of the more recent work in the

field. In 1969 Raman sent me a copy of his out-of-print book,

On the Mechanical Theory of the Vibrations of Bowed Strings

(published in 1918).7 The book includes (among many other

things) a large number of photographs showing the motions

of a bowed string, excited and observed at many different



points along it. These photographs and Raman’s analysis of

the string motions confirm and greatly extend Helmholtz’s

work, taking into account the presence of string damping.

Raman assumed, however, that all modes are equally

damped, as we did for the sake of simplicity in our

discussion of the hypothetical string shown in figure 23.3.

He also assumed a pure form of stick-slip friction which

ignores the way the frictional force varies with the sliding

velocity, as sketched in figure 23.1. Nevertheless, Raman

was able to account quite well not only for oscillations of the

type which we might describe as involving all of the string

modes equally in the oscillatory regime, but also for those in

which only a selected set of these participate.

Before we continue our examination of the consequences

of the stick-slip bowing-point motion discussed by Helmholtz

and Raman, we should summarize its salient features as we

have met them so far:

1. In normal operation the string of a violin-type

instrument remains “stuck” to the bow hair and travels

along with it for a considerable fraction of each vibratory

cycle, after which the string flies back abruptly to begin the

next cycle, which takes place at very nearly the first-mode

frequency of the string. (The physics of this sort of

oscillation is very reminiscent of that of a reed instrument in

which the aperture snaps open for a fraction of each cycle.)

2. The string motion at the bowing point has a simple

appearance: the ratio of flyback time to repetition time is, to

a good approximation, equal to the ratio of bowing-point

distance to string length.

3. As a consequence of statement 2, the vibration recipe

observed at the bowing point shows very little oscillation at



the frequencies of modes that have nodes at or near the

bowing point.

4. The components which are apparently missing at the

bowing point are easily detected when the motion of the

string is studied at points other than the bowing point. The

origin of these components will be discussed later in this

section.

Let us turn our attention now to some of the practical

consequences of the Helmholtz-Raman approach to bowed

strings and its later developments. If one wishes to play

more loudly, for instance, it is clear that any given point on

the string must make a wider excursion to each side of

center in the course of each oscillation. Since the number of

these back-and-forth trips per second is fixed by the playing

frequency, we are led to conclude that the point must move

with greater velocity to cover a larger round-trip distance in

the time of each oscillation. Because the bow and the string

are moving together during one part of each cycle and

because the string cannot move faster than the bow, it is

obvious that loud playing demands fast bow motion. These

observations lead to two additions to our numbered

statements:

5. Since the amplitude of oscillation of a bowed string is

directly determined by the velocity of the bow, loud playing

calls for a faster bow velocity V. The firmness with which the

bow is pressed on the string does not affect the amplitude of

the oscillation as long as the bow pressure is within a certain

range of suitability.



6. The amplitude of motion at the bowing point itself is

smaller than the amplitude of the motion measured at the

string’s midpoint. As a result we realize that the bow

velocity required to produce a given oscillation amplitude is

less when the bowing point B is near the bridge than it is

when B is a larger fraction of the total string length.

The next question that concerns us is what limitations on

bow pressure arise from the necessity for the bow to control

the string vibrations adequately. Besides elucidating the

general behavior of bowed strings, Helmholtz observed the

effect of applying what a musician would call low bow

pressure. Raman extended these studies and clarified the

manner in which the velocity and position of the bow affect

the minimum pressure that is required for proper tone

generation. He also observed that the required bow pressure

is altered when the played note contains frequencies that

match some of the resonances of the violin itself. In 1937,

the physicist Frederick Saunders of Harvard University

published an account of further work on the relationship of

minimum bow pressure to the body resonances.8 He is also

credited with the first recognition of an upper limit to the

usable force, though one can find a brief section devoted to

this subject in the middle of Raman’s book.

In 1973 John Schelleng published an article, “The bowed

string and the player.” The account he gives in it of his own

work and that of others on the relationship of the bow to its

strings provides the background for my discussion here of

the bowing-pressure requirements.9 Let us begin our

examination of this question by noticing that the minimum

pressure is that which is just sufficient to carry the string

along with the bow. In other words, the bow must be able to

synchronize all the string modes into a motion of the desired



sawtooth type (i.e., to set up a fully developed regime of

oscillation). Obviously, if some of the string modes are

somewhat inharmonic or if their damping is high, more bow

pressure will be required. On the other hand, the bow

pressure must be small enough to allow the string to break

loose cleanly at the end of its sawtooth swinging motion in

order to make a good flyback.

We have already learned that a large bowing velocity is

needed to produce a large-amplitude oscillation of the

string. The bow supplies the frictional force necessary to

produce these large deflections, and this force is

proportional to the downward pressure exerted by the bow

against the strings (compare the two force curves in fig.

23.1). We conclude, therefore, that the minimum required

bow pressure that the player must exert increases and

decreases in proportion to the speed with which he propels

the bow. The complete relationship of the minimum bowing

pressure to all of the properties of the string, to the bowing

point, and to the nature of the frictional force can be

summarized with the help of the formula: slightly less than a

fourfold increase, the reason being that the bowing point at

L/4 is getting rather close to the point of maximum

excitation for the string. Even when the influence of

additional peaks is taken into account, the above

conclusions remain valid and can be stated briefly as

follows: 10

7. The minimum bowing pressure required to maintain

oscillation of the normal



Here Kstick and Kslip are the coefficients that determine the

size of the frictional forces produced by the bowing pressure

P under sticking and slipping conditions, and V is the

velocity of the bow itself. Since increasing the damping

makes the resonance peaks less tall, such a change leads to

a higher value for Pmin. Detuning a peak so that the string

harmonic does not lie directly on top of it will also raise Pmin.

Because mode 1 has the largest amplitude at the bowing

point, the aggregate tallness of the resonance peaks is

effectively dominated by the behavior of peak 1 (even

though it is not generally the tallest peak). If we take the

simplified view that only peak 1 is to be taken into account

and if we assume the bowing point to be fairly near one end

of the string, it is not hard to verify with the help of figure

23.3 that for every doubling of the bowing-point distance B,

there is a fourfold decrease in the minimum required bow

pressure. That is, in going from B = L/16 to B = L/8, we

notice that peak 1 has risen fourfold in height. A comparison

of the peak-1 heights for B = L/8 and B = L/4 shows (i.e.,

simplest) Helmholtz-Raman type is proportional to the

velocity V with which the bow is moved across the strings.

8. The minimum bowing pressure required to maintain

normal oscillation on a string is large when one bows near

the bridge, and falls to a quarter of its value for every

doubling of the distance B from bridge to bowing point.

The final item in our investigation of the bowing properties

of strings is the limitation placed on the maximum bow

pressure. If the pressure is too high between the moving bow

and its string, the string simply pulls to one side, scraping

and stuttering against the bow hair without ever going into

oscillation. The following more or less describes what goes



on when heavy bowing pressure is employed. When the

string sticks to the bow and is carried forward with it, an

impulse is sent along the string toward its fixed end. This

impulse is reflected at the fixed end and comes back in

inverted form to the bowing point. If the bow pressure is not

excessive, the impulse succeeds in breaking the string free

in a manner that is quite reminiscent of the way in which the

reflected pulse from a piano hammer blow returns to throw

the hammer off the string (see sec. 17.4). Schelleng shows

that the maximum bow pressure that permits the string to

break loose properly is proportional to the bow velocity and

inversely proportional to the distance B between bridge and

bowing point. This is interesting in itself, but its practical

implications are better displayed if we consider the way in

which the ratio Pmax/Pmin depends on the bowing conditions:

This tells us, for example, that the nearer the bow is to the

bridge, the narrower is the range within which the player

must maintain the pressure it exerts, a fact well known to

string players. Notice also that an instrument having heavily

damped string resonances (so that the peaks are less tall) is

one that is less forgiving of chance variations in the bowing

pressure. One cannot, however, leap from this observation to

a statement that a musician would automatically prefer to

play on lightly damped strings—there must always be

enough damping to permit proper cooperation among the

string modes, as outlined in section 23.3.

23.5. The Bridge Driving Force Spectrum



In our study of wind instruments we found it necessary to

distinguish between the sound spectrum produced inside

the mouthpiece (as a result of the cooperation between reed

and air column) and the spectrum of sounds transmitted out

into the room by way of the bell and/or the tone holes. The

problem for stringed instruments is very similar, though it is

somewhat more complicated: we must go from the bowing-

point spectrum to the vibration recipe of the forces exerted

by the string on the bridge before we can usefully consider

how these forces drive the wooden parts of the instrument to

make them act as a sound source in the concert hall.

In chapter 7 we learned how to estimate the amplitudes of

the string modes themselves when they are excited by

plucking or striking. In section 23.4 of this chapter we

learned that these same rules apply very nearly unchanged

to the recipe produced by the bowed excitation of a string

when it is observed at the bowing point. We must now learn

how to translate the recipe for the amplitudes of the various

modes of a string into the driving force recipe which these

modes give rise to at the bridge. The sideways force exerted

by a string on its anchorage at any instant during its

vibration depends not only on the tension under which the

string is kept, but also on the angle to which the string end

is momentarily deflected. Figure 23.6 shows the vibrational

shapes of the first four modes of a uniform string, drawn in

such a way that at the left-hand end all of these modes

cause the string to be tilted to the same angle. In other

words, the amplitudes of these particular vibrations have

been chosen in such a way as to make them all exert the

same amount of driving force on the left-hand string

anchorage. You can verify from the diagram that mode 2,

because of its shorter and more abruptly rounded humps,

can run at half the amplitude of mode 1 and still exert the

same driving force on the anchorage. Similarly, modes 3 and

4 are three and four times as ef-ficacious as mode 1 in



driving the anchorage, which accounts for their

proportionately smaller amplitudes in the diagram. Let us

distill the content of these observations into a single

statement:

Fig. 23.6. Relationship between the Displacement at the

Bowing Point and the Amplitude of Various Modes of a String

1. In order to estimate the magnitude of the driving force

Fn exerted on the bridge by the nth vibrational mode of a

string, one must multiply the amplitude An of the mode by

its serial number n and by the tension T of the string,

according to the formula:

Fn = nTAn X (a numerical constant)

The numerical constant in all cases turns out to be (π/L),

where L is the vibrating length of the string.

Look now at the vertical line at the point B along the string

in figure 23.6. Notice that the amplitude of motion observed

at B associated with each mode is considerably less than the

amplitude of the mode itself. This calls to our attention the



fact that one must convert the bowing-point amplitudes a1,

a2, etc., into the corresponding mode amplitudes A1, A2,

etc., before making use of the formula given in statement 1.

When we do this as a strictly mathematical problem,

considering the strings to be ideally flexible and completely

undamped (in accordance with Helmholtz’s simplified

description of the motion), we obtain the following rather

simple result:

Fn = (1/n)A1 × (a numerical constant)

In other words, this simplified calculation implies that the

driving force components fall away as 1/n in a way

reminiscent of the vibration recipe of a struck string. This

almost-true formula applies to all modes except those that

happen to have nodes precisely at the bowing point, and the

formula is entirely independent of the bowing position!

Clearly we have oversimplified something in the

mathematics leading to the formula, since every string

player knows that his tone can be altered by changes in

bowing point and bowing pressure. We have looked at the

behavior of enough oscillatory regimes to know that the

bowing-point oscillation is itself altered when the bowing

point is changed, and these alterations cannot be

compensated by changes in the bridge driving behavior of

the sort we have been discussing. If we look again at the two

parts of figure 23.5, we will find that hints are available as to

the source of the trouble: the upper figure shows slightly

rounded corners which already signal the departure of the

real bowing-point motion from a simplistic pattern made up

of straight line segments joined together.

John Schelleng, Lothar Cremer, and Cremer’s co-worker

Hans Lazarus have studied the way in which the rounding-



off of these corners (which represents incipient slipping at

the point of release and the beginnings of sticking at the

end of the flyback time) depends on bow pressure, damping,

inharmonicity, etc.11 They also have studied the small

wiggling motions that arise because the string undergoes a

sort of twisting and rolling oscillation about its own axis

under the influence of the bow. All of these give rise to

departures from the straight line segment motion used to

calculate the formula given above. To summarize, we can

say that at the minimum-force end of the useful range of

bowing pressures, the higher partials in the bridge force

recipe are weaker than those given in our formula, whereas

heavy bowing makes these partials stronger.

Helmholtz’s own observation of the crumples shown in the

lower part of figure 23.5 and Raman’s later study of them

show that these early workers were well aware of the very

thing that most clearly shows the limitations of their

pioneering efforts to describe the behavior of bowed strings.

Because of the central position of the crumples in our

recognition of the shortcomings of the simplest version of

the Helmholtz-Raman theory, let us give some attention to

the way in which the unexpected vibration components

these crumples represent may be excited.

Those of you who have assimilated the ideas presented

earlier in this book about the production of heterodyne

components by the action of a nonlinear system will not find

it impossible to imagine that the strongly generated pairs of

components in the motion of a bowed string, such as the

second and sixth, the first and fifth, or the third and seventh

components, might each act with the nonlinearity of the

bow friction to generate a contribution to the fourth

harmonic vibration of a string bowed at L/4. Similarly, we

might expect a double-frequency heterodyne component

arising from component 2, and so on. We have already met

examples of this sort of behavior among the wind



instruments. For instance, the pedal tone of a trumpet

contains a fundamental component that is almost totally

derived by heterodyne action from the upper partials of the

tone, there being no resonance peak at the fundamental

frequency. The even-numbered partials making up the

internal spectrum of the clarinet tone are similarly

strengthened by heterodyne action far above the levels one

would expect from direct cooperation of the reed with the

resonance-curve minima that are found at these frequencies.

The question still remains how the bow can communicate

this extra vibrational excitation to string modes that

nominally display no motion at the driving point.

It is at this point that we come to understand the

shrewdness of Helmholtz’s suspicion that string damping

must have something to do with the phenomenon of the

excitation of vibration components that have a node at the

bowing point. In section 20.3 we learned that the resonance

peaks and dips measured at one end of an air column could

be understood in terms of the relationship between a wave

sent down the air column by the excitation mechanism and

the reflected wave that comes back from the far end. We

learned there that the reason the resonance dip does not fall

all the way to zero is that the reflected wave is reduced in

amplitude because of the damping it has suffered, and so

cannot totally cancel the initiating wave on its return. It is

perfectly correct to look at what goes on at the driving point

on a string in exactly the same way (although account must

be taken of the waves on both sides by adding their

impedances). In other words, the so-called node is not a

point of true rest in a driven system that suffers damping.

The resonance curves shown in figures 23.3 and 23.4 do not,

as a result, fall all the way to zero at the positions of the

dips, any more than do the resonance curves of wind

instruments. There is a small motion even at what we might

call a nodal driving point, so that a bow or other driving



mechanism can in fact provide some excitation to the

corresponding modes.

Figure 23.6 shows us that even a very small excursion

produced at or near a node (e.g., at or near B =L/4) can be

associated with a reasonably large vibrational amplitude for

the mode in question, which results in a considerable

contribution at this frequency to the bridge driving force

spectrum. The physics of this behavior is exactly the same

as that underlying the unusually large transmission of the

even-numbered harmonic components out of a clarinet (see

sec. 22.4). Recall that these components are produced at

frequencies for which the air-column resonance curve is not

tall, showing that the pressure standing waves

corresponding to these even numbered modes have an

approximate node within the mouthpiece.

23.6. Examples, Experiments, and

Questions

1. A vivid way to demonstrate the importance of

cooperative effects among the various modes of a bowed

string is to disrupt the harmonic relationships of their

frequencies. A small strip of masking tape can be rolled

tightly around a violin A-string at a point about three-

eighths of the way from either end of the string. The added

load will lower the frequencies of the various modes in an

amount determined by the position of the paper relative to

the nodes. If the load has a mass of one percent of the string

mass, the calculated frequency shifts are as follows:

mode number frequency shi ft

1 —3.8 Hz

2 —2.2 Hz



3 —0.6 Hz

4 —4.4 Hz

5 —0.6 Hz

6 —2.2 Hz

The negative signs here indicate a lowering of the mode

frequency. When these shifts are added to those tabulated in

section 23.3, we find that the resulting inharmonicity is

enough to prevent the playing of a normal tone, although

various raucous screeches are sometimes possible. You

might find it worthwhile to experiment with different

loadings and points of application. It will be possible for you

to figure out the regimes of oscillation that sustain some of

the resulting sounds.

2. When a string is working well with its bow, the two are

caught together over a considerable fraction of each cycle of

the oscillation. In figure 23.5 the sticking time is shown to

be three-quarters of the repetition time for a bowing point B

= L/4. You should estimate the sticking times associated

with more normal points of bow application. See if you can

put together the information contained in the friction curve

shown in figure 23.1 with what you have learned about the

sticking time to deduce the reason why a bow seems to

skate across the strings when oscillation conditions are

unfavorable, and why it seems to require a considerable

push to move it along when it takes hold to generate a

proper tone. You can study the phenomenon very easily as

follows. First, bow good vigorous strokes on an open string of

a cello or a violin to establish the feel of the bow in your

hand. Next, while continuing to bow vigorously, close your

eyes and have a friend periodically press a large rubber

sponge or wadded up sweater against the string and



fingerboard, so as to provide enough damping to kill the

oscillation. Whenever the damping is applied the bow will

appear to slip abruptly ahead in its travel. String players

generally recognize that putting a heavy mute onto the

bridge of an instrument not only changes the sound, but

also makes quite an alteration in the feel of the bow in the

player’s hand. Investigate this change by simple playing

experiments, keeping in mind that a massive object

attached to the bridge will not only alter the inharmonicity

of the strings but also reduce their damping.

3. It is possible to learn a great deal about the motion of a

violin bridge by attaching various objects to it in various

ways, or by touching it. To begin with, verify by plucking the

open strings one by one that their vibrational decay times

are little influenced by any sort of pinching or sideways

pressure on the bridge that you can exert with your fingers

(as long as you do not touch the strings themselves). Notice

at the same time that the tone color of the various twanging

sounds from the plucked strings is also very little changed

by such finger pressure. These preliminary experiments tell

us that the wave impedance of the bridge and violin body is

high enough that the additional effect of the finger pressure

is fairly small.

Now take a steel or brass rod some 10 cm long and 1 cm in

diameter (the size of a fountain pen) and press its end firmly

against the bridge in various directions. For example, press

straight down on the bridge at right angles to the violin’s

top surface at the E-string end of the bridge, at the G-string

end, and in the middle. The tone color of both plucked and

bowed sounds will be altered in various ways depending on

the point of contact. You should also try pressing on either

end of the bridge, the rod being held parallel to the top

surface of the instrument and at right angles to the strings.

Repeat the experiment with the rod held more or less

parallel to the strings, pressing from the tailpiece side for



convenience. The relative magnitudes of the resulting tonal

changes indicate the amount of bridge motion that occurs in

the various directions assumed by the rod. It is possible to

estimate the amplitudes of these various components of the

vibration by pressing the bar very lightly against the bridge

so that it buzzes. If you are scientifically inclined, you may

also be able to estimate the acceleration of the vibrating

bridge in terms of the mass of the rod and the magnitude of

the force with which it must be pressed in order to just

barely stop the buzzing.
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24

Instruments of the Violin

Family

In chapter 23 we learned how the strings and the bow of a

violin can work together to maintain a stable oscillation. We

also considered the relationships that hold between the

vibration amplitude of a string mode, observed at the

bowing point, and the corresponding amplitude of the

driving force component which is exerted on the bridge. In

the present chapter we will follow the consequences of

these excitatory forces through the resulting vibrations of

the violin body and thence out into the room.

24.1. The Body and the

Bridge of Instruments of

the Violin Family

It is customary to think about instruments of the violin

family as being made up of three reasonably distinct parts:

(1) the sound-generating portion of the instrument,

consisting of the bow and the strings working cooperatively;

(2) the body, whose resonances strongly influence the way

the sound is radiated into the room; and (3) the bridge,

which mediates between the oscillating strings and the

body. Having devoted chapter 23 to a discussion of the bow

and strings, we should now acquaint ourselves with some of

the acoustical properties of the body and the bridge.



Figure 24.1 shows top and side views of a violin, along with

the names of various parts of the structure that will be of

particular interest to us. Each of the violin-family

instruments consists of carefully arched top and back plates

joined at their perimeters by thin strips of wood called the

ribs. These combine to form an eggshell-like box whose

shape is remarkably well adapted to support the direct pull

of four strings as well as a rather significant downbearing

force that is exerted on the bridge. On a violin the total

tension of the strings is around 25 kg (55 lbs); the strings’

downbearing amounts to about 8 kg (18 lbs).

While outwardly the violin body looks quite symmetrical, its

inner structure reveals some departure from symmetry. The

foot of the bridge on the side carrying the treble strings is

supported by a soundpost that is lightly wedged between

the top and back plates; its placement serves not only to

give mechanical strength but also to couple the vibrations

of one plate directly to the other. Under the bridge foot on

the bass side a long strip of wood known as the bass bar is

glued onto the inner surface of the top plate, running more

or less parallel to the direction of the strings. This

reinforcement serves structurally as a means for distributing

the downbearing force from the bridge over the surface of

the top plate. In the simplest of acoustic terms, the bass bar

also serves to couple the bridge vibrations effectively to

both rounded portions of the top plate: these two areas are

otherwise somewhat isolated from one another by the

nipped-in waist section which contains two cutouts of

graceful shape known as the f-holes. The f-holes not only

influence the vibration properties of the top plate in a direct

way, they also serve as a passageway through which the

enclosed air can communicate its oscillations to the room as

part of the total radiation process.
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Fig. 24.1.

My brief description so far of the structure and function of

the various parts of the violin body makes it seem as though

these parts somehow maintain their acoustical identity

when the instrument is played. Nothing could be farther

from the truth. The similarity of the wave impedances of the

various wooden parts guarantees that these parts all act as

a single vibrating system whose overall behavior cannot be

determined by a naive adding-up of the characteristic

vibration properties of the separate parts (see the second

digression in sec. 17.1).

A. The Bridge as a Coupling Lever between Strings and

Body. Despite the general warnings of the preceding

paragraph, it is possible for us to introduce ourselves to the

gross features of the coupling between bridge and body by

making use of the fact that at frequencies well below the

first-mode resonance of the bridge (as measured with its

feet standing on a rigid support), it is correct to treat the

bridge as a rigid object that can act as a simple lever. This

means that for violins the validity of our simplified

viewpoint is restricted to frequencies well below 3000 Hz

(F7#), while for the cello the corresponding resonance

frequency is near 1000 Hz (B5), exactly in proportion to its

lower musical pitch range.1

To the extent that it is permissible to treat the bridge as a

simple lever, we see from figure 24.2 that the soundpost

(which is placed very nearly under the treble foot) acts as a

fulcrum about which the bridge can rock, so that it can exert

a twisting force on the part of the front plate that lies

between the f-holes. Notice that each of the string notches

on a rocking bridge moves along an obliquely curving path.

If it is permissible as well to treat the bass bar as rigid (a

much riskier undertaking), the bridge also appears to exert



up-and-down forces on the plate sections lying at its two

ends. Whatever validity the simple lever and brace

functions attributed to the bridge, soundpost, and bass bar

have is limited to their action at low frequencies. The overall

musical behavior of a violin depends on much more,

however. The determination of the exact placement of a

soundpost, for example, is one of the challenges to a good

instrument maker—a misplaced soundpost can ruin the tone

of the finest instrument.

The bowed string has two very different ways of exerting a

driving force on the bridge. The most obvious one comes

about directly from the side-to-side oscillation of the string

in a direction parallel to the motion of the bow. We

discussed the recipe for this sort of driving force earlier with

the help of figure 23.6. This excitatory force, which we shall

refer to as direct excitation of the bridge, is parallel to the

surface of the top plate; a leverlike action of the bridge is

required to convert it into a force at right angles to the plate

surface that can effectively drive the body of the

instrument.

The second means whereby the string vibrations are able to

drive the top plate is somewhat more subtle. As we have

already noticed, the tension of the string goes through two

cycles of variation during every cycle of the vibration,

reaching maxima when the string moves to its extreme

positions on either side of the rest position. The fact that a

fiddle string has a great deal of downbearing means that

oscillatory changes in string tension give rise to

corresponding changes in the downward force exerted by

the string on the bridge, a force which is ultimately applied

to the top plate. Notice that the frequency of this indirect

excitation, as we shall call it, takes place at twice the

vibration frequency of the string. This means, for example,

that mode 1 of a violin A-string produces direct action on



the bridge at 440 Hz, whereas this mode acts by the indirect

process to excite the bridge at 880 Hz. Similarly, mode 2

acting by itself produces direct and indirect driving force

excitations at 880 and 1760 Hz. For the sake of brevity we

will refer to the two kinds of driving force as Fn
dir and Fn

ind.
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Fig. 24.2. Left, violin bridge, bass bar, and soundpost; right,

predominant motion of the bridge.

Let us now compare the driving-force recipes that are

produced at the bridge by the direct and indirect excitation

processes. To begin with, we almost instinctively recognize

that the direct driving force Fn
dlr produced by the

corresponding string mode acting alone has an amplitude

that is proportional to the vibrating amplitude An of that

mode, so that Fn dir doubles with every doubling of An, and

so on. We also take it for granted that when several modes

are in action, the force spectrum can be found by simply

listing the actions of the several modes acting

independently.

The indirect excitation process behaves quite differently.

Here we find that if a single string mode is excited to an

ampli-simo playing conditions the indirect excitation

process is negligible in comparison with direct excitation,

whereas at mezzo-forte and higher levels the sound emitted

via the indirect process can equal or even exceed the direct

contribution.

The change in the sound spectrum arising from the relations

between the two kinds of driving force is even more

elaborate than is suggested by the discussion so far. When a

number of string modes are excited (as in normal playing),



the nonlinearity of the relation between An and Fn ind

results in a great deal of heterodyne action among the

various frequency components. In particular, then, for a

bowed string whose frequency components are arranged in

the harmonic series 100, 200, 300, 400, ... Hz, indirect

excitation takes place at 100 Hz by way of heterodyne

action between all pairs of adjacent partials (e.g., 500–400

= 100 Hz; 400–300 = 100 Hz; etc.). Similarly, an indirect

excitation at 200 Hz takes place because of heterodyne

contributions between alternate partials (such as 400–200

= 200 Hz, 500–300 = 200 Hz), as well as the double-

frequency heterodyne action (100 + 100 = 200 Hz) that

was our introduction to this type of excitation. I have

calculated that the simplest Helmholtz-type vibrational

amplitude spectrum (that makes Fn
dir scale as {A1/n}; see

sec. 23.5 following statement 1) gives rise to an indirect-

excitation spectrum whose components have the following

sizes:
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tude An, the corresponding indirect bridge-force amplitude

Fn
ind is proportional to the square of An, so that Fn

ind grows

fourfold for every doubling of An. This tells us right away

that under pianis-These figures indicate that the overall

spectrum of the force that drives the bridge is not

drastically altered when one plays loudly enough to make

the indirect type of bridge excitation important.

Nevertheless, the efficiency of the transfer of oscillatory

energy from string to fiddle increases significantly under

fortissimo conditions as the indirect processes come into

action.



B. The Air Resonance of a Fiddle Body. In 1937 Frederick

Saunders devised an ingenious and straightforward means

for studying the sound output of a stringed instrument: one

simply plays a chromatic scale on the instrument at a forte

level in a room of reasonable size and for each note writes

down the readings of a sound level meter.2 The reverberant

properties of the room, the moving-around of the player and

his helper (if one is present to record the data), and the

effects of any vibrato all conspire to give a good average of

the statistical properties of the room and of the radiation

behavior of the instrument. What Saunders called loudness

curves are obtained by plotting the sound level readings

against the note names of the corresponding tones. Such

curves show certain stable features that are characteristic of

good instruments of each category. Even though each

reading on the sound level meter indicates the aggregate

effect of all the partials of the tone being played, it will show

a certain increase if one of these partials happens to be

unusually strong. This is the main reason that loudness

curves of this type and some of their more recent

descendants prove valuable in the study of stringed

instruments.

One of the first things we can see in a violin loudness curve

is evidence for a strong peak in the sound output whenever

a partial of the played tone matches a well-defined

frequency that is found in the neighborhood of 290 Hz. This

peak, which is known as the main air resonance of the

instrument, is a consequence of the resonant excitation of

the lowest characteristic mode of vibration of the air within

the violin body. In the introductory remarks about the

excitation mechanism of a flute, we learned of the way the

slug of air in the neck of a bottle can bounce sinusoidally on

the springiness provided by the air within the bottle (see



sec. 22.6). The air within a violin body acts in exactly similar

fashion as a spring upon which the mass of air in the f-holes

can oscillate. The natural frequency of such a bottle-shaped

air resonator will be lowered if the volume of enclosed air is

increased, and it will be raised if the area of the f-holes is

increased. If the walls of our cavity are elastically yielding,

the natural frequency of its air resonance will be lowered

(see sec. 22.7). The thin walls of violin-family instruments

make this effect particularly pronounced. However, the

soundpost and strings contribute significantly to the re-

stiffening of the body, as is shown by the following

simplified figures for a violin air-resonance frequency, which

are based on measurements by Carleen Hutchins: 3

without soundpost or strings 227 Hz

with soundpost, without strings 282 Hz

normal conditions 290 Hz

rigid-walled cavity of same proportions 350 Hz

Let us see how the bridge can excite this air resonance of

the fiddle body, and how the excitation is then

communicated to the air. To begin with, we see that the

rocking of the bridge on its soundpost at low frequency

alternately contracts and expands the volume of air

contained within the body, so that air is alternately exhaled

and inhaled by the f-holes in a manner exactly reminiscent

of the breathing behavior produced when a plastic squeeze

bottle is pressed periodically between the fingers. This

indicates that the f-holes themselves are able to function as

a simple acoustic source of the kind defined in section 11.2

However, not every transfer of air through the f-holes will

give rise to a sound. It is fairly obvious that denting the

violin body by the local pressure of a bridge foot gives rise

to a flow of room air into the region of the dent, i.e., into the

volume vacated by the inward motion of the plate. This flow



of room air into the dent takes place at the same time that

other air is expelled into the room through the f-holes from

within the cavity. From the point of view of the room, then,

there is no net flow of air into or out of the region

immediately surrounding the violin as a whole (and so no

production of sound), as long as these two flows

compensate each other exactly. This equality of flow is what

one observes at low frequencies of excitation, so that at low

frequencies a fiddle body provided with f-holes is almost

totally unable to radiate sound into the air! As the bridge

excitation frequency rises toward the air-cavity resonance

frequency, the oscillatory flow in and out of the f-holes

becomes progressively more vigorous and so overcomes the

cancellation produced by the oppositely moving body walls.

Above resonance, the motion of the enclosed air reverses in

its relation to the driving force exerted by the walls (see sec.

10. 1, statements 4 and 7), so that now the maximum

outward flow coincides in time with the outward motion of

the walls anc the two contributors to the radiation act in

concert.
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Fig. 24.3. Influence of Violin Air and Wood Resonances on

the Loudness of a Single Component as a Function of

Frequency

The dotted curve marked A in figure 24.3 shows the

influence of the first air resonance of a violin body on the

perceived loudness of the sinusoid one would hear if a

constant-amplitude sinusoidal driving force were applied to

the bridge (we are assuming that nothing else is going on).

At the bottom of the figure a set of lines is drawn which are

labeled with the note names of a whole-tone scale

beginning at the bottom note of the violin’s playing range

(G3). Each line has marked on it dots at the frequencies of



the various harmonic components of the corresponding

note, so that you can understand how the loudnesses of

these components are affected by the resonance peak.

C. The Main Wood Resonance and Its Connection with the

Air Resonance. The next item of information one can extract

from a study of the Saunders loudness curves is evidence

for the existence of a strong sound output peak for string

excitations taking place in the neighborhood of 440 Hz. This

peak, which is usually referred to as the main wood

reronance, has been traced to a vibrational mode of the

wooden body itself. The upper part of figure 24.4 shows the

part of this vibration which is observable on the top plate of

a violin. The back plate has a similar but somewhat more

symmetrical and much weaker motion. Notice that this

mode is particularly easy to excite by means of the bridge

and bass bar since these act in the region of maximum top-

plate excursion. This type of oscillation is sometimes called

a “breathing mode,” since the body as a whole expands and

contracts its total volume. Such a mode (acting by itself)

can function as a very effective source of excitation for

sound in the room. The dotted curve marked W in figure

24.3 shows how the loudness perceived by a listener in a

room would vary if this main wood-resonance mode were to

act in the absence of any other property of the violin body.

You will recognize that the air resonance whose radiation

consequences are illustrated by curve A in figure 24.3 is

excited by the same oscillatory breathing action of the

cavity walls that gives rise to curve W, except that we

earlier imagined the walls to be driven inexorably, with

constant amplitude, by some mechanical device.
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Fig. 24.4. Upper, coupling between first air mode and main

wood resonance of a violin; lower, schematic diagrams of



the air pressure distributions of the next four air modes

within the violin body.

The solid curve in figure 24.3 shows how the air and wood

resonances combine their influences in controlling the

sound of a real violin. It is based on a calculation reported in

1962 by John Schelleng and confirmed by various

experimental studies.4 This overall curve has an

interpretation that is very similar to that for the vocal-tract

curves of chapter 19 (see figs. 19.5 and 19.6). A listener

does not of course perceive enormous changes in the

loudness of the complete tone when the strength of a single

partial is altered. However, he will have no trouble in

hearing a clearly marked change in tone color as a note with

changing pitch slides some partial through the resonance

peak (see sec. 19.5). We should notice in passing that for

violin notes between G3 and A4, the fundamental

component and/or its second harmonic always has its

loudness considerably enhanced by the joint effect of the

main air and wood resonances. Similar remarks can be made

about the lower notes of the other members of the bowed

string family of instruments.

D. The Influence of Other Air Resonances. In part B of this

section we learned that because the walls of the violin are

yielding, the first air-mode resonance is lowered quite

significantly. We can recognize that this yielding of the walls

is simply the response of the main wood-resonance mode to

the pressure variations of the enclosed air, the excitation

taking place well below the natural frequency of the walls.

In a series of experiments carried on since 1972, Erik

Jansson in Stockholm has found that this coupling behavior

of the air and wood modes works both ways: he and Harry

Sundin have shown that on a violin the second mode of air

vibration can have a significant effect on the frequency of



what we have been calling the main wood resonance. 5 Let

us see how this comes about and at the same time make the

acquaintance of some of the other air-cavity modes.

The lower half of figure 24.4 shows diagrammatically the

acoustic pressure distributions and nodal lines for air modes

2 through 5. The dashed lines indicate nodes and the

regions marked 0 are places where very little oscillatory

pressure variation is detectable. Mode 2, whose natural

frequency lies in the neighborhood of 460 Hz, is a simple

sloshing of air back and forth between the ends of the

cavity; this mode closely resembles the first air mode of a

pipe that is closed at both ends in having a pressure

maximum at each end and a node at or near the middle.

Comparison of the top-plate vibration pattern shown in the

upper part of figure 24.4 with the pressure pattern for air

mode 2 shows that the large excursion of the lower half of

the plate (on the tailpiece side of the f-holes) strongly drives

the lower half-hump of the air-mode standing wave—an

internal excitation that is not canceled by the weaker

vibrations of the upper half of the plate which act on the

oppositely varying air pressure in this region.

Jansson has shown that the mutual influence of air mode 2

and the main wood resonance is so strong that the peak

marked W in figure 24.3 is generally split into two peaks

that can have quite a deep notch between them. The exact

behavior of the sound output in the neighborhood of what

we have been calling the main wood resonance thus turns

out to be a complicated version of the behavior we first

noticed in the kettledrum; it is not correct to consider air

and mechanical properties independently—the two peaks

have frequencies that are determined jointly by the air and

by the walls, and one should not in general assume that the

predominant motion is to be found in either of the two

subsystems. The fact that air mode 2 has a nodal line



running across the waist of the instrument tells us that very

little air will be driven in and out of the f-holes by this type

of air motion. The radiated sound associated with both parts

of the split W-curve peak is thus produced almost entirely

by the wall vibrations acting directly on the outside air.

The higher-frequency air modes will be excited to a greater

or lesser extent by the various higher modes of the violin

body, although their influence on these higher wood

resonances is not expected to be very large. However, we

can look for contributions to the radiated sound at the

frequencies of those air modes having pressure maxima

near the positions of the f-holes.

24.2. High-Frequency

Radiation Properties of

Bowed String Instruments

We have just completed a close examination of two

prominent peaks which are found at the low-frequency end

of every violin-family instrument’s range. At higher

frequencies we still find many peaks and dips, but these do

not in general show very much similarity as we go from one

violin to another, for example, or from one cello to another.

The overall trend of the transmission behavior is very similar

for all stringed instruments, however, and we can gain a

fairly good understanding of the reasons for this trend.

Before we begin to list the various acoustical properties of

the body which help to control this trend, we should remind

ourselves that, to a reasonably good approximation, the

magnitude of the driving force Fn
dir exerted on the bridge

by each component of the played tone is roughly constant.



For instance, we learned in section 23.5 that in the theory of

Helmholtz the direct-excitation Fn’s decrease as (1/n) for

increasing mode number n. Furthermore, in section 24. 1 we

learned that the indirect excitation arising from oscillatory

variations in the string downbearing has a set of driving-

force components Fn ind that decrease only gradually as we

shift our attention to the higher-numbered modes. Since the

two forms of bridge excitation give us roughly equal driving

forces at all frequencies, in our attempts to understand the

sound output of an instrument we need consider only the

varying ability of the body to convert a driving force into

sound in the room.

We learned in sections 11.2 and 12.4-C that the radiating

power of a loudspeaker or other sound source in a room rises

steadily as we go to higher frequencies until the dimensions

of the source become comparable with the hump

dimensions (half wavelengths) of the room modes. At higher

frequencies the excitation becomes progressively less

effective, for reasons that we first met in connection with

the excitation of strings by a broad plectra and hammers

(see secs. 8.1 and 8.2). For a violin-sized object we would

expect this dimensional limitation on its ability to radiate to

begin advertising itself with a gradual leveling-off of the

sound output above the 1000 Hz.

As the excitation frequency applied to the body by the

strings rises, it excites the plates into increasingly

complicated vibration modes, each one having more nodal

lines than the one before.6 This is a way of saying that the

vibrating surface divides itself up ever more finely into

vibrating segments each of which acts oppositely on the

room from its neighbors. A glance at the plate and

drumhead vibrational shapes illustrated in chapter 9 will

confirm this. A violin driven at the bridge in the frequency



region between 1500 and 2000 Hz shows vibration patterns

having two or three dozen humps distributed over the entire

body surface. An engineer who forgets that the violin is not

a loudspeaker might criticize it for being an extremely

inefficient radiator of sound at these frequencies, since

these vibrational humps (which may be only 2 or 3 cm

across) have a span that is very much shorter than the 8-to-

12-cm widths of the room-mode humps in this range of

frequencies. The presence of many small humps gives us a

second reason to expect a falling-off in the high-frequency

sound output of a violin, this time with a limitation that

becomes significant above about 2000 Hz.

Studies of the energy lost within the wood itself show that

the damping produced by both cross-grain and along-the-

grain frictional losses rises sharply at frequencies above

about 3500 Hz.7 Above this frequency, then, an ever-

increasing share of the string excitation is diverted away

from its tortuous path to the room, spending its effort

instead on frictional heating within the structure of the

instrument. This gives us yet another reason to expect a

reduction in the strengths of the high-frequency partials of a

violin tone.

When all three of the high-frequency limitations described

above are taken into account, we would expect the partials

of a violin tone that lie above about 2000 Hz to be very

much attenuated. Even when we take into account the

increasing sensitivity of the ear for high-frequency sounds,

we should expect an extension of the curve shown in figure

24.3 to fall to very small values indeed above about 3000

Hz. Let us see what actually happens.

Figure 24.5 shows the loudnesses of the various partials as a

function of frequency (I have calculated these loudnesses

on the basis of measurements made by many different



experimenters). Below 500 Hz (about C5) the curve is simply

a replotting of the information contained in figure 24.3. It is

at higher frequencies that we notice something surprising:

while this high-frequency region contains many sharp peaks

and dips (whose positions vary from instrument to

instrument), the output averaged over the peaks always

shows a rising trend that extends past our expected 2000-

Hz limitation and continues up to about 3000 Hz before the

strengths of the higher partials begin to be strongly

attenuated! We are forced to recognize that something in

the complete vibratory system is able to do much more than

merely counteract the attenuating effects listed earlier.

We do not have to go far to discover the explanation for this

modified behavior. In section 24.1, part A, I pointed out that

it is proper to treat the bridge as a simple lever only at

frequencies well below the 3000-Hz first-mode resonance of

the bridge itself. It is not difficult to show mathematically

that as the frequency of the string driving force on the

bridge rises toward the bridge’s own resonance frequency

(as measured with the feet clamped), the effective lever

ratio of the bridge grows so as to magnify the force available

at the bridge feet to drive the top plate. Walter Reinicke has

measured not only the resonance frequencies of violin and

cello bridges, but also the actual transformation ratio

between the string and foot forces.8 Reinicke’s figures for

the resonantly peaked driving efficacy of the bridge account

for the increased strengths of the string partials shown

around 3000 Hz in figure 24.5. Reinicke was also able to use

data on the properties of the bridge to explain the variations

he observed in the damping of the A-string modes that we

made use of in section 23.3. The measured dampings of the

string modes correlate with the ability of the bridge to steal

the vibratory energy of the string by passing it along to the

violin body and thence to the air.
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Fig. 24.5. Summary of All Influences on the Loudness of a

Single Component as a Function of Frequency

24.3. Characteristic

Features of the Violin,

Viola, and Cello; A Recent

Development: The New

Family of Large and Small

True Violins

In the preceding two sections of this chapter we have

learned of three stable features of the acoustical behavior of

the body of a typical bowed string instrument which

underlie its predominant tonal characteristics. Two of these

features are resonance peaks: (1) the strong resonance

associated with the lowest mode of oscillation of the air

enclosed within the body of the instrument and (2) the

equally strong resonance associated with the simplest of the

vibrations of the body’s wooden parts. These resonances

exert their influence on the lower notes of the instrument by

altering the strengths of the first and second partials of the

tone. The third stable feature is a broadly rising amplitude

of the higher partials up to a frequency that can be

predicted from a knowledge of the first-mode resonance of

the bridge itself (as measured with its feet clamped). In the

following paragraphs we will look at how these features are

related to the tunings and sizes of the violin, viola, and

cello.9



The violin has its four strings tuned in fifths to the notes G3,

D4, A4, and E5, and on a good instrument the air resonance

lies near 290 Hz, within a semitone of the fundamental

frequency of the D-string. Similarly, the so-called main wood

resonance (which is in fact the joint consequence of a body

resonance and mode 2 of the air within it) is located around

440 Hz, within a semitone of the A-string tuning. On a violin

the strengths of the low A3 and its two neighbors are

enhanced greatly by the fact that the second partials of

these tones sit more or less on top of the main wood

resonance. All these things taken together explain why a

Saunders loudness curve typically shows maxima for the

notes near A3, D4, and A4. One also frequently gets strong

notes in the general regions of C5 and C6. In the

neighborhood of 3000 Hz the peaks and dips follow a trend

having a broad maximum that is controlled by the resonant

force-transformation properties of the bridge.

Because violas are built in more widely varying dimensions,

we find less uniformity among different instruments.

However, the following figures are reasonably

representative. The strings are tuned a fifth below those of a

violin, at C3, G3, D4, and A4. The first-mode air resonance is

often around 230 Hz (near B3b), being somewhat lower on

large instruments and higher on small ones. Already we can

see why the lowest notes on a viola tend to be somewhat

weak and dull: the air peak lies about ten semitones above

the bottom C3, so the fundamental components of the

lowest few notes are very weakly radiated. The viola’s main

wood resonance is likely to be around 350 Hz (near F4), so

that the two resonances are related by approximately a

musical fifth, as they were in the case of the violin. (Having

made this remark, I must hasten to warn my readers not to

make too much of its direct musical significance. The



tolerances of the locations of these resonances are easily

sufficient to permit this interval to range on good

instruments from as little as a fourth to as much as a sixth—

the particular relationship is not important in itself.) The

musical characteristics of the lower viola notes from E3b on

up are reminiscent of the notes of a violin going up from G3.

The resemblance can be traced to the similar placement of

the resonances relative to these notes on the two

instruments. Because of the differences in proportion

between violins and violas, the mode-2 air resonance of a

viola is somewhat higher in relation to the wood resonance

than it is for a violin. As a result, in the Saunders loudness

curves of a viola one can see evidence for the separate

identities of these resonances. Data are unfortunately not

available on the resonance frequencies of the viola bridge,

but there is evidence to suggest that the spectrum has its

high-frequency maximum in the general region of 2000 Hz.

In brief, the string tunings and playing range of a viola are

transposed a fifth below those of the violin, and the high-

frequency behavior seems also to be transposed downward

by this amount. However, the crucially important lower two

resonances are not transposed down a fifth, and this change

in the overall relationships gives the viola a musical

character distinctly different from that of the violin. It is not

a closely related larger brother of the violin in the way that a

B b tenor saxophone is the lower-pitched brother of the Eb

alto.

The cello has its strings tuned an octave below those of a

viola (a twelfth below those of the violin) at C2, G2, D3, and

A3. The main air resonance is found to lie in the

neighborhood of 125 Hz (between B2 and C3). This is even

higher in relation to the bottom-string tuning than is the

case for the viola. While the actual sharpness and tallness of

the air-resonance peak of a cello are roughly the same as on



the smaller instruments and while the peak’s presence is

clearly audible, its visibility on a Saunders loudness curve is

considerably less, for reasons that we will consider shortly.

The main wood resonance of a cello lies near 175 Hz (about

F3), which places it therefore somewhat more than halfway

in pitch between the upper two strings of the instrument.

Notice that so far the properties of the cello and viola

appear to be quite consistent with one another, since the

corresponding resonances, as well as the string tunings, are

an octave apart on the two instruments. In fact their

behavior is quite different, one reason being connected with

the peculiar behavior of the cello’s air response. The other

distinction comes about because the tall bridge of a cello

leads to an extremely strong response of the body to string

excitations having a frequency near the main wood

resonance. This response can sometimes detune the string’s

own mode-1 frequency sufficiently to disrupt the formation

of a normal regime of oscillation; in its stead, various more

complicated types of vibration may take place that are

collectively known to musicians as wolf notes.

Because a cello bridge has legs proportionately much longer

than those of a violin bridge, its first-mode vibrational shape

has a rather different appearance. Nevertheless, Reinicke

finds, as before, a large increase in the ability of the string

to drive the body at the bridge’s third mode (near 2000 Hz),

and there is a deep notch in the transmission ability at an

intermediate frequency a little above 1500 Hz. Both the

notch and the second maximum lie within the musically

important range of a cello spectrum, whereas the analogous

features of a violin bridge transmission curve lie at about

5000 and 6000 Hz, too high to be of much significance.

Let us turn now to an examination of the cello’s behavior

when it is played near the main air resonance. As expected,

the air resonance has clearly audible effects. To pick it out,



one does not listen for loudness changes (since loudness is

a property of all the harmonic partials taken together);

instead one listens for changes in tone color and for the

special smoothness of tone that is associated with sounds

whose components are placed on transmission resonances.

The main air resonance, which is easy enough to hear that

with a little practice one can notice it under the rapidly

changing conditions of musical performance, shows up on a

Saunders loudness curve as a peak of surprisingly modest

dimensions. This points out the danger of too much reliance

on readings from a sound level meter, which can register

only the combined sound-pressure contributions from all the

harmonics of the played tone. This means that it may

overlook a change in the amplitude of some partial of

particular interest, such as the main air resonance, and

allow it to be partially masked by the welter of other

components. An example of how the sound level meter can

short-change the strength of a resonance occurs when some

higher partial of the tone falls into a dip in the radiation

curve at the same time that the fundamental component is

placed on a peak. The two effects manage to offset each

other in the meter reading even though they give rise to an

easily recognized auditory sensation. Let us look at an

example of such behavior, since there is reason to suspect

that a typical cello shows a weakening of the radiated

second harmonic of the tone whose fundamental is

reinforced by the first air resonance.

The dimensions of a cello body are such as to give its

second air mode a frequency that is very nearly an octave

above the frequency of its first air mode (rather than a wide

fifth above, as on a violin). As a result both of these modes

will be strongly excited when a note is played at the main

air-resonance frequency, since they match the first and

second vibrational components of that note. A glance at

figure 24.4 will remind us, though, that the second air mode



will not radiate much even though it may be strongly

excited, because the f-holes lie in the nodal region of the

second mode of vibration. This means that we should not

expect this resonance to enhance the second harmonic

component of the sound. However, two acoustical

consequences can be expected from the excitation of air

mode 2. First, we find that the cello’s top plate is made to

“feel” more than normally rigid to the bridge feet when the

air mode is strongly excited, thus reducing the transmission

of vibratory energy from the string to the body. Second, the

frictional losses and other losses of energy incurred by the

nonradiative sloshing of the second-mode air oscillation will

absorb some of the excitation from the string, once again

reducing the sound output from the instrument. Both of

these phenomena will show a broadly tuned effect: air mode

2 need not lie exactly an octave above the mode-1

frequency for the reduced second partial of the string tone

to offset the resonant increase in the strength of the

fundamental component significantly, thus producing only a

small peak in the sound level meter reading for this note.

Bowed instruments of the violin family were perfected

during the seventeenth and eighteenth centuries, giving us

the violin, the viola, and the cello. The lowest member of the

bowed string tribe today, the bass viol, is a descendant of

the acoustically different family of viols, which otherwise

exists today only in antiquarian surroundings. Contrary to

the almost universal practice of wind-instrument makers

since the Renaissance and of the early makers of the viols,

the early violin makers were not successful in developing a

complete set of instruments having overlapping playing

ranges spaced apart in fifths or fourths (e.g., soprano, alto,

tenor, and bass). The violin and viola have this relationship,

but there is a member of the family missing between viola

and cello, and another between cello and bass viol. From

time to time over the centuries efforts have been made to



fill these gaps, but until recently the resulting instruments

proved to have shortcomings that prevented their

acceptance for serious musical purposes.

In 1958, during a series of intensive experiments carried on

by Carleen Hutchins and Frederick Saunders on the effects

of moving violin and viola resonances up and down in

frequency, the composer Henry Brant and the cellist

Sterling Hunkins proposed the development of eight

instruments in a series of tunings and sizes to cover the

entire musical range, all of these to have their main air and

wood resonances placed close to the frequencies of the two

middle strings, as they are on the conventional violin. This

suggestion was timely both from scientific and musical

points of view, because an attack on the design problems

connected with such a project promised to reveal a great

many things about the acoustics of conventional

instruments.

In the years since 1958, Hutchins has herself worked

indefatigably and has enlisted the cooperation and aid of

many others to bring this “new family of fiddles” into

existence. The musical and scientific rewards of these efforts

have proven to be at least as great as was originally

hoped.10 The family has two instruments that are above the

violin in pitch: the treble, with strings tuned an octave

above the violin, and the soprano, with tunings a fifth

higher than the violin. The alto, which is the viola member

of the new family, has a length of about 82 cm (in place of

the 70 cm typical of a viola). This added length is required

because an ordinary viola is physically too small to have its

resonances placed in the desired manner. Some people play

the alto vertically on a peg, cello-fashion, while others place

it under the chin as is done with a conventional viola. Next

comes the tenor, which is somewhat smaller than an

ordinary cello (107 cm rather than 124 cm in body length),



with its strings tuned a fifth above the cello. This instrument

fills the tuning gap that is normally left between viola and

cello. Below the tenor comes the baritone, which has the

same string tunings as a cello but a larger body. Finally

there are a small and a large bass (these now being true

violins), with their strings tuned in fourths, at A1, D2, G2, C3

and E1, A1, D2, G2.

John Schelleng worked out the scaling rules that determine

the proportions of the new family. We can summarize here

some of the main requirements that his scaling design had

to meet to ensure the musical usefulness of the instruments.

1. String lengths had to be scaled to fit human proportions:

a half-length string for the treble would be too small for the

playing of a chromatic scale, and a bass string length of 3.6

meters (twice the height of a man) would clearly be beyond

the abilities of the most athletic bassist.

2. Once string and body lengths are chosen to fit the needs

of the player, one has only the thickness (and to some

extent the arching) of the plates available for adjustment to

get the wood resonances in the desired positions. It turns

out that the plates of the smallest instruments must be an

astonishing 5 mm thick. On the large bass the astonishment

has an opposite cause—the plates are so thin that one feels



he could punch holes in them by a vigorous tap with a

pencil.

3. The frequency of the main air resonance (i.e., air mode 1)

depends chiefly on the volume of the body cavity and on

the area of the f-holes. Since the plate sizes and also the f-

hole dimensions are chosen to satisfy the requirements

listed earlier, the chief recourse here is to adjust the depths

of the ribs. Even this does not suffice in the treble violin

since an over-shallow body not only looks peculiar, it also

lacks sufficient strength to withstand twisting forces. For

this reason, the ribs are fairly deep, but they have extra

vent holes to bring the air-resonance frequency up to the

desired value near 2 × 290 =580 Hz. The problem is also

difficult at the bass end of the scale: one cannot build too

deep a body or the player will not be able to put his bow

arm around it. However, the yielding of the thin walls of the

body makes it possible to get the resonance down to the

desired frequency. Another possible problem is that if the

violins of the new family were all to be built with rigid walls,

the large instruments would have exceedingly narrow air

resonance peaks of unacceptable tallness. Fortunately, the

motion of the progressively thinner walls provides enough

extra damping to keep the peaks within limits of tallness

and breadth that give good acoustical results.

4. Once the body proportions of each member of the family

are set, corresponding string sizes must be assigned. As we

learned in our study of pianos and harpsichords, it is

important to get a proper relationship between the wave



impedances of the strings and of the body (as mediated by

the bridge). This means that the thicknesses of the strings

on each instrument must be chosen along with their

tensions to meet simultaneously the needs for correct

vibrational frequency and for a suitable string-to-body wave

impedance ratio.

Two sets of the new violin family of instruments have been

built. They have excited a tremendous amount of interest

and enthusiasm wherever they have been demonstrated.

Their tonal homogeneity poses a challenge to composers

who are used to the distinctly different sounds of the violin,

viola, and cello; for instance, care must be taken in part-

writing to prevent the various musical voices from running

together into a full but somewhat bland overall sound. The

new instruments cannot normally be used as replacements

for the conventional ones, because of their different tone

and power, but for certain purposes they have begun to

make their way into standard usage. For example, the

fullness and power of the alto violin will tear up a string

quartet if it is substituted for the viola, but the alto can

serve beautifully on occasion as the solo voice in a viola

concerto where it must compete with the entire orchestra.

The superior power and tonal fullness of the bass members

of the family as compared with the conventional bass viol

have also aroused considerable enthusiasm on the part of

players and conductors.



The success of Carleen Hutchins and her co-workers in

building a consort of true violins in accordance with John

Schelleng’s scaling procedures is impressive. Their

instruments’ musical usefulness is a tribute to the

combination of scientific understanding and craftsmanship

of a high order that went into the making of them. Once the

first set of new instruments was in existence, it was natural

to want to find a way to cross-check the acoustical

relationships against their perceptual analogs. In the spring

of 1964 it seemed to me worthwhile to compare the tone of

various members of the Hutchins family of instruments with

the tone of a good conventional violin that had been tape-

recorded and played back at altered speed in order to

transpose its sounds to the pitch ranges of the various new

instruments. The violinist Edith Roberts and I made a

preliminary tape of this sort which was promising enough to

warrant our carrying out a more careful experiment in

1968.11

In such an experiment there are several musical and

technical implications to the required alternation of

recordings and playbacks made at two-thirds and one-half

speed. The tempo is drastically altered along with the pitch

change, as is the rate of vibrato. For instance, to make an

acceptable imitation of the tenor instrument (which plays an

octave down), it is necessary to play at a very fast tempo

(approximately double) so that the music will come out at a

reasonable pace on playback. Recording and playing back

at differing speeds brings about alterations in the frequency

response and internal noise properties of the equipment,

and these must be carefully compensated.

The recording was done in the living-room /music-room area

of my home, a region that is large enough to guarantee that

hundreds of room resonances will be excited by any one of

the violin partials. The final tape put together from our



recordings has a very pleasant sound but, far more

interesting, it is easy to recognize that the tonal

characteristics of the various new instruments are present in

the transposed sound of the ordinary violin. A particular

example of this is the presence of an almost unpleasant

squawkiness in the tones of both the treble violin and its

transposed counterpart. Hutchins and I verified that

increasing the damping of the air resonance of the treble

violin by stuffing a certain amount of cotton into its f-holes

would eliminate the difficulty. This shows that an air

resonance whose tallness and sharpness contribute to what

we like very much in the tone of a violin is not suitable for

“best” sound when a high-pitched instrument is built.

24.4. The Adjustment of

Violin Plates and the

Required Properties of

Their Material

The making of instruments of the violin family has always

been among the most demanding of arts. There are so many

variables involved and so much time elapses between the

carving of a plate and its assembly into an instrument ready

for testing that the maker can hardly learn from experience

unless he is possessed of a perfect memory, remarkable

intuition, a fine ear, and endless patience. Many craftsmen

can make a respectable instrument, but it is given to very

few in any generation to create a superb one, and these

special individuals are not always able to pass on their

knowledge.



Because she is a skillful instrument maker in the

conventional sense as well as an expert in musical

acoustics, Carleen Hutchins has been able to add greatly to

our fund of teachable knowledge on how to adjust the

various parts of an instrument in the course of construction.

Her success in this activity and that of her collaborators

have encouraged increasing numbers of instrument makers

to learn and to make use of acoustical testing as a guide in

their work.12 We cannot detail here many of the ways in

which acoustical science provides information to the maker,

but it is worthwhile to outline some of the complexities of

the problem as well as some of the ways in which these

complexities can be exploited or circumvented.

The vibrational properties of any part of a violin, viola, or

cello depend not only on the easily measured size,

thickness, and arching of the wood, but also on the

elasticity, density, and internal damping—properties which

change from sample to sample, and even from day to day as

the temperature and humidity change.13 From the earliest

days instrument makers have intuitively recognized that the

less-tangible properties of the wood affect the vibrational

properties of the isolated plate as well as those of the

finished instrument. Because of this, an extensive lore has

grown up on how to listen for certain sounds called tap

tones that can be heard when the plate is held in certain

ways and tapped at particular spots. Such tests are of

course informal explorations of the characteristic modes of

the plate—not merely their natural frequencies of oscillation

but also the nature of their vibrational shapes. Hutchins and

others have systematized the exploration of tap tones with

the aid of laboratory apparatus that can extricate one

sinusoidal component at a time from the complete collection

that we perceive as the tap tone. It is much easier to tell

someone what spectral components are to be sought in



making a viola plate than it is to teach him by repeated

example exactly what sort of woody, ringing sound he is

supposed to listen for. This in turn makes it easier to explain

where to scrape and carve in order to arrange the various

sound components into a desired relationship.

Another approach that has proved immensely fruitful is to

mount the plate on a well-standardized system of supports

(clamps or rubber bands) and then to excite it at a carefully

chosen point by a magnetic drive coil. The resulting

vibrations are detected either by a pickup located

somewhere on the plate or by means of a microphone

placed a short distance away. Response curves plotted in

this way contain a great deal of useful information about the

vibrational properties of the plate, especially when the

peaks and dips observed in one experimental arrangement

are correlated with those in another (see the tin-tray

experiments in sec. 10.7). Once a craftsman has taken the

time to become familiar with two or three major features of

the response curve of properly carved plates, he can then

carefully work over each new plate until its vibration

signature, as evidenced by these characteristic features, is

of the proper sort. It is of course very helpful for any

instrument maker working in this way to have a fairly good

idea of the vibrational shapes of the various plate modes, so

that perturbation techniques of the sort outlined in section

9.4 can guide his efforts.

The positions of plate resonances are not at all easy to

deduce on the basis of response curves made with a

microphone. When the microphone is placed only a short

distance away from the plate (1 to 50 cm), it responds in a

very complicated way to the sound output of all parts of the

plate and displays certain consequences of the local flow of

air across the nodal lines and also around the edges of the

plate. A vibrational mode of the plate may manifest its



presence in the response curve by a paired dip and peak, by

a simple peak or an unsymmetrical peak, or even by a dip.

One also finds extra peaks and dips in the microphone

response curve that have no counterparts in the modal

frequencies of the plate. Despite these complexities,

measurements using carefully placed microphones have

proved immensely useful in practice. Techniques based on

sound-pressure averages made in a reverberant room are

also available. These tend to give plate resonance data in

much more direct form than similar averages gathered from

microphones placed at large distances from the plate in an

anechoic chamber.

It is not difficult in principle to discover the characteristic

shapes of the various plate modes. One has merely to drive

the plate at the proper frequency and then map out the

vibrating surface, either with an optical or magnetic probe,

or by means of a small microphone held so that the distance

between the vibrating surface and the microphone

diaphragm is much less than the microphone diameter (the

distance must be very short, otherwise the microphone

signal consists of a surprisingly equal mixture of

disturbances coming from all parts of the plate). A quicker

but much more elaborate way to obtain the vibration

pattern of a plate mode is to use photographically recorded

laser holograms, following a technique first applied by Karl

Stetson.

In practice, working out the characteristic shapes of the

free-plate modes is almost as difficult (and treacherous) as is

the determination of the characteristic frequencies

themselves. Much of the difficulty, in fact, lies in finding

these plate-mode frequencies (as discussed in an earlier

paragraph). If one does not drive at a plate resonance, there

will be significant excitation of at least two adjacent modes,

so that the plate is moving in a complicated way having a



peculiar set of nodal lines and hump regions that are in

reality the result of superposing two characteristic shapes.

Such shapes are easily misinterpreted. In certain cases, two

or more of the natural frequencies may lie so close together

that it is impossible to separate their contributions. Under

these conditions considerable ingenuity is required to

extricate the true patterns of the individual modes. Here the

non-holographic methods often show an advantage.

The vibrational properties of a wood plate are very much

dependent on the fact that the cross-grain stiffness is only

about ten percent of the stiffness along the grain (see the

digression on wood plates in sec. 9.2). If one wanted to

simulate the vibrational behavior of a wooden violin plate in

metal or plastic, it would be necessary to cut it so that the

ratio of length to width would be close to unity, instead of

the customary ratio of about three-to-one. Let us understand

the implications of this remark with the help of figure 24.6,

which shows in schematic form the first five mode shapes of

the top or back plate of a violin. Mode 1 is the twisting mode

that we first met in figure 9.3. In the violin the frequencies

of top and back free plate mode 1 are not similar, mostly

because of the action of the f-holes in the top plate. Two

versions of mode 2 appear. Though rather dissimilar in

appearance, they have very nearly the same frequency—

about 50 percent higher than that of mode 1. The theory of

vibrating plates agrees with experiment in predicting both

versions of the mode-shape; theory also predicts its

frequency relative to mode 1, but only for plates that are

functionally square. Modes 3 and 4 have vibrational shapes

that are very reminiscent of the motion of a free disc

vibrating with three nodal lines crossing its diameter. In one

of these two modes we find a nodal line running parallel to

the grain, while in the other the corresponding nodal line is

at right angles to the grain. Different pieces of wood may

reverse the order of these two vibrational patterns, as



indicated in the figure, or further work on a given plate,

such as thinning, may result in reversal. Theory and

experiment agree in placing the frequencies of these two

modes at somewhat more than double the mode-1

frequency. The frequency spacing between modes 3 and 4

can vary from 10 percent to nearly 50 percent. The

reversibility of the order of these two modes and the near

equality of their frequencies constitute a direct proof that

the plate is very nearly “square” in its acoustical properties,

since on a perfectly square or perfectly circular plate they

would have identical frequencies. Modes 3 and 4 are

particularly difficult to separate in holographic experiments

—one or the other may be overlooked or obscured.
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Fig. 24.6. Relation between Free Plate Modes of a Violin and

Those of an Approximately Square Metal Plate

String-instrument makers find that it is especially important

to obtain the correct vibrational shape for mode 5, which is

often called the ring mode. The inner parts of the plate

move in one direction while the outer parts move in the

other. It has a frequency about 4 times that of mode 1.

When the vibrational shape is that sketched for mode 5, the

arching of the violin plate adds great stiffness to the

vibrating system, and this stiffness raises the frequency. If

the plate were flat, the mode having this shape would be

recognizable by mathematicians as forming a pair with the

upper version of mode 2. (The stiffness due to arching has

relatively little influence on the lower modes we have

sketched since these are primarily of a twisting character.)

Every string player knows of instruments that play well in

dry weather, and others that perform best when the

humidity is high. The reason is simple to find once we



realize that the two stiffnesses of wood (measured along

and across the grain) change differently with changes in

humidity. This means that an instrument can only be in its

optimum vibratory condition with a single sort of weather.

The maker is left with the choice of tuning the two plates of

a string instrument relative to each other under identical

conditions or finishing each on a different day in the hope of

building an instrument that performs at least acceptably

under all conditions.

Recent developments in the science and engineering of

artificial materials have encouraged serious work on the

possibility of making musical instrument bodies out of

suitably designed composite materials. Carleen Hutchins,

Donald Thompson of the C. F. Martin Company, and Daniel

Haines of the University of South Carolina have recently

demonstrated guitars (1974) and violins (1975) whose top

plates are made in the form of a sandwich.14 The inner core

is a kind of paper over which are laid long strands of

carefully aligned carbon fibers held together by epoxy

cement. The desired ratio between the stiffnesses along and

across the grain is achieved through the enormous tensile

strength of these fibers combined with the flexibility of the

epoxy. The relative thicknesses of the paper and the outer

coverings are adjusted to provide the desired density and

also the variation of internal damping with frequency of the

sort that is needed for a successful imitation of wood.

Holograms of the vibrations of the carbon-epoxy violin plate

show essentially no difference from those for a wooden

violin plate of good quality. The assembled violin plays very

well and has excited the serious consideration of a

manufacturer interested in dependable production on a

commercial basis.



24.5. Musical Properties of

Bowed String Instruments

Certain special properties of the sound from bowed string

instruments set these instruments apart from other

members of the orchestra. Each member of this family has a

pair of strong air and wood resonances that influence the

radiated sounds of its lower notes. Moreover, one finds in

the total radiated sound of each member of the family a

large number of higher-frequency peaks and dips

fluctuating about a broadly humped maximum whose

frequency is determined largely by the resonance properties

of the bridge (see fig. 24.5). If we stop our considerations

here, we are led to think of the string sound as being

determined in a manner almost strictly analogous to the

transmission of the human voice: a more or less autonomous

source has its oscillations transmitted to the room by way of

a filter that has a number of transmission peaks. In other

words, the air and main wood resonance peaks appear to be

simple analogs of the first two voice formant peaks (see figs.

19.5 and 19.6).

However, when radiation behavior is considered, we

recognize that the analogy sketched above is a gross

oversimplification. Voice sounds are emitted by a small

aperture that functions as a simple source to radiate almost

equally in all directions. By contrast, the complicated

vibrational shapes of the violin body cause it to send into

the room an exceedingly complex pattern which, for

example, is different for every direction in which the sound

can go in an anechoic chamber.15

On an average basis, the violin radiates its low-frequency

partials equally in all directions; its higher components are



radiated in a progressively tighter beam in a direction

perpendicular to the plates (this behavior is reminiscent of

the progressively increasing directionality of sound

components emitted by a trumpet or a woodwind; see secs.

20.8 and 22.4). However, superposed on this average

behavior are the elaborate directional patterns of the

separate partials mentioned above. It is this complicated

radiation pattern for each partial of a violin tone (a pattern

that changes drastically for any change in frequency) that

distinguishes the violin family from other instruments.

Because of the integrative abilities of our hearing

mechanism, we are able to collect all of these radiative

complexities as they come to us via multiple reflections in

the room. The vibrato (taking place at the rate of about half

a dozen cycles per second) plays a particularly interesting

role among the bowed string instruments. It supplies a sort

of timing cue for the relationships among all the partials,

whose strengths fluctuate more or less randomly in

amplitude but concurrently (at least at the source) in time.

There are many implications to be drawn from the fact that

the 30-to-50 millisecond “collecting time” of the hearing

mechanism associated with the precedence effect (see secs.

12.2 and 12.4) is comparable with the 80-millisecond time it

takes for the vibrato to sweep the component frequencies

from maximum to minimum or back. One’s thinking can also

be stimulated by the fact that each of the first half-dozen

harmonic partials of a tone lies within its own critical band-

width for the ear (see sec. 13.5) and so has its fluctuations

processed for loudness, etc., more or less as an individual,

whereas the higher partials are spaced closely enough

relative to the critical bandwidth (which is approximately

one-third of an octave) for overlapping collections of them

to be processed together. This aggregate processing on the

one hand tends to average out the radiation and room

fluctuations; on the other hand, it can lead to a harshness of



tone if these higher partials are too strong relative to the

lower half-dozen.

The difference between the ways in which we aurally

process the loudnesses of low- and high-frequency

phenomena helps to explain why we had to pay such close

attention to the details of the low-frequency end of the

curve in figure 24.5, whereas we looked only at the general

trend of the high-frequency part of the curve. We also gain

some insight into the reasons why a violin (or any other

instrument) must be provided with a means for ensuring a

reasonably small acoustic output at high frequencies.

The fact that our hearing mechanisms can winnow out the

common elements provided by the body resonances of a

violin or cello while at the same time permitting us to enjoy

the fluctuating variety of the unprocessed sound provides

us with a unity in the midst of diversity that is extremely

difficult to imitate.16 We can readily understand the limited

success of attempts at electronic synthesis of bowed string

sounds, even when the vibrations of an actual bowed string

are picked up electrically and run through a fixed set of

filters on their way to a high-fidelity loudspeaker.17 No

matter how elaborately the peaks and dips of the filter

transmission curve are matched to the radiation of a violin

in a given direction, our ears have no difficulty recognizing

the artificiality of the sound. The successive versions of the

sound that reach us from different parts of the room all

share the same common origin—the filter and loudspeaker.

One would require at least several filter sets separately

radiating into the room to simulate the diversity of the

sound reaching us from a normal instrument. 18 This gives

us a hint why even such simple sounds as those produced

by tapping a board with a stick or snapping a rubber band

stretched across a cigar box are so difficult to synthesize by



conventional means. It is not so much the particular

frequency components or the damping of the modes that

gives us such a clear impression of the woodiness or the

twang in these sounds, but rather the fact that they are

radiated in a way that is characteristic of vibrating plates.

There is one more feature of string tone that has a very

large influence on its musical behavior. There is an inherent

unsteadiness to the bowed string tone that has been

noticed from the earliest days. On a bad instrument the

unsteadiness of the oscillatory regime becomes a splutter or

scrape (whose dynamical implications were pointed out by

Helmholtz in his first paper), whereas on the best

instruments we find this unsteadiness becoming a sort of

warmth and richness.

While I was still an undergraduate I noticed that one does

not hear clear-cut beats between mistuned violin tones of

the sort that painfully advertise slight errors between two

wind instrument sounds. It was not difficult for me to

recognize at that time that the weakness of the beats

implied unsteadinesses in the sticking and slipping of the

rosined bow on the string. In 1963 and later,

correspondence with John Schelleng raised the question

again. Examination of published photographs showing

string motion at the bowing point confirmed that there are

small fluctuations in the oscillation. Rough measurements of

the separated fundamental and second-harmonic

components of a violin tone showed the variations to be

essentially random and spread over a frequency range of

somewhat less than one percent. Lothar Cremer and others

have more recently made careful measurements of the

periodicity of the overall sound (rather than of the

individual components), getting a spread somewhat greater

than one percent (about 20 cents), as would be expected

from the combined influence of all the partials.19



The fact that each partial of a string tone is spread over a

bandwidth of about 20 cents means that there is a

diffuseness to the string tone which has enormous

implications for the musician. On the one hand it allows

larger tuning errors to be made in ensemble playing before

the discrepancies become unacceptable, and on the other it

permits the composer to write a wide variety of chords

having many degrees of consonance and dissonance. We

have here an elaboration of phenomena we met in

connection with the multiple stringing of pianos (see sec.

17.3). The diffuse string sound explains to a large degree

the greater versatility of the string quartet as compared

with a wind ensemble. The skilled wind group can produce

on demand chords of oily smoothness or dissonances of

astonishing harshness, neither of which are attainable to the

same degree by stringed instruments. But the tendency of

the wind ensemble sound to push consonance and

dissonance toward their extremes means that the subtleties

of the middle ground must inevitably be neglected, and this

is just the region where the string ensemble is unsurpassed.

24.6. Examples,

Experiments, and

Questions

1. A good preliminary to other violin-family experiments is

to find the first-mode air resonance and main wood

resonance of a violin. To locate the air resonance, bow the G-

string and slide your finger up and down the fingerboard to

produce a tone whose pitch varies above and below D4. As

the fundamental component of the tone sweeps past the air-

resonance frequency there will be a distinct change in tone



quality and a certain increase in loudness. A few traversals

of the resonance will help you to pinpoint its position.

Comparison of the tone played at the resonance with notes

on a piano will allow you to estimate its pitch (estimations to

about 25 cents are easily made). Verify that you have

actually found the air resonance by making sure that your

resonance falls in frequency when one of the f-holes is partly

closed off by a finger, and that it weakens and disappears as

more and more tufts of cotton are tucked into the f-hole

apertures.

Continue now by bowing in the neighborhood of A4 on the

D-string to find the main wood resonance lying near 440 Hz.

Verify that tinkering with the f-holes does not make changes

in the frequency and strength of this resonance. Having

found the main wood resonance, you can try to excite it by

playing an octave lower (near A3). The second harmonic

component of this tone should make the main wood

resonance ring out, helped somewhat by indirect excitation

produced by the fundamental component.

2. Experiments with a metal rod similar to the one described

in section 23.6 can usefully be carried out on the plate of a

violin. (Note: it is advisable to protect the finish of the violin

by covering the end of the rod with a disc of vinyl electrical

tape or masking tape.) You may be able to detect the slight

lowering of the main wood resonance frequency produced

by pressing the end of the rod gently but firmly against the

top plate next to the bridge foot under the G-string. Why

would you not expect much change from pressing next to

the other foot of the bridge?

3. It is possible to get a very good idea of the influence of

yielding walls on the frequency of an air resonance with the

help of an empty plastic squeeze bottle of the sort

commonly used to hold white household glue. When a 4-oz



(near 100 cm3) bottle of this sort is held gently at its edges

and blown across like a flute, a tone can be coaxed from it

whose pitch lies close to F4 (near 350 Hz). When the tone is

sounding, the flat sides of the plastic bottle will be vibrating

vigorously. If one sticks more and more lumps of modeling

clay onto the sides to increase their inertia, the walls

become progressively less able to move in and out in

response to the internal air-pressure variations, thus making

the bottle act more and more like a hard-walled container.

The sound produced by blowing on the bottle will rise

progressively in pitch to the neighborhood of C5 (near 520

Hz). Exactly the same rise in pitch is produced by gluing

stiffening braces onto the bottle, although the physics of the

situation is somewhat altered (see sec. 22.7).

4. Many interesting acoustical games can be played with

half- and three-quarter-size violins, violas, and cellos. For

example, the air resonance of a three-quarter-size violin can

often be brought down to near 290 Hz, typical of a full-size

instrument, by covering one f-hole almost completely by a

strip of vinyl tape. This change will greatly improve the tone

of the lower notes, even though the wood resonance is still

too high.

You might find it interesting to use one of these undersized

instruments to approximate one or another of the Hutchins

family of violins. First move its air-resonance frequency

downward once again, this time to a frequency two-thirds

that of the main wood resonance (i.e., a fifth down from it in

pitch) and then tune the strings in fifths (as usual), choosing

the pitch of these fifths so that the middle two strings will lie

violin-fashion near the two resonances.

5. If you have a cheap violin to experiment with, much can

be learned about the acoustical properties of the bridge and

body by attaching lumps of modeling clay at various places



on the plates or on the bridge, by slipping paper clips onto

different parts of the bridge, or by carving away here and

there on an expendable bridge. For example, the first-mode

resonance of a violin bridge can be lowered by cutting away

wood in the horizontal part where the hips run out to join

the legs (see fig. 24.2). Thinning the legs themselves will

have the same effect on a cello bridge. What would you

expect to change in the overall spectrum of an instrument

when such alterations are made to the bridge?

6. Notice from figure 24.2 that the rocking leverage exerted

on the bridge of a violin by the side-to-side motion of the

bowed strings is somewhat greater for the G-string than it is

for the E-string. Does the difference in thickness (and hence

in wave impedance) between these strings tend to offset or

increase the resulting variation in the driving ability these

strings possess (see sec. 17.1 and 17.5)? Because the

indirect excitation process depends on an oscillatory

variation in the downbearing force exerted by the strings on

the bridge, you will be able to deduce from figure 24.2 that

the E-string should produce relatively little indirect

excitation of the violin body, while the lower strings become

progressively more able to exploit this possibility. The fact

that the indirect excitation process drains appreciable

energy from the strings only when they have a large

vibrational amplitude means that the string modes have a

heavier damping (and so a greater band-width) when bowed

vigorously, which is exactly the condition under which the

large-amplitude inharmonicities discussed by Shankland

and Coltman become most important. You should try to work

out some of the musical implications of these remarks, and

also to devise various playing experiments to display them.

7. Some years ago I was sent a pair of violas for resonance

testing and for musical comparison. One of these was a

good quality mass-produced instrument of conventional



design. Its mate was similar in all respects except that its

bass bar was cut away so as to reduce greatly the stiffness

in its mid-portion, directly under the bridge foot. Examine

figures 24.1, 24.3, and 24.4, and try to work out some of the

acoustical consequences of this alteration. Your

considerations should include some of the following

matters: changes (if any) in the first air mode and main

wood resonance frequencies, changes in the heights of the

corresponding loudness peaks, changes in the damping of

the string modes, and thence changes in the bowing feel.

Can you figure out why sound level meter readings were

very similar for the two instruments, although the modified

one sounded rather “boomy”? What would you predict for

the relative durability of the two instruments?

8. Harking back to the discussion of the individual flavors of

different musical key signatures in section 16.4, what

musical values would you expect for the keys of D, A, and G

as played on a violin (even if open, unstopped strings are

not used), compared both with each other and with other

keys such as B♭ or E major?

Musical pitch has fluctuated up and down considerably in

the past three centuries. What does this imply about the

key-flavor ideas that a violin-playing musician might hold in

any given era? Since Bach’s day, for example, the pitch has

risen nearly a semitone. The Vienna Concentus Musicus,

which specializes in baroque music, plays close to A-420. I

have measured the main air and wood resonances of the

unmodified Stainer violin used by Alice Harnoncourt as

soloist with this group, and found that their frequencies are

entirely similar to those measured on modern instruments

and on most older ones. Most of these older violins were

modified in the nineteenth century to give them more power

and brilliance by stiffening the bass bar and using a taller

bridge to produce more downbearing. Speculate on the



acoustical implications of these modifications and on their

musical correlates.
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25

Half-Valved Octaves, Burrs,

Multiphonics, and Wolf Notes

Wind instruments and members of the violin family are able

to make certain peculiar sounds in addition to the tones

they normally produce. Many composers have begun to call

for some of these sounds as an integral part of their music,

so that performers are increasingly expected to produce

them on demand and under good control. These

nonstandard methods of sound production are of particular

interest to us because they cast a great deal of light on the

way we perceive complex collections of partials and on the

way oscillations can maintain themselves even in the

absence of ordinary regimes involving cooperation among

harmonically related resonances. The discussion of these

matters will illustrate for us, one final time, that

interweaving of perception processes and the physics of

vibration which we have found to be of such great

importance to the activities of musicians.

25.1. The Playing of Half-Valved Octaves

on Brass Instruments

Most of us have heard the half-strangled sounds that a jazz

trumpet player will occasionally insert for effect between his

more ordinary tones; he achieves such sounds by the simple

expedient of pressing one or more of the valve pistons only

part way down. When this technique is used, one finds a few

tones of startling clarity mixed in among the rather choked



sounds. These clear tones are exactly an octave above the

pitch of the tone produced when the valve is fully up or fully

down. Curiously enough, the player’s embouchure does not

have to make any marked adjustment as he half-depresses

the valve, even when the upper tone of the sound he gets

lies above the limits of his normal playing range!

The half-valved condition that produces these octave

sounds disrupts the normal oscillatory regimes of the air

column by presenting the player’s lip reed with a duct

having a side branch in it, as sketched in the upper part of

figure 25.1. The valve serves its usual function of adding a

loop of tubing to the main air column, but the loop

communicates only through constricted, half-opened

apertures, while at the same time the direct path through

the open horn is not completely closed off.

Because the half-valved octave sound is most easily

demonstrated on instruments having lower pitch than the

trumpet, I shall present my entire discussion in terms of the

B b baritone horn, with the understanding that the tuba and

French horn behave equally well and that the various higher

brasses also show the phenomenon but with less

convenience. Let us begin by listing the harmonically

related series of tones which are produced by a baritone

horn when no valves are pressed:

Peak number and note name:

1 2 3 4 5 6 7 8 9 10 

C2 C3 G3 C4 E4 G4 × C5 D5 E5



Fig. 25.1. Air Column for a Half-Valved Note and Standing

Wave Pattern for the Fundamental Component of the

Generated (but unheard) Sound

Notice that the sixth member of this collection (G4) lies an

interval of a minor third (three semitones) above the fifth

tone (E4). If one plays E4 on the open horn and then fully

operates the third valve on the instrument, the sound does

not change in pitch, since tone 6 on the lengthened horn

matches tone 5 played on the shorter one. If on the other

hand one plays E4 on the open horn and slowly, depresses

the valve, a narrowly defined intermediate position of the

valve is reached at which the listener hears the tone raise

itself by an exact octave. This octave change happens

without an appreciable alteration of feel at the player’s

embouchure. By the way, the player himself may or may not

perceive the octave shift.



Before we look into the air-column acoustics and the

perception processes that are associated with this

phenomenon, let us list other places in the scale where it

occurs. Half pressing the (two-semitone) first valve while

playing C5 will produce an octave transition to C6, and the

same valve action will also produce an octave rise from D5 to

D6. Instruments such as the baritone or tuba are provided

with an extra valve that lowers the basic pitch of the

instrument by five semitones; this fourth valve will similarly

give an octave transition up from G3 to G4. In every case the

phenomenon takes place when the musical interval

associated with the valve exactly matches the interval

between the note being played and the next one higher in

the open-horn series of tones. Since an interval of a

semitone has a frequency reatio of 16/15, a French-horn

player will be able to produce a stratospheric octave to the

fifteenth note in his series by making use of his (one-

semitone) second valve.

Let us now see what is going on in the air column when a

half-valved octave is played. To begin with, we should recall

that every standing wave pattern within any brass

instrument includes an odd number (e.g., 1, 3, or 5) of half

humps. Every time we go from one air-column mode to one

having the next higher serial number, two more half humps

are fitted into the standing wave. The solid curve in the

lower part of figure 25.1 shows the mode-3 standing wave

(having five half humps) which would provide the basis for

playing G3 on the unvalved baritone horn. When a valve is

normally operated to add extra tubing whose length K is

precisely two half humps long at this frequency, we can

have a mode-4 standing wave that starts out exactly as

before at the mouthpiece and joins the dashed curve at P;

this standing wave continues through the valve tube length

K and rejoins the main air column at R, and from there the



dashed curve continues out to the bell with a reversal of

sign as compared with the solid curve belonging to the open

horn. At the playing frequency belonging to this pair of

modes, any disturbance that reaches the bell via the valve

tubing tends to be cancelled by a disturbance of opposite

sign that reaches it directly through the leaking valve. If the

valve is depressed exactly the right amount, these two

disturbances cancel exactly, so that the fundamental

component of the tone no longer reaches the listener’s

ears.1 You may find it possible to extend my discussion to

verify that under these same conditions none of the odd-

numbered partials of the internally generated tone can find

their way out, whereas the even partials proceed unhindered

almost exactly as though the valve were in one of its more

normal positions. This of course explains why the perceived

pitch of the externally heard tone is raised an octave:

whenever one steals partials 1, 3, 5, . . . from a complete

harmonic series, one is left with partials 2, 4, 6, ... which

themselves form a complete harmonic series having twice

the fundamental frequency of the original tone.

Let us now look at what sort of oscillatory regime governs

the player’s lips under the special half-valve conditions we

have been studying. The air-column input impedance curve

for a half-valved horn has a very messy pattern of resonance

peaks and dips. The details of this mess vary from

instrument to instrument and from valve to valve. In the

midst of all this complexity, however, we always find that

there is a resonance peak at the position of the fundamental

frequency of the played note. This peak is enormously tall

on some instruments, less tall on others. (The existence and

frequency of the fundamental peak are independent of the

location of the valve along the air column, however.) At the

second harmonic of the playing frequency, there is an

ordinary-looking resonance peak, and there is often a tall

one at the third harmonic. In other words, when the horn is



used to play a half-valved octave, the performer’s lips are

receiving instructions very much of the familiar sort, which

explains why they feel quite normal under our special

conditions. They are as a matter of fact vibrating in such a

way as to generate a fairly normal internal spectrum in the

original octave. This unchanged behavior of the player’s lips

is the reason why he may fail to hear the octave shift. The

buzzing of his lips and the sound transmitted to his auditory

mechanism via the bones of his head all imply the normal

(lower) pitch for his tone. His ears receive only the even

harmonics from the room, but this may not be enough to

overcome the sense impressions from his buzzing lips and

bony structure, in which case what arrives from the room air

will produce a change merely in tone color rather than in

pitch.

25.2. Brass-Instrument Burrs

While no brass player likes to make a burble at the start of a

tone, he may at times wish to have a slight burr at the

beginning, or as a special effect he may want it to continue

all the way through a tone’s duration. We will look briefly at

the nature of such sounds, in part because of their inherent

interest and in part because of the insight they will give us

into the way woodwind multiphonics and violin-family wolf

tones are produced and perceived.

In section 20.9 we learned that a brass player who wishes

to produce a clean beginning for a note must set his lips

vibrating correctly, with no help from the air-column

resonances until the initial sound has had time to be

reflected from the bell region of the instrument and to return

with proper instructions for the flow-control process. It is

useful to ask ourselves what happens during the first few

round trips if a slight tremor of the player’s lips makes them

shift their buzzing frequency from one that agrees with

some resonance peak of his instrument to one more nearly



in agreement with the neighboring peak on either side. In

the simplest of all worlds (ignoring any difficulties produced

by stray reflections from discontinuities in the air column)

we might imagine that two tones of alternating pitch would

chase one another up and down the horn taking turns

instructing the lips in what they want done. While the actual

sound may begin in this manner, the two types of oscillation

are in fact mixed together very quickly (in the time of only

two or three round trips) to produce a somewhat different

sort of composite. This mixing together takes place in part

because of the difference between the ordinary wave

velocity of sound in the horn and the group velocity for

impulsive disturbances within it (see sec. 20.9), and in part

because of the marked preference of the player’s lips for

sustaining one or the other sort of tone depending on their

tension. The mixed sound is heard as a short burble during

which the tone alternates at a rate determined by the round-

trip time in the horn (about 44/sec for a French horn in F),

after which the sound settles down into a normal oscillatory

regime.

In 1968 I had occasion to study the start-up behavior of

brass instruments,2 and I found that with only a little

practice it was possible to select a lip tension and starting

technique that permitted me to play whole lungfuls of

steady burrs at various pitches on French horns or other

brasses. It is surprisingly easy to maintain such sounds and

it is not difficult to analyze their acoustical nature.



Fig. 25.2. Simplified French-Horn Resonance Curve and the

Internal Spectrum of a Sustained Burr

Figure 25.2 shows the kind of behavior that one observes

in a steady burring sound. The upper part of this figure

shows the simplified outlines of the resonance curve for a

French horn drawn as though its pitch were 35 cents above

G,, which makes its resonances fall at multiples of 50 Hz.

The lower part of the figure shows the amplitudes of the

various partials making up the internal spectrum that I

measured for a burring sound that is based on resonance

peak 10, which lies at 500 Hz in our simplified version of the

instrument.

One sees at once that the sound is not an ordinary tone at

all. Instead of a 500-Hz fundamental component plus a

second harmonic at 1000 Hz we find a group of partials



spaced at 50-Hz intervals in the neighborhood of 500 Hz,

and similarly a few weak satellites around 1000 Hz. Our

ordinary ideas on how a regime of oscillation sustains itself

via harmonically related peaks do not apply in this case, but

it is nevertheless clear that each partial of the new tone is

sustained by a strong resonance peak at its own frequency.

The details of just how oscillations of this type are

maintained have not yet been fully worked out, but there

are indications that heterodyne frequencies of the type (2P–

Q) = R play an important role. For example, subtracting the

550-Hz component frequency (supported by peak 11) from

twice the 500-Hz component (supported by peak 10)

produces a heterodyne component that talks to peak 9 at

450 Hz. (Higher-order heterodynes of this sort abound in the

normal regimes as well, but we have had no need before this

to take them into account since they produce no new

component frequencies.) The influence of such heterodynes

cannot extend more than a few resonances away from the

500-Hz “center” of the oscillation, because the player’s lip

valve cannot respond well as a flow controller at frequencies

that are far from the one to which it is “tuned.”

To the listener, the sustained burr that we have been

discussing sounds very much as though the player had

played a normal tone broken up into a rapid sequence of

short bursts produced by what is known as flutter tonguing.

Curiously, a burr whose strongest component has a

frequency of 500 Hz is heard as having a pitch that closely

matches that of a normal tone whose fundamental

frequency is 500 Hz, although very few components of the

burr sound are harmonically related. The burr still matches

the 500-Hz tone even when the components near 1000 Hz

are removed by an electrical filter, leaving us with a

complex sound with no components arranged in the

harmonic series whose pitch it matches. Examination of such

a signal on the oscilloscope shows an acoustical disturbance



that exactly matches the listener’s description of the sound

as a rapidly pulsating tone, and a physicist would deduce

from this that a short “wave packet” of 500-Hz sound must

be shuttling back and forth in the horn in a self-sustained

cousin to the flutter echo we met in section 12.4, part A.

25. 3. Reed Woodwind Multiphonics

In the early 1960s, a music-loving engineer wrote to me to

ask how the jazz saxophonist John Coltrane produced certain

multiple-sounding tones on his instrument. My initial guess

was that perhaps Coltrane was singing as well as playing,

since the dual control of the airflow by reed and larynx can

give rise to complicated heterodyne components (see sec.

25.5, part 2), or that he was producing similar acoustic

effects by some type of flutter tonguing or by getting his

soft palate to oscillate rapidly in his throat’s airstream. Some

months later my correspondent reported that Coltrane

denied using techniques of this sort (although he knew of

them), but would not divulge the methods he actually used.

Similar questions arose again from time to time in the years

that followed, particularly after the publication of Bruno

Bartolozzi’s little book, New Sounds for Woodwind.3 One

does not have to listen to very many of these sounds (which

have come to be called multiphonic) to realize that their

components are not usually in any obviously harmonic

relationship. One or two preliminary experiments led me to a

picture of what was going on that will serve as a convenient

introduction to the somewhat more complicated behavior

typical of the hundreds of such multiphonic sounds that are

now known to be producible on all of the woodwinds.

Figure 25.3 shows the resonance curve belonging to a

certain fingering on a hypothetical woodwind. Particularly

appar-ent are two equally tall peaks located at 200 and 500

Hz, either one of which is enough taller than the “break-

even” line drawn across the figure that it could act alone to



sustain oscillation at its own frequency. If we blow on such

an instrument, we would expect the internal spectrum to

contain not only the directly produced components at 200

and 500 Hz (labeled P and Q), but also heterodyne

components arising from the nonlinear valving action of the

reed. The simplest of these heterodynes would be found at

(500 + 200) = 700 Hz, (500–200) = 300 Hz, etc. If all the

parts of the resonance curve that are distant from the tall

peaks lie below the break-even line, the heterodyne

components serve as an oscillatory drag upon the system

and work against the production of sound, in a manner that

is put to good use by the register-hole systems normally

used in woodwinds. Suppose however there is a small peak

such as the one near 300 Hz, shown as a dotted line in

figure 25.3. This small peak could aid in the maintenance of

oscillation in the following manner: there is direct

production of oscillatory energy at 200 and at 500 Hz, and

the 300-Hz heterodyne descendant of these two frequencies

is able to add to the maintenance of oscillation because it

lies near a small peak which itself could maintain oscillation

near 300 Hz. This behavior is a close cousin to that observed

in the regimes of oscillation supporting tones having

harmonically related partials.



Fig. 25.3. Hypothetical Woodwind Resonance Curve Showing

the Production of a Simple Multiphonic Sound

Looking more closely, we can see that the peak near 300

Hz would “vote” in the regime in favor of a value for (Q–P)

having a slightly higher frequency, which could be arranged

by having component P run slightly below 200 Hz, and/or by

having Q run a little bit on the high-frequency side of its

500-Hz peak. I realized several years ago that it would on

the face of it be plausible for the system to choose the latter

alternative because raising Q above 500 Hz, not only moves

the (Q–P) component closer to the top of its peak, but also

slides both the 700-Hz (P + Q) and the 1000-Hz (2Q)

components in a direction that puts them more nearly on

top of their own small resonance peaks. However, I believed

then that every self-sustained steady oscillation of necessity

had to be of a repetitive type, and therefore built up of



harmonically related components, so that these adjustments

were not totally free. In our present example I would have

assumed, for instance, that the basic repetition frequency is

close to 20 Hz, so that the components would be as follows:

P = 200 Hz (10th harmonic) 

Q = 520 Hz (26th harmonic) 

Q–P = 320 Hz (16th harmonic) 

Q + P = 720 Hz (36th harmonic) 

2P = 400 Hz (20th harmonic) 

2Q = 1040 Hz (52nd harmonic)

Notice that a frequency arrangement of this sort would gain

considerable support from the air-column resonance peaks

lying a little above 300, 700, and 1000 Hz, with only a small

loss of cooperation from the fact that component Q now lies

somewhat too high for the peak at 500 Hz.

In 1972 James Gebler and I studied one or two clarinet

multiphonics that appeared to confirm the viewpoint taken

above, and my knowledge of human pitch perception was

not sufficiently great to make me suspect that something

was wrong. We could clearly make out several tones in each

sound, something that today I would not expect for a

collection of harmonically related partials, since such

collections normally join together to give the sensation of a

single tone.

More recent work has shown that steady oscillations of the

multiphonic type are not always made up of harmonically

related components of the sort described above. It is only

necessary to have a number of resonance peaks matching

some of the components in the tone, without any constraints

on their frequencies beyond the simple arithmetical



relations that govern all heterodyne processes. Let us look at

some examples.4

The top part of figure 25.4 shows the resonance curve

belonging to fingerings used in the production of one of

several clarinet multiphonics that I have studied in

cooperation with Larry Livingston, a member of the music

faculty of Northern Illinois University in Dekalb. (Livingston

has compiled a dictionary of about 150 multiphonic sounds

for clarinet, along with their musical properties, and it is the

serial number from his catalog that appears on the

resonance curves shown in figures 25.4 and 25.5. In figure

25.4 the components of the sound which contribute most

directly to the maintenance of oscillation are given names

(P, Q, R, etc.) and their frequencies are indicated in relation

to the positions of the resonance peaks.

The lower part of figure 25.4 shows how the first twelve

measured frequency components of the internal spectrum

are related to one another by elaborately in-terlocking

heterodyne arithmetic. The components that are the main

contributors to the oscillation are emphasized by arrows

pointing to them. I should like to emphasize that one never

finds a frequency component that fails to show a heterodyne

relationship with all the other partials in the sound, and also

that these relationships are mathematically exact.

Component 7 is listed as having a frequency of 1278 Hz,

while the heterodyne (3P + Q) that is identified with it

comes out at 1279 Hz; this fact is simply a consequence of

my having rounded off the exact frequencies for simplicity

in the tabulation. In the laboratory, there is agreement

among the frequencies to within 0.1 Hz, which was the

accuracy of measurement.



Fig. 25.4. Measured Resonance Curve and Spectral

Components for a Clarinet Multiphonic

Figure 25.5 shows another example of a clarinet

multiphonic, while figure 25.6 provides an illustration of

exactly similar behavior observed for an oboe. The internal

spectrum from which the data shown in the lower part of

figure 25.6 were extracted was made with the cooperation of

the oboist Wilma Zonn of the University of Illinois. A set of

data in which the external rather than the internal spectrum

was recorded by means of a single microphone in an



anechoic chamber had been given to me earlier by Zonn

and James Beauchamp, who is a member of both the school

of engineering and the school of music at the University of

Illinois.

Fig. 25.5. Measured Resonance Curve and Spectral

Components for Another Clarinet Multiphonic



I find that with a little practice it is not difficult to unravel

the spectrum of a woodwind multiphonic, even when it

contains 25 to 30 important components. One first makes a

list of the heterodyne components that one would expect to

arise from pairings of the strongest three or four

components, these presumably being the ones that are most

influential in telling the reed how to oscillate. Such a

computation makes it easy to recognize many of the weaker

components in the measured spectrum, after which it is

possible to check everything by making sure that all of the

remaining components in the recorded spectrum match the

pattern established so far. It is important to recognize that

calculations of this sort can be carried out even in the

absence of a measured resonance curve, although it is

always advisable to obtain one for final confirmation of the

analysis.



Fig. 25.6. Measured Resonance Curve and Spectral

Components for an Oboe Multiphonic

A brief account of my analysis of the oboe multiphonic will

show how clear-cut the interpretation can be, and also will

illustrate the need for considerable caution in the use of

spectrum analysis based on data from a single-microphone

recording in an anechoic room. Beauchamp’s original tape

from which I made a preliminary version of the table shown

in the lower half of figure 25.6 contained indications of all



the components except for the one near 500 Hz. I did not at

that time have on hand a resonance curve for the air

column, so that there was nothing initially visible that would

suggest any need for a 500-Hz component. However, it took

only a few minutes of arithmetic to show that there were

many ways in which the components would combine to

produce something near 500 Hz. For example, components 5

and 1, 6 and 2, 10 and 6, and 11 and 7 all differ by 501.8

Hz. There were also relations between the amplitudes of the

components that appeared to be consistent only with the

presence of a strong component near 500 Hz. More sensitive

analysis of the tape recording disclosed no trace of this

component, although a number of other, small-amplitude

components were unearthed which joined the rest in calling

for a major contributor near 500 Hz. At this stage I measured

the resonance curves for several oboes and found always

that peak 1 was tall and was located very close to 500 Hz, in

exact agreement with the implications of my arithmetic. The

conclusion was almost inescapable that the microphone, by

an exceedingly improbable quirk, had been placed at a

point toward which the instrument radiated none of the 500-

Hz component!

My own playing of this multiphonic in an ordinary (slightly

reverberant) laboratory room gave a recorded signal whose

components included one near 500 Hz, while the rest

followed the same pattern as the original tape. Later on I

had the opportunity of recording the internal and external

spectra of this sound played by Wilma Zonn herself, and of

verifying experimentally that her recollection of the original

microphone position was very close to a spot where there is

in fact a sharp null in the 500-Hz radiation pattern. A

displacement of only two or three centimeters in the position

of the microphone relative to the instrument proved

sufficient to restore the missing component to an easily

detectable amplitude. Of course, in an ordinary room the



presence of reflections almost totally eliminates the

possibility of trouble of this sort.

Let us now summarize the physics involved in the

production of woodwind multiphonics:

1. A multiphonic oscillation is made up of a collection of

components whose frequencies are connected to one

another by an elaborate set of heterodyne relationships. The

ordinary tones of woodwind instruments also fit this

description, but the frequency components in normal tones

are limited to those belonging to a single harmonic series.

2. A multiphonic oscillation is maintained by cooperations

set up between several of the components and several of

the taller peaks in the air-column resonance curve. Because

neither the components nor the peaks need be in harmonic

relationship, oscillation is not as easily maintained for

mulriphonics as it is for normal tones. The chief reason for

the difficulty lies in the profusion of heterodyne components

found in the inter-peak regions of the resonance curve.

3. The player must make rather subtle adjustments of his

embouchure and blowing pressure in playing multiphonics.

On the pianissimo side, the instrument may lapse into

producing an essentially pure tone based on the tallest

resonance peak, and on the loud-playing side the reed may

simply choke up and snap closed if too many of the

generated components lie at dips in the resonance curve.

4. Because of the great importance of heterodyne effects,

multiphonics are most easily played using reed and

mouthpiece combinations that have a highly nonlinear flow-

control characteristic and that include a great deal of

sensitivity to Bernoulli forces at the reed tip. Such reed and

mouthpiece combinations give bright or harsh-sounding

normal tones.



5. The internally measured spectrum can change

drastically when the player makes small changes in the size

of the reed cavity (this is particularly true among the conical

instruments). The reason for this is that cavity changes shift

the frequency relationships among the air-column resonance

peaks, and so upset the often subtle interplay between them

and the generated components. The relationship between

the internal and the external spectrum of a multiphonic

sound is not of the simple sort we find for more normal

woodwind tones.

Let us turn our attention now to the way our hearing

mechanism tends to perceive the multiphonic sounds whose

production we have been discussing.5 Someone listening to

the clarinet multiphonic described in figure 25.4 will always

pick out what he calls a tone having a pitch about 40 cents

below the clarinetist’s written C4. Examination of the

spectrum of the multiphonic shows us that our listener has

seized upon components 1 and 3, which are the first two

harmonics of a 228-Hz musical tone. Not until we get to

components 11 and 12 do we find any that are even

approximately members of this same set of harmonics.

Another easily picked out tone in the complex is assigned a

pitch about 20 cents below B5b. This one is associated with

components 5, 9, and 12, which constitute the first three

harmonics of 822 Hz. Beyond this our ears have difficulty:

different people will make different groupings of the

remaining partials and assign each of these a more or less

well-defined pitch. For example, partials 4, 7, 10, and 12 are

in approximately harmonic relationship, which leads some

listeners to hear them as a single but slightly ill-defined tone

whose pitch is close to the clarinet’s written F5 (whose

fundamental is at 622 Hz).



In the sound of the clarinet multiphonic shown in figure

25.5 our ears find a great deal of recognizable pattern: that

is, they can pick out several clearly marked sets of

harmonics or quasi harmonics. For instance, components 1,

3, and 5 are the first three exact harmonics of 286 Hz, which

would generally be heard about halfway between the

clarinetist’s D4# and E4. However, some people feel that this

pitch assignment is not quite clear-cut, and also that it is on

the sharp side. The reason for this is to be found in the fact

that components 9, 11, 13, 14, 15, and 16 constitute the

sixth through the eleventh harmonics of a tone based on

281 Hz, which can be “melted down” with the 286-Hz

components to give something of different pitch. Most

listeners also perceive a tone whose pitch is close to G5

because of their grouping of components 4, 12, and 15 as

approximate harmonics 1, 3, and 4 of a tone whose

fundamental frequency is close to 700 Hz. They also tend to

pick out a tone just below C6# associated with components

6 and 11, which are in an exact two-to-one frequency

relationship. In similar fashion harmonic components 7 and

14 usually join to produce a perceived tone whose pitch is

about 30 cents above the clarinetist’s F6. It is interesting to

notice that our listeners have managed to use some of the

upper partials in more than one way as members of the

various perceived tones. We should also notice that

components 2, 8, and 10 do not become members of any

tonal grouping, but rather tend to be heard separately if at

all.

You may wish to try to verify for yourself that listeners to

the oboe multiphonic will generally hear (among other

things) a strongly marked tone that they will identify as

being 20 cents above B3, another one a little below D5#,

and another one almost equally far below A5. The original

tape recording I was given of this sound (with component 3



missing) does not sound very different from the tone heard

“live” or from a tape recording made in an ordinary room.

The reason for this should be fairly clear to us at this point in

our studies of musical acoustics: the 500-Hz component is

merely one of several partials that are associated by our ears

into the B3 tone. Its presence or absence can therefore lead

to changes in tone color, but does not alter the nature of the

groupings which we have perceptually imposed on the

components.

Our collection of numbered statements on multiphonics

can now be extended by adding a few statements on the

way in which mulriphonics are perceived:

6. When we hear the conglomerate of partials making up a

multiphonic sound, our hearing mechanism tends to pick

from the collection sets of harmonically related or almost

harmonically related components. Each of these sets is then

heard as a tone of a more or less normal sort, having a pitch

that is related in the normal way to the fundamental

frequency of the set.

7. Our auditory habit of lumping a harmonically related set

of partials into something that is perceived as a single tone

explains why musicians give the name multiphonic to the

sound we have been discussing. Each multiphonic, because

it has sounds in it that are not harmonically related to each

other, is perceived as being made up of a number of tones.

The ordinary sound of a woodwind, being made up of a

single set of harmonic partials, is perceived as a single tone.

8. A single, relatively strong component in the spectrum of

a multiphonic sound is sometimes perceived as a separate

tone in its own right if none of the other components present

are even approximately related to it as harmonics. Apart

from this special case, the strengths of the various partials

as they come to our ears play a relatively small role in

determining the way in which we group them into tones.



25.4. The Wolf Note on Violin-Family

Instruments

Players of bowed string instruments, particularly cellists, are

troubled by spots in the playing range of their instruments

in which it is more or less impossible to produce a steady

tone of good quality. A bowed note may suddenly leap

upward an octave or give a rough, pulsating sound whose

pitch is close to that of the desired note but which contains

strong hints of the octave, as though it were thinking of

jumping into what a woodwind player would call the second

register. It is this latter, pulsating sound that is commonly

known as a wolf note. String players and craftsmen have

given a lot of attention to the wolf note because of the

practical importance of suppressing or weakening it, or at

least moving it to a place where notes ordinarily used in

playing do not provoke it into action. The wolf note has also

received a fair amount of scientific attention, with Raman

and Schelleng being the major contributors to our present

knowledge of its behavior.

Let us begin our examination of the wolf-note

phenomenon with a brief description of the conditions under

which it occurs and of the effect of changes in bowing

pressure on its behavior. The wolf is usually encountered at

places in the scale where the first-mode frequency of the

bowed string is in the general neighborhood of some strong

resonance frequency of the body. The so-called main wood

resonance frequency (see sec. 24.1) determines the region

in which the wolf takes place. If one uses very light bow

pressure to play a chromatic scale, the tone is likely to jump

up an octave as one gets into the wolf region. Heavier bow

pressure gives rise to the characteristic rough sound of the

wolf tone; in certain mild cases of the disease, increasing the

bowing pressure even more may suppress the wolfing and

produce a more or less normal tone.



We have had numerous occasions in this book to

recognize that a strong resonance in one part of a two-part

system can lead to shifts in the resonance frequencies of the

other part, the shift being relatively small if the two parts

have widely different wave impedances, as is the case of a

string coupled to the body of a cello. We conclude here that

under wolf-tone conditions the instrument’s wood resonance

is able to shift the string’s first-mode frequency away from

its normal position as the lowest member of a harmonically

related set of string resonance frequencies. The octave

change arising from the wolf-note displacement of the first-

mode frequency produces a change analogous to the loud-

playing type of woodwind register change (see sec. 21.5). In

section 23.2 we encountered a different kind of octave rise

associated with light bowing which is analogous to register

changes found for pianissimo playing in woodwinds.

Let us glance briefly at the reason why it is sometimes

possible to stabilize the oscillation and prevent a wolf by use

of heavy bow pressure. At any sliding speed, increasing the

bow pressure makes the bow-plus-string interaction more

nonlinear, so that the various heterodyne effects become

more pronounced (see fig. 23.1). If we assume, for example,

that a dozen of the string resonances are available for

participation in a regime of oscillation, heavy bow pressure

may make it possible for the upper eleven resonances jointly

to control the disruptive influence of the detuned first mode

so as to give a slightly shifted playing frequency of the sort

that is familiar in the playing regimes of ordinary wind

instruments (whose resonances are almost never in perfect

alignment).

Raman’s studies led him to describe the wolf note as an

alternation of a fundamental frequency tone and its octave,

this alternation taking place several times a second at what

we shall call the pulsation frequency. In 1963 Shelleng

provided us with a somewhat more illuminating way of



describing Raman’s observation, a way that allows him to

demonstrate that the phenomenon is consistent with the

basic stick-slip physics discussed by Helmholtz and Raman

(see sec. 23.4).6 Schelleng points out that the even

harmonic components of the string oscillation run fairly

steadily during the entire pulsation cycle, whereas the odd

harmonics appear to grow and shrink more or less en bloc at

the pulsation rate. The perceived switching of octaves is

easily understandable in these terms, since it coincides

exactly with the physical changes that are taking place. At

instants when the odd partials are of appreciable amplitude,

our ears are presented with the complete harmonic series

based on the string modes, and we assign the pitch

accordingly. At those moments, on the other hand, when the

odd components are insignificant, we perceive the even

partials in their own right as a tone having its pitch an

octave higher.



Fig. 25.7. Separation of the Bowing-Point String Motion into

Its Even and Odd Harmonic Parts

The top three lines of figure 25.7 illustrate Schelleng’s

explanation of how the idealized sawtooth motion at the

bowing point of a normally operating string (top line) can be

separated into the parts contributed by the even-numbered

components (second line) and those contributed by the odd-

numbered ones (third line). It is clear from a comparison of

lines 1 and 2 that abolition of the odd components leaves us

with a double-frequency oscillation that is otherwise of

normal appearance. The bottom line of figure 25.7 shows the

appearance of the bowing-point motion during the course of

a wolf tone. At instants (marked A) when the odd

components are of normal strength, we find the sawtooth

wave belonging to ordinary operation of the string. At other

times (marked B) the odd components have disappeared,

leaving a sawtooth whose repetition rate is double that of

the normal oscillation. In between these two, we have

intervals (marked C) during which small amounts of odd

harmonics are present, producing a jagged waveform which

nevertheless is of the stick-slip type discussed by Helmholtz

and Raman.

So far we have provided ourselves with a description of

one type of wolf-note motion for a bowed string and have

verified that it is consistent with the stick-slip behavior

expected of such a system. We have also recognized that

the presence of a wood resonance near the wolf-note

frequency is required and that it will alter the first-mode

vibrational properties of the string (but not those of the

higher modes). We will now consider the ways in which the

complete dynamical system comes to choose the wolf tone

as its preferred type of oscillation.



Schelleng in his discussion of the wolf note points out that

the presence of a wood resonance converts the ordinary

first-mode string resonance peak (measured at the bowing

point) into a pair of peaks. The upper part of figure 25.8

shows the nature of the bowing-point resonance curve that

is found when this wood resonance lies below the first-mode

string frequency. For simplicity, the string is assumed to be

tuned to 100 Hz. Notice that this resonance has caused the

original 100-Hz first-mode peak to be displaced upward in

frequency, while the other peak lies below the natural

frequency of the body itself. Notice also that the dip

between the pair of peaks is not as deep as the dips that lie

between the normally spaced resonances of the string. The

lower part of figure 25.8 shows similarly that when the wood

resonance lies above that of the isolated string, the string

resonance is displaced slightly below its original 100-Hz

position, while the newly added peak lies somewhat above

the natural frequency of the body itself.7



Fig. 25.8. String Resonance Curve Showing Splitting of First-

Mode Peak by a Wood Resonance. One or the other of these

paired first-mode peaks is the principal contributor to the

wolf-note phenomenon.

The feature essential for the production of a wolf note on a

bowed string is the presence of a strong resonance

immediately above or below the ideal position of the lowest

string resonance relative to the higher modes. (In

woodwinds there is an exactly analogous type of oscillation

to which I have given considerable study since it provides a



valuable diagnostic tool for the adjustment of Hutes and the

conical woodwinds.) The presence of the second member of

the pair of peaks is not required for the production of the

wolf, although it can aggravate the wolf-tone tendency if it

is placed symmetrically opposite its mate so that the

unmodified (100-Hz) first-mode frequency of the string lies

exactly halfway between the two peaks.

The physicist Ian Firth of the University of St. Andrews in

Scotland has made a number of experimental studies of the

wolf-tone behavior of cellos, some of which he carried out

during the summer of 1974 at the Speech Transmission

Laboratory in Stockholm.8 Firth’s data confirm the general

correctness of Schelleng’s analysis and contain a wealth of

additional information. Despite certain apparent

inconsistencies in the data and in Firth’s interpretation of

them, his results underlie a considerable portion of my

explanations in the remaining part of this section.

Keeping figure 25.8 in mind with its pattern of the first

resonance peak slightly misplaced and everything else

neatly lined up, we can now make an analysis of the

oscillation possibilities; this analysis is very similar to those

we carried out in connection with the production of

woodwind multiphonics. Notice particularly that the even-

numbered resonance peaks of the string tone are all

harmonically related and are thereby admirably set up to

generate a set of components whose frequencies are even

multiples of the string’s normal playing frequency. If we

confine our attention to these even-numbered peaks by

themselves and to the components that they generate

directly, it is clear that no matter what sort of nonlinearity is

present at the contact point between bow and string, all the

heterodyne frequencies that are generated among the even-

numbered peaks will themselves be members of this same

collection of even-numbered harmonics. In other words,



these components will be very strongly generated in a

stable kind of sub-regime.

Let us now ask what happens to the oscillatory

contribution of a first-mode peak that is displaced to run a

little sharp, generating a component at 102 Hz. The simplest

heterodyne offspring of this component and the strongly

maintained even harmonics turn out to be of the following

type:

102 ± 200 = 98, 302 Hz 

102 ± 400 = 298> 502 Hz 

102 ± G00 = 498, 702 Hz 

etc.

Notice that each of these heterodyne components lies close

to the frequency of one of the odd-numbered resonance

peaks and so has a reasonable chance of gaining support

from it. Pay particular attention to the 98-Hz heterodyne

component; although it lies in the dip between the pair of

first-mode resonance peaks, this dip is relatively shallow, so

that the component is able to gain considerable oscillatory

support in its own right. Because of this help, the

component can have an amplitude that is quite comparable

to those of its higher-frequency odd-numbered heterodyne

brothers, which sit on the shoulders of their respective

resonance peaks.

Here is the first place where we can make a direct

comparison with experience: in the neighborhood of 100 Hz

we have found a pair of components—98 and 102 Hz—of

appreciable (but not necessarily equal) amplitude, which

can beat together. This is exactly what one observes in a

typical wolf tone. Their joint appearance is roughly that of a

pulsating fundamental component of the sort recognized by



Raman and by Schelleng, although (contrary to a common

impression) it is not correct to say that the pair of

components at 98 and 102 Hz is equivalent to a single 100-

Hz component of fluctuating amplitude except in the

unusual case in which the two actual components have

precisely equal amplitude.

We can continue our examination of the descendants of

the two fundamental components by noticing that pairs of

components are found centered about all the odd harmonics

of 100 Hz—e.g., 298 and 302 Hz, 498 and 502 Hz, etc. As

has been remarked earlier, these pairs will feed themselves

from the odd-numbered resonance peaks, and in general

one or the other member of the pair will be particularly

strongly supported as a result of the small upward and

downward frequency displacements of these peaks that are

an inevitable consequence of various kinds of string

inharmonicity. These paired components will beat at exactly

the same 4-Hz rate as does the fundamental pair. This

beating rate is in further agreement with the observation of

Raman, as reformulated by Schelleng and confirmed by

Firth’s data, that the paired odd partials all give rise to a

pulsation at exactly the same frequency, regardless of the

accidents of placement of string tuning and body resonance.

The fact that we do not expect the members of each pair to

be of equal amplitude is also in accord with experiment.

During the course of a wolftone pulsation, one does not

generally find a total extinction of the odd partials, nor does

one find the degree of extinction to be the same for all of

them.

When one looks more closely at the details of the vibration

spectrum of a wolf tone there are many components present

besides the ones that we have listed so far. These other

components tend to be somewhat weaker, and their

presence does very little to alter the basic behavior that has

been outlined—i.e., reasonably strong and steady even



partials and synchronously beating odd partials. Let us

examine a few examples of these less important additional

components, chiefly with an eye to seeing why they play a

minor role in the behavior of the string. Here are some of the

heterodyne components that are generated by the odd-

partial pairs themselves:

98 ± 102 = 4, 200 Hz 

298 ± 302 = 4, 600 Hz 

498 ± 502 =4, 1000 Hz 

etc.

In every case we find the same low-frequency (4-Hz)

component and an exact even-harmonic component that

can cooperate with its corresponding peak to aid the net

oscillation in a vigorous way. The low-frequency component

is low enough to be felt by the player’s hands as a pulsation

or stuttering of the bow and perhaps of the instrument itself.

When we combine each odd-numbered component with

one from another pair, the following frequencies result:

98 ± 298 = 200, 396 Hz 

98 ± 302 =204, 400 Hz 

298 ± 502 = 204, 800 Hz 

etc.

Once again we find that exact even harmonics are produced

by each combination, along with something we have not

seen before—a set of weak satellites that are 4 Hz away from

the strong even harmonics in the tone. The fact that even

the paired, pulsating, odd partials themselves give rise to

even-harmonic components in all their dealings serves to



stabilize them by binding them ever more closely to the

more normal oscillatory behavior of the even partials.

Adding weak satellites to these even partials does not make

them pulsate very much, since there is little chance for a few

weak components of differing frequency to gang up

simultaneously on the strong central component and cancel

it out.

In the preceding paragraphs we have learned how the

displacement of the first-mode peak in the response curve of

a bowed string can give rise to the wolf tone: an oscillation

is produced in which the even partials run fairly steadily

(i.e., with weak satellite components) while the odd partials

pulsate strongly, which is a simple way of saying that they

are in fact constructed out of two or more components of

roughly equal amplitude. Since the first mode’s

displacement (and splitting into two resonances) depends

on the mutual influence of the string and the cello body, it is

clear that the presence or absence of the wolf phenomenon

depends on the relationship between the wave impedances

of the string and of the body (see secs. 17.1 and 24.3).

Schelleng studied this relationship and has provided us not

only with the means for predicting whether or not a given

instrument will have a wolf but also with the ability to devise

changes in the design that can minimize its effects.

Schelleng’s own experimental observations plus more recent

ones by many other people confirm the correctness of his

analysis.

25. 5. Examples, Experiments, and

Questions

1. Half-valved octaves can be played on a double French

horn or on the bass trombone by use of the Bb-F thumb

lever, with acoustical relationships identical with those

described for the Bb octave of the baritone horn. Certain

additional half-valved octave notes become available when



you exploit the possibility of using the other valves to

change the tube lengths of the two branched parts of the air

column. You may find a number of octave possibilities that

appear on the Bb side of a French horn when the extra-

length valve crooks are transferred from the F side of the

instrument. Why is it not possible on any brass instrument

to half-depress valves 1 and 2 together to produce the same

octave that is generated by the use of the third valve acting

alone? Why, on the other hand, will the use of the French

horn’s third valve work just as well as the second valve to

produce the octave of tone 15 of an open horn, whereas the

first valve will not produce the desired effect? Hint: how

many half humps in the valve loop are required to produce a

reversal of the standing wave in the bell region?

2. Brass players, in particular those who perform on the

French horn, sometimes sing into their instruments while

they play them, so that the airflow is controlled both by the

larynx and by the lip reed. Under these conditions the

resultant spectrum contains not only the two harmonic

series belonging to the played and sung notes, but also the

heterodyne components that arise from various pairings of

these partials. Suppose a trombone player sounding G3 on

his instrument (using a regime based on peaks 3, 6, 9, ... ) is

asked to sing a fourth lower (at D3) and then a fourth higher

(at C4). Compare the frequencies of the newly born

heterodynes with those of the various resonances of the

instrument to see which combination will tend to feel more

secure at the player’s lips. Attempt to work out the ways in

which a musically trained listener’s ears might group the

various partials coming to them from the instrument, and

deduce how he might describe the resulting “horn chords.”

3. Brass instruments, particularly French horns, often

“talk” to one another, so that the sound radiated by one of

them enters the bell of its neighbor and thence joins in at



the player’s lips to influence the regime of oscillation.9

Consider the exchanges between three horn players

sounding the notes of a major or a minor triad. With the help

of some sketched resonance curves and heterodyne

frequency computations, see if you can work out the reasons

why each player feels very secure and safe in his share of

the enterprise as long as everyone else is playing his part

correctly. As a matter of fact it is rather difficult for any one

of them to play out of tune with the rest, since the horns

very much “want” to pull together into a beat-free

relationship. On the other hand, if one member of the group

accidentally misses a note and arrives at something a tone

or semitone away, he may very well succeed in disrupting

his colleagues’ playing if they are not skilled enough to hold

fast.

4. A clarinet multiphonic played with all tone holes closed

except for the B ♮ cross key for the right hand has a strong

resonance at about 230 Hz, another peak near 580 Hz, and

one near 720 Hz. These three peaks manage among

themselves to generate considerable oscillatory energy at

the following frequencies: P = 214 Hz, Q = 575 Hz, R = 697

Hz, and S = 764 Hz. I have found 29 components up to 1822

Hz (2R + 2P). You would find it worthwhile to tabulate

enough possible heterodyne components to verify that a

listener tends to hear the multiphonic as being made up of

four reasonably well-established tones having P, Q, R, and S

as their fundamental frequencies. Note: this direct

association of the perceived tones with the primary sources

of excitation is not a common occurrence among the

multiphonics.

5. One of the favorite methods used by cellists to prevent

a troublesome wolf note is to add a small mass to one of the

strings in the region between bridge and tailpiece. If the

mass is of the correct magnitude and is properly located, it

can be given a natural frequency of transverse vibration that



is in the same general region as that of the troublemaking

body resonance.10 When such a mass is in place, the double

peaks shown near 100 Hz in the two parts of figure 25.8

become three peaks (!) of somewhat reduced height and

having slightly less deep dips between them (particularly if

the added mass is a piece of rubber or if other means of

vibrational damping are provided). Attempt to deduce

locations for the three peaks that would tend to restore

normal, wolf-free operation to the bowed string. Notice in

particular that there can be more than one way of arranging

the natural frequency of the suppressor to serve the desired

purpose.

6. Look back at the experiments suggested in part 1 of

section 23.6, and repeat them with an ear out for sounds

that can be interpreted with the help of your newly gained

understanding of multiphonics and wolf notes. A number of

additional experiments may suggest themselves to you, and

it may even be possible for you to devise string-players’

cousins to the woodwind multiphonics for possible use in

music.
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and loudness

metronome estimate of

and pitch

in reverberant rooms

and special relations

Beat tones. See Difference and summation tones

Beauchamp, James

Beldie, I. P.

Bells

pitch and frequencies of

Benade, A. H.

Beranek, Leo L.

Bergeijk, Willian A. van

Bernoulli, Daniel

Bernoulli effects

in brasses

and cross-fingering

and spectrum anomalies

steady flow laws

and vocal cord motion

on woodwind reeds

Bickley, W. G.

Blackham, E. Donnell

Boehm, Theobald

Bolt, Richard H.

Boomsliter, Paul C.

Bouasse, Henri

Bouhuys, Arend

Bowed instruments. See also Bowed strings; Bowing of strings

air resonances of

basic structure

bass bar effects

bridge as coupling lever

bridge force recipes

characteristic features of

direct and indirect excitation by strings

downbearing of string on bridge

half-size instruments

historical evolution

influence of humidity

loudness of musical tone components



neglected violins

net loudness vs. resonance peaks

new family of violins

recording problems

scaling of conventional

scaling for new violin family

string tension

string tunings for

wolf notes

wood vs. new materials

Bowed instruments—musical properties

characterization of instruments

disappearance of beats

electronic synthesis attempts

historical pitch changes

and human voice

and multi-path transmission to listener

musical intervals and broadening of partials

new family of violins

and other instruments

spectrum and critical bandwidth

synthesis of new violin family sounds

Bowed instruments—radiation

breathing mode

bridge resonance effects

directionality

higher resonances and

main air resonance

main wood resonance

string force spectrum and

Bowed instruments—tests and adjustments

bowing experiments

laser techniques

loading and thinning

magnetic excitation

mapping of plate modes

of new violin family sounds

optical and magnetic pickups

plate tuning methods

response vs. microphone distance

ring mode

Saunders loudness curves

tap tone methods

wolf note prevention

Bowed instrument vibration



air resonances

body stiffness vs. air resonances

bridge excitation vs. playing level

bridge force transformation ratio

bridge motion vs. frequency

bridge resonances

coupling of air and plate modes

experiments with resonances

f-holes and air resonance

heterodynes in bridge excitation

main air resonance

main wood resonance

plate mode shapes and frequency

purfling and hinged plates

sensitivity to humidity

similarity to kettledrum

splitting of wood resonance by air coupling

string damping and bridge resonance

wood density, damping, and grain effects

wood resonances

wood vs. metal plate modes

Bowed strings. See also Bowed instruments; Bowing of strings

bow friction

bowing point

bridge driving force spectrum

crank-driven excitor for

damping of

excitation mechanisms

inharmonicity effects

intermode perturbations

motion of

resonance curves

rosin vs. wax

string mode vs. bridge force recipes

vibration microscope

Bowing of strings—Helmholtz-Raman formulation

bowing point

bow pressure

chalk on blackboard

crumples

departures from simple theory

flyback time vs. bowing point

introduction to

“missing” partials

recipe at bowing point and elsewhere

recipe vs. bowing pressure



stick-slip friction

string amplitude vs. bow velocity

summary of behavior

unsteady oscillations

wolf note pulsations

Bowing of strings—regimes of oscillation

analogies to wind instruments

A-string regimes

bow friction curves

bowing point effects

bowing pressure

bridge loading experiments

dampingeffects

disruption of

“feel” of bow

“harmonics,”

heterodyne effects

of hypothetical string

limitations of viewpoint

“missing” partials

mode shifts vs. added mass

new calculation methods

nonlinearity of bow friction

plucking vs. bowing frequency(see also )

trade-off of misalignment vs. damping

upper partials

wolf note production

Brant, Henry

Brasses. See also Air columns; and individual brass instruments

adjustment of mouthpiece

attack

auditory aspects

bends and loops in

Bernoulli effects in

Bessel horn as basis of

burr on start-up

characteristic mode shapes of

classification of

conditions for oscillation

directionality

excitation model—water trumpet

external recipe measurement

Brasses (continued)

flaring vs. conical

hand in bell



hobby tubing experiments

internal spectrum vs. resonance peaks

introduction to

lips as pressure-controlled valve

loudness recipes

mutual influence in ensemble

pedal note

pitch vs. dynamics

radiation

recipe vs. dynamics

reflection and transmission in

regime of oscillation defined

regimes damped by handkerchief

regimes for various tones

resonance curves

singing while playing

small objects in

sound production vs. musical requirements

stuffiness defined

trade-off of misalignment vs. damping

transformation function

tuba and cornet classification

unvalved notes of

wall vibrations and materials

Brass instrument mouthpieces

effect on wave impedance and resonance peaks

equivalent lengths, volumes, and popping frequencies

popping frequency vs. resonance curve

properties of, summary

structure

Brass instrument valves

half-valved octave

half-valving as filter

slides vs. air column shape

tuning errors of, theory and measurement

Breathing mode

Brombaugh, John

Brindley, G. S.

Buchanan, J. Michael

Buzz

Cardwell, W. T., Jr.

Catgut Acoustical Society

Cent division of semitone

Center frequency

Cello. See also Bowed instruments



air resonance complications

bowing experiments

bridge resonances

characterizing resonances

loudness curve peculiarities

wolf notes

Chang, Nagyoung

Characteristic frequencies. See also Characteristic modes of oscillation;

Vibration recipes; and individual instruments

general properties

modification of

and pitch

of plates

spacing between

string vs. bar

of struck object

Characteristic impedance. See Wave impedance

Characteristic modes of oscillation. See also Air columns; Rooms; and

individual instruments

adjustment of

of air columns

analysis and synthesis of

auditory implications of

bar vs. plate modes

of chain

vs. echo description of room

frequency shift of, on blown flute

general properties

of glockenspiel

of guitar plate

maximum number of

of multi-mass system

and number of humps

and plate boundaries

separability via impedance

of simple and composite systems

of strings and bars

summary

of tapered chain or bar

of tin tray

transverse, longitudinal, and torsional

of tuning fork

vibrational shapes of

of water

Chart recorder, introduced

Chimes, small clock



Choral music

Chotteau, Michel

Chromatic scale, note and octave labels

Circular vs. sinusoidal motion

Clarinet. See also Woodwinds

air column adjustments

and bowed string regimes

Chotteau’s

cutoff frequencies

favored pitches

historical

mouthpiece and reed adjustments

multiphonics

octave ambiguity

pitch shift from register hole

pitch vs. dynamics

recipe vs. playing level

register holes

saxophone sound from

single-peak oscillation

transformation function

trill

Clarity of sound

Clavichord

tangent motion

“tzip” sound

vibration recipe of

Coltman, John W.

Coltrane, John

Combination tones. See Difference and summation tones

Complex sounds. See Composite sounds

Composite oscillations. See also Vibration recipes

pictorial representation of

from several plectra

of skillet

during transient

of tuning fork

of water

Composite sounds. See also Beats; Heterodyne components; Loudness

recipes; Pitch; Vibration recipes

and beats

harmonic or quasi-harmonic

perception of

Cooper, Franklin S.



Cornet. See Brasses

Crandall, Irving B.

Crank-driven systems

for bowed instruments

peculiarly clamped bar

pendulum

pump for air columns

two-mass chain

Creel, Warren

Cremer, Lothar

Critical bandwidth

and bowed instrument sounds

of ear

and singer’s audibility

Croke, C. B.

Cross-fingering. See Woodwind regimes of oscillation

Cuddeback, John K.

Cutoff frequency. See also Windwinds

Damped sinusoidal oscillations. See also Oscillations; Sinusoidal motion

Damping. See also Decay of sound or vibrations; Selective damping

in air columns

and bandwidth

and driven response

frequency dependence of, in wood

of string by air

at string termination

of transient

turbulent

from wall materials

Damping time. See Decay time

David, Edward E., Jr.

Decay of sound or vibrations. See also Damping; Decay time

examples

formal description

of initial transient

mechanism of

from viscous forces

and wave impedance

Decay time. See also Reverberation time

and air friction

halving time

piano string

and wave impedance



wooden bar

Decibel (dB)

vs. loudness

multiple sources

reference sound pressure

Delay time

Denes, Peter B.

Deva, B. Chaitanya

Diaphragm. See Plates

Difference and summation tones. See also Beats; Heterodyne components

loose terminology for

piccolo and recorder experiments on

Digressions

Archimedes, Mersenne

bandwidth definitions

beat rates via metronome

bends and loops

characteristic vs. wave impedance

clang components

drumhead and air cavity

duct excitation methods

eccentric loading

edge tones

even harmonics

experimental techniques

frequency labeling

guess at decay process

guitar pickups

higher fork sounds

humps, half wavelengths

LTAS

loudspeakers

measured vs. textbook ratios

membrane loading

negative frequencies

neglected violins

numbering of frequencies

partials vs. harmonics

pitch

rates

rates of quasi harmonics

reduced first peak

room modes vs. frequency

scattering and waveform

search-tone method



segmentability of systems

simplified models

spacing of natural frequencies

sum and difference tones

theory development

two-ear effects

vibration recipes

viscosity of fluids

wooden plates

Directionality

bowed string instrument

brass instrument

loudspeaker

microphone

of oboe multiphonic

woodwind

Displacement and restoring force

Distortion. See Heterodyne components; Nonlinearity

Doak, P. E.

Dostrovsky, Sigalia

Downbearing of string on bridge

Driven oscillations

amplitude and phase of

anomalous, of fork by flute

damping and response of

of fork by oboe

of nonlinear mechanism

summary

of systems

of tin tray

Driving point response. See also Driven oscillations; Resonance and

response behavior

Drumbeats

Drums; Drumheads. See Membranes; Kettledrums

Dual air columns

Duff, Cloyd

Ears. See Hearing

Echo. See Hearing; Precedence effect; Reflections

Eigenfrequencies. See Characteristic frequencies

Eisner, Edward

Electrocardiograph

Electronic devices. See also Loudspeaker; Mi-

crophone; Recording and playback

adjustable-speed tape recorder



band-pass filter

equalizer circuit

headphones, earphones

phonograph turntable

repetition rate generator

soft switch

strip chart recorder

usefulness and limitations of

wave analyzer

Embouchure. See Brass instrument mouthpieces; Woodwind reeds and

mouthpieces

English horn. See also Oboe; Woodwinds

reed cavity adjustments

tone color vs. vowel sounds

Ernst, Friedrich

Euler, Leonhard

Excitation point. See Striking point

Experiments. Scattered throughout, especially in final section of each

chapter

Fant, Gunnar

Feather, Norman

Fechner, Gustav

Feldtkeller, R.

Fielding, Francis L.

Fifth, interval of

circle of fifths

in equal temperament

as perceptually special relations

Filter

band-pass

high-pass

Firth, Ian

Flanagan, James

Flare parameter of horns

Fletcher, Harvey

Fletcher, Neville

Flexible string

vibration recipes for

Flow control. See Brass instrument mouthpieces; Woodwind reeds and

mouthpieces

Fluegelhorn. See Brasses

Flute. See also Windwinds

adjustment methods



air column adjustments

ambiguous octave

cross-fingering

cutoff frequency

and difference tones

embouchure length correction

and fork, anomaly

headjoint cork position

highest notes

historical

of India

key-snapping sounds

mode shapes

oscillation mechanism

pitch vs. dynamics

required inharmonicity of modes

resonance (admittance) curves

tones of, vs. edge tones

tuning to keyboards

wolf tone analog

Formant; Formant tuning; Singer’s formant. See Voice formants

Formulas

bandwidth and reverberation time

Bessel horn frequencies

bowed string bridge force recipe

bowing pressure limits

closed tone hole effects

cutoff frequency

flute embouchure correction

frequencies of bars and strings

frequency changes from plate alteration

half wavelength

halving time

hammer bounce

loudness

net sound pressure

open hole length correction

oscillator frequency

plate mode frequencies

reed “playing” frequency

register hole pitch shift

resonance peaks and dips vs. damping

string inharmonicity

wave impedance

wave impedance of tricord

wave velocity and impedance of string and soundboard

woodwind spectrum transformation function



Fourth, interval of

as perceptually special relation

in temperament-setting

Frank, Nathaniel H.

Fransson, Frans

French, A. P.

French, J. W.

French horn. See also Brasses

burr on start-up

half-valved octave

hand in bell

mutual influences in ensemble

singing while playing

Frequency. See also Characteristic frequencies

of chromatic scale notes

hacksaw blade experiments

Hertz (Hz) defined

negative

octave transposition

vs. pitch

spring/mass, formula

Frequency components. See also Characteristic frequencies; and individual

instruments

harmonics

of ideal string

partials

of real strings

Frequency ratios

of bar, chimes, or bells

effect of bar shape on

of guitar strings

harmonic

Frequency ratios (continued)

of kettledrum

between modes

musical intervals defined by

of musical tone

for semitone and its ten-cent divisions

for two- and three-mass chains

Frey, Austin R.

Friction coefficients

Gabrielsson, Alf



Gamelan

Gans, D. J.

Gebler, James

Ghelmeziu, N.

Gilliom, John D.

Glockenspiel. See Bars

Goldstein, Julius L.

Gorrill, W. S.

Graphical addition of motion

Green, David M.

Greenwood, Donald D.

Gregory, Robin

Gridley, Mark

Group velocity in brasses

Gruenke, Herman

Guitar. See also Strings plucked or struck

bridge and braces

computer-generated twangs

excitation of, by strings

frets

loading of strings

magnet to find recipe of

pickups

pitch of strings

plate tuning

plate vibrations

plectrum effects

recipes at pickup and loudspeaker

selective damping

string frequencies

Haas, Helmut

Haas effect. See Precedence effect

Hacksaw blade

Haines, Daniel

Halfpenny, Eric

Halving time. See Decay time

Hammer. See also Piano hammer blow

hardness

striking point of

width and contact time

Hammond organ

Hancock, Maurice

Hanning pulse

Harmonicity. See also Inharmonicity



musical influence of

of snapped flute-key sound

strict and approximate

of sustained sounds

Harmonics

clumps of

heterodynes among

perceptual unity of

sounds having exact

string players

suppression of

tone defined via

Harnoncourt, Alice

Harpsichord. See also most entries for the piano

air friction in

beats from string of

clavichordlike transient

ending of tone

inharmonicity

low and high tuning of

plucking point, coupled strings, sympathetic vibration, stops

restoration of modes

soundboard

soundboard cavity

sound recipe

string vs. piano string

vigor of stroke

Harris, Cyril M.

Hearing. See also Heterodyne components; Loudness

of bowed strings

of harmonic partials

interval-stretching

heterodyne mechanisms

of musical intervals between sinusoids

of neighboring piano tones

out-of-doors—echoes and scattering

recovery time

Hearing in rooms

articulated notes

flutter echoes

integration of

localization of sounds

loudspeaker harshness

motion of listener and others



precedence effect

recording and playback

scattered sound

simultaneous auditory processes

steady sounds

two-ear sampling vs. frequency

Hebrank, Jack

Hecker, Michael H. L.

Helmholtz

Henry, Joseph

Hertz (Hz) defined

Heterodyne components. See also Beats; Brasses; Woodwinds; Bowed

instruments

the almost-unison

arithmetical relationships of

in bowed strings

clarinet octave ambiguity

within ear

loudspeaker vs. auditory

mechanical origins of

musical implications of

and musical tone

via nonlinearity

in quasi-harmonic sounds

reconstitution of partials

in reverberant rooms

via search tone

summary

in wind instruments

in wolf notes

Hewlett-Packard handbook

Hidden tune

Hollien, Harry

Hooke’s law

Hump

and half wavelength

number of, in various modes

Hundley, T. C.

Hunkins, Sterling

Hutchins, Carleen

Impedance. See Input impedance; Wave impedance

Implied tone

Impulsive sounds introduced. See also Decay of sound or vibrations

clicks and pops



decay of, in room

introduction to

oscilloscope analysis of

recognizability of

sequences of

skillet clang

Ingard, K. Uno

Inharmonicity. See also individual instruments

computer-generated twangs

kettledrum

musical influences of

piano string, constraints on

piano tuner’s octave

required in flute modes

snapped flute-key sound

of strings

Input impedance. See also Resonance and response behavior

Integer relations. See Composite sounds; Frequency components;

Harmonicity; Harmonics

Interlaced depth and flow behavior

Interlaced repetitions

Intermodulation components. See Heterodyne components

International Standards Organization. See ISO standards

Inter-pulse time

Intervals. See Musical intervals; Perceptually special interval relationships

Intonation. See also Musical intervals; Pitch

of adjustable-pitch instruments

alterations in, by performer

brass valve tuning errors

of clanging instruments

in complex groupings

with complex tones

cues to, and noise

drone as guide for

vs. favored pitches

Indian and Western

microtones and vibrato

pitch groupings of

reverberant cues to

woodwind, with keyboard

Irregularities of production, transmission, or response

beats modified by

in brass instruments

masking obliterated by

of multiphonic sounds



from multiple detectors or loudspeakers

musical implications of

real vs. synthetic bowed string sounds

Irregularities of production (continued)

in rooms, measured

of tin tray

from tone hole size and spacing

of vocal system

Ishizaka, K.

Ising, H.

ISO (International Standards Organization) standards

Jal tarang

Jansson, Erik V.

Jeffress, Lloyd A.

Kågén, Bertil

Kent, Earle L.

Kettledrums

air and head motions

“clearing” of

frequency ratios of

influence of contained air

Kirby’s observations

modes of oscillation

musical relations in

nonuniformity of head

observations with Duff

Rayleigh’s measurements

Kinematics. See Motion, description of

Kinsler, Lawrence E.

Kirby, Percival

Kirk, Roger E.

Knudsen, Vern O.

Kohut, J.

Kornhauser, E. T.

Kotschy, A.

Kroll, Oskar

Kuttruff, Heinrich

Ladefoged, Peter

Lagrange, Joseph Louis

Lamb, Horace

Lambert, Robert M.

Lazarus, Hans

Leitner, Alfred



Leuba, Christopher

Lindqvist, J.

Lindsay, Robert Bruce

Lip valve. See also Brasses

Livingston, L. J.

Long time average spectrum (LTAS)

of tenor with and without orchestra

Loudness. See also Sound pressure

and beats

combined, of sounds

and critical bandwidth

vs. decibels

exercises on

gain via formant tuning

introduction to

and masking by noise

and masking in room

of modified saxophone

of noise partials vs. sinusoids

and piano string impedance

and precedence effect

in room vs. anechoic chamber

of sinusoid, formulas

of sinusoid vs. frequency

sone defined

vs. sound level

of tenor vs. orchestra

thresholds of hearing and pain

and vibrato

Weber-Fechner “Law,”

Loudness recipes. See also Sound pressure recipes

for bowed instruments

for saxophone

for trumpet

for voice

for vowels

Loudspeaker

and battery

clicks and pops

directionality

distortion

harshness

as microphone

and precedence effect



vs. simple source

stereo, localization

vs. violin

Lubman, David

Lyon, R. H.

McIntyre, Michael

Marimba. See also Bars

Martin, Daniel

Masking

and loudness

obliteration in room

of pitch relations

Materials, effects of

wind instrument walls

wood grain

Mathews, M. V.

Maximum likelihood method for pitch

Meer, J. H. van der

Meinel, H.

Mel

Membranes. See also Kettledrums

adjustment of frequencies of

lumped loading

nonuniform drumhead

and plates

Merhaut, Josef

Mermelstein, P.

Mersenne, Marin

Meyer, Jürgen

Microphone

diaphragm motion

directionality

loudspeaker as

Microtones. See Intonation

Miller, Franklin, Jr.

Millisecond

Mintzer, D.

Modes of oscillation; Modes shapes. See Characteristic modes of oscillation

Modulation and key mood

Molin, N.-E.

Morse, Philip M.

Motion. See also Composite oscillations; Driven oscillations

chalk and blackboard examples



description of

displayed on oscilloscope or chart recorder

graphically combined

mechanical, of sound source

sinusoidal and circular

Murday, J.

Musical intervals. See also Perceptually special interval relationships; Scales;

Temperament

as basis for scale

cues to

departure from

drone as reference for

equal temperament fifth

and harmonic series

hierarchy of

high and low second and seventh

implied tones

inversions of

“just” intervals

in laboratory vs. concert hall

and musical context

noise effects on

obscured by complexity

other special relationships

piano tuner’s octave

piccolo and recorder experiments

proof that frequency ratios define

relations of three or more tones

between sinusoids

specially related vs. equal-tempered

stretching of

summary, special relationships

Musical structure. See also Perceptually special interval relationships;

Temperaments

from harmonic partials

via parallel processing by nervous system

Musical tone

and horn burr sound

reconstitution of

restricted definition

special perceptual status

Music of India

drone

intonation goals



microtones

scale relations

Natural frequencies; Natural modes. See Characteristic frequencies;

Characteristic modes of oscillation

Nederveen, Cornelis J.

New family of violins

Nodes and antinodes

in air columns

and f-holes position

of room modes

Noise

vs. intonation

narrow-band

white or broad-band

Noise partials defined

Nonlinearity. See also Heterodyne components

of bowed string friction

importance of, to musical instruments

production of heterodynes by

of reed flow control

regimes of oscillation via

Normal modes. See Characteristic modes of oscillation

Nuts and rubber bands

Oboe. See also Woodwinds

baroque, C-sharp note

cross-fingering

cutoff frequencies

Oboe (continued)

historical

multiphonics

recipe vs. playing level

reed cavity adjustments

reed plus staple

register change

spectrum anomalies

tuning to fork

tuning to keyboards

Octave

perceptually definite

piano tuner’s

piano, with suppressed partials



stretching

transposition

Octave jump, shift, or sneak

on flute

half-valved, on brasses

from interlaced pulse trains

on piano, via inter-string coupling

from suppressed harmonics

on tarogato and saxophone

in wolf notes

Octave key. See Woodwind regimes of oscillation, register holes

Organ. See also Temperament

composing for equal and unequal temperaments

flue pipe oscillation mechanism

Hammond

reed of

setting temperaments on

tracker action

Oscillations. See also Characteristic frequencies; Composite oscillations;

Driven oscillations

damped sinusoidal

self-sustained

transverse, longitudinal, and torsional

Oscillators. See also Tapered vibrators

frequency formula

multi-mass

pendulum vs. turntable motions

simple spring-and-mass

single link

sinusoidal motion

two-mass

Oscilloscope displays

influence of listener’s head

microphone signals vs. distance

room transient at three frequencies

skillet clang

sound decay in room

source flow and resulting sound pressure

tuning fork sounds

Overtones. See Harmonics; Partials

Partials defined. See also Noise partials

Pascucci, Vito

Pass band. See Bandwidth



Pattern recognition. See also Recognizability of sounds

basis for assigning pitch

children’s drawings

and successive notes

visual, as aid to aural

Patterson, John

Pendulum

driven

linked

motion of, and circular motion

Perception. See Hearing

Perceptually special interval relationships. See also Musical intervals

diluted by unsteady sound production

inversion of

piano tuner’s octave as

reverberation cues for

scale constructed using

summary

undefined between sinusoids

Percussion. See Bars; Bells; Chimes; Kettledrums; Marimba; Skillet clang;

Xylophone

Perturbations to alter frequencies

of air columns

of bars

of places and membranes

of strings

Perturbation weight functions

Phase relations

Phase velocity. See Wave velocity

Piano. See also Strings plucked or struck; Temperament

basic structure

bells imitated by

clamped-edge soundboard

inharmonicity of components

lid angle

missing partials restored

octave with suppressed partials

onset and decay times

pitch effects

soundboard, and string frequency shift

soundboard behavior and coupling with air

soundboard and string—wave velocity and impedance

sound recipes



stray sounds of

strings echo vowels

tuner’s octave

tuning, temperament, and pitch behavior

woodwind intonation with

Piano hammer blow. See also Strings plucked or struck

bouncing contact

force distribution of

influence of string on

recipe vs. strength of

and string recipes

thump, etc., in sound

Piano multiple stringing

decay pattern altered by

flat ribbon to replace

loudness effects from

need for

tuning implications of

wave impedance of

Piano strings

frequency shifts due to soundboard

inter-string transmission

laboratory excitation of

lump-loading of

proportioning

real strings

stiffness and inharmonicity

and soundboard proportions

transition to wound

tuning and pitch behavior

wound, proportions

Piccolo. See also Flute

special intervals and difference tones

Pickett, James M.

Pierce, John R.

Pinson, Elliot N.

Pitch. See also Intonation; and individual instruments

of beating sinusoids

chimes and bells

clarinet ambiguity

of computer twangs

of decaying sounds

glockenspiel



increments

introduction to

matching

measuring change in

mel-tuned organ

note and octave labels

reference scale

register hole effects on

relationships and reverberations

and repetition rate

via sets of frequencies

shift by recording

skillet clang

and special interval relationships

stability in absence of components

of string in room

vs. string stiffness

written clues for

Pitch assignment

complexities of

hidden tune

of horn burr

via maximum likelihood

pattern recognition

and quasi-harmonic relationships

of sound with missing partials

summary

of woodwind multiphonics

Plates. See also Bars

adjustment of frequencies of

boundary types

loading of

and membranes

rectangular

tin tray

wooden

wood vs. metal

Plomp, R.

Pollack, Irwin

Popping frequency of brass mouthpieces

Precedence effect

auditory integration and

and bowed string music

and early echoes

Joseph Henry’s observations



and loudness

Pulsation frequency. See Wolf notes

Pulse generator

Pyle, Robert

Pythagorean third

Radio (small), hearing of

Raman, C. V.

Ranade, G. H.

Rate. See also Repetition rate
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